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Analysis and optimization of quantum adaptive
measurement protocols with the framework of
preparation games
M. Weilenmann 1✉, E. A. Aguilar 1,2✉ & M. Navascués1✉

A preparation game is a task whereby a player sequentially sends a number of quantum

states to a referee, who probes each of them and announces the measurement result. Many

experimental tasks in quantum information, such as entanglement quantification or magic

state detection, can be cast as preparation games. In this paper, we introduce general

methods to design n-round preparation games, with tight bounds on the performance

achievable by players with arbitrarily constrained preparation devices. We illustrate our

results by devising new adaptive measurement protocols for entanglement detection and

quantification. Surprisingly, we find that the standard procedure in entanglement detection,

namely, estimating n times the average value of a given entanglement witness, is in general

suboptimal for detecting the entanglement of a specific quantum state. On the contrary, there

exist n-round experimental scenarios where detecting the entanglement of a known state

optimally requires adaptive measurement schemes.
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Certain tasks in quantum communication can only be
conducted when all the parties involved share a quantum
state with a specific property. For instance, two parties

with access to a public communication channel must share an
entangled quantum state in order to generate a secret key1. If the
same two parties wished to carry out a qudit teleportation
experiment, then they would need to share a quantum state with
an entanglement fraction beyond 1/d2. More generally, when only
restricted quantum operations are permitted, specific types of
quantum states become instrumental for completing certain
information processing tasks. This is usually formalized in terms
of resource theories3. Some resources, like entanglement, con-
stitute the basis of quantum communication. Others, such as
magic states, are required to carry out quantum computations4.
Certifying and quantifying the presence of resource states with a
minimum number of experiments is the holy grail of
entanglement5 and magic state detection4.

Beyond the problem of characterizing resourceful states
mathematically, the experimental detection and quantification of
resource states is further complicated by the lack of a general
theory to devise efficient measurement protocols. Such protocols
would allow one to decide, at minimum experimental cost,
whether a source is capable of producing resourceful states.
Developing such methods is particularly important for high
dimensional systems where full tomography is infeasible or in
cases where the resource states to be detected are restricted to a
small (convex) subset of the state space, which renders tomo-
graphy excessive.

General results on the optimal discrimination between differ-
ent sets of states in the asymptotic regime6 suggest that the
optimal measurement protocol usually involves collective mea-
surements over many copies of the states of interest, and thus
would require a quantum memory for its implementation. This
contrasts with the measurement scenario encountered in many
experimental setups: the lack of a quantum memory often forces
an experimentalist to measure each of the prepared states as soon
as they arrive at the lab. In this case it is natural to consider a
setting where subsequent measurements can depend on previous
measurement outcomes, in which case the experimentalist is said
to follow an adaptive strategy. Perhaps due to their perceived
complexity, the topic of identifying optimal adaptive measure-
ment strategies has been largely overlooked in quantum infor-
mation theory.

In this paper, we propose the framework of quantum pre-
paration games to reason about the detection and quantification
of resource states in this adaptive setting. These are games
wherein a player will attempt to prepare some resource, which
the referee will measure and subsequently assign a score to. We
prove a number of general results on preparation games,
including the efficient computation of the maximum average
score achievable by various types of state preparation strategies.
Our results furthermore allow us to optimise over the most
general measurement strategies one can follow with only a finite
set of measurements, which we term Maxwell demon games. Due
to limited computational resources, full optimisations over
Maxwell demon games are restricted to scenarios with only n ≈ 3,
4 rounds. For higher round numbers, say, n ≈ 20, we propose a
heuristic, based on coordinate descent, to carry these optimisa-
tions out approximately. More specifically, the outcome of the
heuristic is (in general) a sub-optimal preparation game that
nonetheless satisfies all the optimization constraints. In addition,
we show how to devise arbitrarily complex preparation games
through game composition, and yet another heuristic inspired by
gradient descent. We illustrate all our techniques with examples
from entanglement certification and quantification and highlight
the benefit of adaptive measurement strategies in various ways. In

this regard, in contradiction to standard practice in entanglement
detection, we find that the optimal n-round measurement pro-
tocol to detect the entanglement of a single, known quantum state
does not consist in estimating n times the value of a given
(optimised) entanglement witness. On the contrary, there exist
adaptive measurement schemes that supersede any non-adaptive
protocol for this task.

Results
In the following we introduce the framework of preparation
games and show how to devise resource detection protocols using
this framework. We illustrate our findings with applications from
entanglement detection and quantification.

Quantum preparation games for resource certification and
quantification. Consider the following task: a source is dis-
tributing multipartite quantum states among m separate parties
who wish to quantify how entangled those states are. To this
effect, the parties sequentially probe a number of m-partite states
prepared by the source. Depending on the results of each
experiment, they decide how to probe the next state. After a fixed
number of rounds, the parties estimate the entanglement of the
probed states. They naturally seek an estimate that lower bounds
the actual entanglement content of the states produced during the
experiment with high probability. Most importantly, if the source
is unable to produce entangled states, the protocol should certify
this with high probability.

Experimental scenarios whereby a source (or player) sequen-
tially prepares quantum states that are subject to adaptive
measurements (by some party or set of parties that we collectively
call the referee) are quite common in quantum information.
Besides entanglement detection, they are also found in magic
state certification4, and, more generally, in the certification and
quantification of any quantum state resource3. The common
features of these apparently disparate quantum information
processing tasks motivate the definition of quantum preparation
games. See Box 1 and Fig. 1.

A preparation game G is thus fully defined by the triple (S,M,
g), where S denotes the sequence of game configuration sets
ðSkÞnþ1

k¼1 ; and M, the set of POVMs M � fMðkÞ
s0 js :

s0 2 Skþ1; s 2 Skgnk¼1. In principle, the Hilbert space where the
state prepared in round k lives could depend on k and on the
current game configuration sk∈ Sk. For simplicity, though, we will
assume that all prepared states act on the same Hilbert space, H.
In many practical situations, the actual, physical measurements
conducted by the referee in round k will have outcomes in O, with
∣O∣ < ∣Sk∣. The new game configuration s0 2 Skþ1 is thus decided
by the referee through some non-deterministic function of the
current game configuration s and the ‘physical’ measurement
outcome o∈O. The definition of the game POVM fMðkÞ

s0 jsgs0
encompasses this classical processing of the physical measure-
ment outcomes.

The expected score of a player with preparation strategy P is

GðPÞ � ∑
s2Snþ1

pðsjP;GÞhg ðsÞi: ð1Þ

In the equation, pðsjP;GÞ denotes the probability that, condi-
tioned on the player using a preparation strategy P in the game
G, the final game configuration is s. For the sake of clarity, we will
sometimes refer to the set of possible final configurations as �S
instead of Sn+1.

In this paper we consider players who aim to maximise their
expected score over all preparation strategies P that are accessible
to them, in order to convince the referee of their ability to prepare
a desired resource. Intuitively, a preparation strategy is the policy
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that a player follows to decide, in each round, which quantum
state to prepare. Since the player has access to the referee’s
current game configuration, the player’s state preparation can
depend on this. The simplest preparation strategy, however,
consists in preparing independent and identically distributed
(i.i.d.) copies of the same state ρ. We call such preparation
schemes i.i.d. strategies and denote them as ρ⊗n. A natural
extension of i.i.d. strategies, which we call finitely correlated
strategies7, follows when we consider interactions with an
uncontrolled environment, see Fig. 2. I.i.d. and finitely correlated
strategies can be extended to scenarios where the preparation
depends on the round number k. The mathematical study of these
strategies is so similar to that of their round-independent
counterparts, that we will not consider such extensions in this
article.

Instead, we will analyze more general scenarios, where the
player is limited to preparing multipartite states belonging to a
specific class C, e.g. separable states. In this case, given
ρ; σ 2 C \ BðHÞ�k, a player can also generate the state pρ+ (1
− p)σ for any p∈ [0, 1], just by preparing ρ with probability p and
σ otherwise. Thus, we can always assume C \ BðHÞ�k to be
convex for all k. The preparation strategies of such a player will be
assumed fully general, e.g., the state preparation in round k can
depend on k, or on the current game configuration sk. We call
such strategies C-constrained.

Computing the average score of a preparation game. Even for i.
i.d. strategies, a brute-force computation of the average game
score would require adding up a number of terms that is expo-
nential in the number of rounds. In the following we introduce a
method to efficiently compute the average game scores for various
types of player strategies.

Let G= (S,M, g) be a preparation game with M � fMðkÞ
s0 js :

s0 2 Skþ1; s 2 Skgnk¼1, and let C be a set of quantum states. In
principle, a C-constrained player could exploit correlations
between the states they prepare in different rounds to increase
their average score when playing G. They could, for instance,
prepare a bipartite state ρ12 2 C; send part 1 to the referee in
round 1 and, depending on the referee’s measurement outcome
s2, send part 2, perhaps after acting on it with a completely
positive map depending on s2. However, the player would be in
exactly the same situation if, instead, they sent state ρ1= tr2(ρ12)

in round 1 and state ρ2s2 / tr1½ðMs2j; � I2Þρ12� in round 2. There
is a problem, though: the above is only a C-constrained
preparation strategy provided that ρ2s2 2 C. This motivates us to
adopt the following assumption.

Assumption 1
The set of (in principle, multipartite) states C is closed under
arbitrary postselections with the class of measurements conducted
by the referee.

This assumption holds for general measurements when C is the
set of fully separable quantum states or the set of states with
entanglement dimension8 at most D (for any D > 1). It also holds
when C is the set of non-magic states and the referee is limited to
conducting convex combinations of sequential Pauli
measurements9. More generally, the assumption is satisfied when,
for some convex resource theory3, C is the set of resource-free
states; and the measurements of the referee are resource-free. The
assumption is furthermore met when the player does not have a
quantum memory.

Under Assumption 1, the player’s optimal C-constrained
strategy consists in preparing a state ρksk 2 C in each round k,
depending on k and the current game configuration sk. Now,
define μðkÞs as the maximum average score achieved by a player,
conditioned on s being the configuration in round k. Then μðkÞs
satisfies

μðnÞs ¼ max
ρ2C

∑
�s2�S

tr ½MðnÞ
�sjs ρ�hg ð�sÞi;

μðkÞs ¼ max
ρ2C

∑
s0
tr ½MðkÞ

s0 jsρ�μðkþ1Þ
s0 :

ð2Þ

These two relations allow us to inductively compute the
maximum average score achievable via C-constrained strategies,
μð1Þ; . Note that, if the optimizations above were carried out over a
larger set of states C0 � C, the end result would be an upper
bound on the achievable maximum score. This feature will be
handy when C is the set of separable states, since the latter is
difficult to characterize exactly10,11. In either case, the computa-
tional resources to conduct the computation above scale as
O ∑kjSkjjSkþ1j
� �

.
Equation (2) can also be used to compute the average score of

an i.i.d. preparation strategy ρ⊗n. In that case, C ¼ fρg, and the

Box 1 : Quantum preparation game

Game Variables
Number of Rounds n
Game Configuration Unique initial configuration S1 ¼ f;g. In round k, there is a set of allowed configurations Sk ¼ fsk1 ; sk2; ¼ g. After n rounds, the

game ends in s∈ Sn+1.
Measurement Operators For every game configuration s∈ Sk, there are POVMs fMðkÞ

s0 js : s
0 2 Skþ1g.

Scoring Function A (non-deterministic) function g : Snþ1 ! R.

The game variables, i.e., round number, possible configurations, POVMs and scoring rule, are publicly announced before the game starts.

Measurement Round Rules

1. At the beginning of round k, the current game configuration s∈ Sk is known to the player. The player prepares a state ρk according to their
preparation strategy P, and sends it to the referee.

2. The referee measures the quantum state ρk with the POVM fMðkÞ
s0 js : s

0 2 Skþ1g.
3. The referee publicly announces the outcome s0 of this measurement, which becomes the game configuration for the next round.

Scoring

After the nth round, the player receives a score g(s), where s∈ Sn+1 is the final configuration.
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maximization over C is trivial. Similarly, an adaptation of (2)
allows us to efficiently compute the average score of finitely
correlated strategies, for the details we refer to the Methods.

Optimizing preparation games. Various tasks in quantum
information – including entanglement detection – have the fol-
lowing structure: given two sets of preparation strategies S;S0

and a score function g, we want to find a game G= (S,M, g) that
separates these two sets, i.e., a game such that G ðPÞ≤ δ, for all
P 2 S, and G ðPÞ> δ for all P 2 S0. In some cases, we are
interested to search for games where the POVMs conducted by
the referee belong to a given (convex) class M. This class
represents the experimental limitations affecting the referee, such
as space-like separation or the unavailability of a given resource.

Finding a preparation game satisfying the above constraints
can be regarded as an optimization problem over the set of
quantum preparation games. Consider a set M of adaptive
measurement protocols of the form M � fMðkÞ

s0 js : s
0 2 Skþ1;

s 2 Skg, a selection of preparation games fGi
M ¼ ðS;M; giÞgri¼1

and sets of preparation strategies fSigri¼1. A general optimization
over the set of quantum preparation games is a problem of the
form

min
M2M;v

f ðvÞ

s:t: Gi
MðPÞ≤ vi; 8P 2 Si; i ¼ 1; :::; r;

A � v ≤ b;
ð3Þ

where A, b are a t × r matrix and a vector of length t, respectively,
and f(v) is assumed to be convex on the vector v 2 Rr .

In this paper, we consider i.i.d., finitely correlated (with known
or unknown environment state) and C-constrained preparation
strategies. The latter class also covers scenarios where a player
wishes to play an i.i.d. strategy with an imperfect preparation

device. Calling ρ the ideally prepared state, one can model this
contingency by assuming that, at every use, the preparation
device (adversarially) produces a quantum state ρ0 such that
k ρ� ρ0k1 ≤ ϵ. If, independently of the exact states prepared by
the noisy or malfunctioning device, we wish the average score gi

to lie below some value vi, then the corresponding constraint is

Gi
MðPÞ≤ vi; 8P 2 Eϵ; ð4Þ

where Eϵ is the set of ϵ-constrained preparation strategies,
producing states in fρ0 : ρ0 ≥ 0; tr ðρ0Þ ¼ 1; k ρ0 � ρk1 ≤ ϵg.

The main technical difficulty in solving problem (3) lies in
expressing conditions of the form

GMðPÞ≤ v; 8P 2 S ð5Þ
in a convex (and tractable) way. This will, in turn, depend on
which type of measurement protocols we wish to optimize over.
We consider families of measurement strategies M such that the
matrix

∑
s2;:::;snþ1

hg ðsnþ1Þi
On

k¼1

ðMk
skþ1jsk � skþ1

�� �Þ ð6Þ

depends affinely on the optimization variables of the problem.
For S ¼ fPg, condition (5) then amounts to enforcing an affine
constraint on the optimization variables defining the referee’s
measurement strategy. For finitely correlated strategies, we
describe in the Methods how to phrase (5) as a convex constraint.

For C-constrained strategies, the way to express (5) as a convex
constraint depends more intricately on the class of measurements
we aim to optimize over. Let us first consider preparation games
with n= 1 round, where we allow the referee to conduct any
j�Sj-outcome measurement from the convex set M. Let S
represent the set of all C-constrained preparation strategies, for
some convex set of states C. Then, condition (5) is equivalent to

vI� ∑
s2�S

Mð1Þ
sj;hg ðsÞi 2 C�: ð7Þ

Note that, if we replace C� in (7) by a subset thereof, relation
(5) is still implied. In that case, however, there may be values of v
for which relation (5) holds, but not eq. (7). As we will see later,
this observation allows us to devise sound entanglement detection
protocols, in spite of the fact that the dual of the set of separable
states is difficult to pin down10,11.

Next, we consider a particularly important family of multi-
round measurement schemes, which we call Maxwell demon
games. In a Maxwell demon game, the referee’s physical
measurements in each round k are taken from a discrete set
MðkÞ. Namely, for each k, there exist sets of natural numbers Ak,
Xk and fixed POVMs fðNðkÞ

ajx : a 2 AkÞ : x 2 Xkg 	 BðHÞ. The
configuration space at stage k corresponds to the complete history
of physical inputs x1,…, xk−1 and outputs a1,…, ak−1, i.e., sk=
(a1, x1, . . . , ak−1, xk−1), where s1 ¼ ;. Note that the cardinality of
Sk grows exponentially with k. In order to decide which physical
setting xk must be measured in round k, the referee receives

Fig. 1 Quantum preparation game from the referee’s perspective. In each round k of a preparation game, the referee (measurement box) receives a
quantum state ρk from the player. The referee’s measurement M(k) will depend on the current game configuration sk, which is determined by the
measurement outcome of the previous round. In the same way, the outcome sk+1 of round k will determine the POVMs to be used in round k+ 1. Recall that
the player can tailor the states ρk to the measurements to be performed in round k, since they have access to the (public) game configuration sk, shown
with the upward arrow leaving the measurement apparatus.

Fig. 2 Finitely correlated strategies. Suppose that a player owns a device
which allows them to prepare and distribute a quantum state to the referee.
Unfortunately, at each experimental preparation the player’s device
interacts with an environment A. Explicitly, if the player activates their
device, then the referee receives the state trA½∑iKiρK

y
i �; where ρ is the

current state of the environment and Ki : HA ! HA �H are the Kraus
operators which evolve the environment and prepare the state that the
referee receives. Since the same environment is interacting with each
prepared state, the states that the referee receives in different rounds are
likely correlated.
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advice from a Maxwell demon. The demon, who holds an
arbitrarily high computational power and recalls the whole
history of inputs and outputs, samples xk from a distribution
Pk(xk∣sk). The final score of the game γ 2 G is also chosen by the
demon, through the distribution P(γ∣sn+1). A Maxwell demon
game is the most general preparation game that a referee can run,
under the reasonable assumption that the set of experimentally
available measurement settings is finite.

Let us consider

Pðx1; :::; xn; γja0; a1; :::; anÞ ¼ Pðγjsnþ1Þ
Yn
k¼1

PkðxkjskÞ; ð8Þ

where a0 ¼ ;. Define (y0, . . . , yn)≡ (x1, . . . , xn, γ). As shown in12,
a collection of normalized distributions P(y0, . . . , yn∣a0, . . . , an)
admits a decomposition of the form (8) iff the no-signalling-to-
the-past conditions

∑
ykþ1;:::;yn

Pðy0; :::; ynja0; :::; anÞ ¼ Pðy0; :::; ykja0; :::; akÞ 8k ð9Þ
hold. For completeness, the reader can find a proof in the
Methods. We can thus characterize general Maxwell demon
games through finitely many linear constraints on P(x1, . . . , xn,
γ∣a0, a1, . . . , an).

For Maxwell demon games, the matrix (6) depends linearly on
the optimization variables P(x1, . . . , xn, γ∣a0, a1, . . . , an). Hence,
we can express condition (5) as a tractable convex constraint
whenever S corresponds to an i.i.d. strategy, or a finitely
correlated strategy with an unknown initial environment state,
as described above. Enforcing (5) for C-constrained strategies
requires regarding the quantities fμðnÞs gs in eq. (2) as optimization
variables, related to P and to each other through a dualized
version of the conditions (2). The reader can find a full
explanation in the Methods.

Finally, we consider the set of adaptive measurement schemes
with fixed POVM elements fMðjÞ

s0 js : j≠ kg and variable

fMðkÞ
s0 jsg 	 M, for some tractable convex set of measurements

M. As in the two previous cases, the matrix (6) is linear in the
optimization variables fMðkÞ

s0 jsg, so (5) can be expressed in a
tractable, convex form for sets of finitely-many strategies and
finitely correlated strategies with unknown environment. Simi-
larly to the case of Maxwell demon games, enforcing (5) for
C-constrained strategies requires promoting fμðjÞs : j≤ kg to
optimization variables, see the Methods for details.

Via coordinate descent, this observation allows us to conduct
optimizations (3) over the set of all adaptive schemes with a fixed
game configuration structure ðSjÞnþ1

j¼1
. Consider, indeed, the

method presented in Box 2. With this algorithm, at each
iteration, the objective value f(v) in problem (3) can either
decrease or stay the same: The hope is that it returns a small
enough value f⋆ after a moderate number L of iterations. In the
Methods the reader can find a successful application of this
heuristic to devise 20-round quantum preparation games.

The main drawback of this algorithm is that it is very sensitive
to the initial choice of POVMs, so it generally requires several
random initializations to achieve a reasonably good value of the
objective function. It is therefore suitable for optimizations of n ≈
50 round measurement schemes. Optimizations over, say, n=
1000 round games risk getting stuck in a bad local minimum.

To address this issue, we provide two additional methods for
the design of large-n quantum preparation games below.

Devising large-round preparation games by composition. The
simplest way to construct preparation games with arbitrary round
number consists in playing several preparation games, one after
another. Consider thus a game where, in each round and
depending on the current game configuration, the referee chooses
a preparation game. Depending on the outcome, the referee
changes the game configuration and plays a different preparation
game with the player in the next round. We call such a game a
meta-preparation game. Similarly, one can define meta-meta
preparation games, where, in each round, the referee and the
player engage in a meta-preparation game. This recursive con-
struction can be repeated indefinitely.

In the Methods we show that the maximum average score of a
(meta)j-game, which refers to a game at level j of the above
recursive construction, can be computed inductively, through a
formula akin to Eq. (2). Moreover, in the particular case that the
preparation games that make up the (meta)j-game have {0, 1}
scores, one only needs to know their minimum and maximum
scores to compute the (meta)j-game’s maximum average score.

For simple meta-games such as play m times the {0, 1}-scored
preparation game G, count the number of wins and output 1 (0) if
it is greater than or equal to (smaller than) a threshold v, which
we denote GðmÞ

v , we find that the optimal meta-strategy for the
player is to always play G optimally, thus recovering

pðG; v;mÞ � max
P2S

G ðmÞ
v ðPÞ ¼ ∑

m

k¼v

m

k

� �
GðP?Þkð1� GðP?ÞÞm�k;

ð10Þ
where P? ¼ argmaxP2SGðPÞ, from13. p(G, v,m) can be inter-
preted as a p-value for C-constrained strategies, as it measures the
probability of obtaining a result at least as extreme as the
observed data v under the hypothesis that the player’s strategies
are constrained to belong to S.

Devising large-round preparation games based on gradient
descent. A more sophisticated alternative to devise many-round
quantum preparation games exploits the principles behind Var-
iational Quantum Algorithms14. These are used to optimize the
parameters of a quantum circuit by following the gradient of an
operator average. Similarly, we propose a gradient-based method
to identify the optimal linear witness for detecting certain
quantum states. Since the resulting measurement scheme is
adaptive, the techniques developed so far are crucial for studying
its vulnerability with respect to an adaptive preparation attack.

Box 2 : A heuristic for general optimizations over preparation games

1. Starting point: a natural number L, an optimization problem of the form (3), a sequence of sets of game configurations S ¼ ðSjÞnþ1
j¼1

, a measurement

scheme M ¼ fMðjÞ
sjþ1 jsj : sjþ1; sjgj such that Gi

MðPÞ 
 vi;8P 2 Si , for i= 1, . . . , r, with A ⋅ v ≤ b.

2. Set l= 1.

3. Choose an index k∈ {1, . . . , n} and, using the techniques explained in Methods (Eq. (61)), minimize the objective value of (3) over measurement
schemes ~M with ~M

ðjÞ
sjþ1 jsj ¼ MðjÞ

sjþ1 jsj , for all sj∈ Sj, sj+1∈ Sj+1, j≠ k, subject to the optimization constraints. Call f⋆ the objective value of the optimal

measurement scheme M⋆.

4. Update M and l as M←M⋆, l← l+ 1. If l ≥ L, return M and f⋆ and stop. Otherwise, go to step 3.
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Consider a set of i.i.d. preparation strategies E ¼ fρ�n : ρ 2 Eg,
and let fk W ðθÞ k ≤ 1 : θ 2 Rmg 	 BðHÞ be a parametric family
of operators such that k ∂

∂θx
W ðθÞ k ≤K, for x= 1, . . . ,m. Given

a function f : Rmþ1 ! R, we wish to devise a preparation game
that, ideally, assigns to each strategy ρ�n 2 E an average score of

f θρ; tr ½W ðθρÞρ�
� 	

; ð11Þ
with

θρ ¼ argmaxθ tr ½W ðθÞρ�: ð12Þ
Intuitively, W(θρ) represents the optimal witness to detect

some property of ρ, and both the average value of W(θρ) and the
value of θρ hold information regarding the use of ρ as a resource.

Next, we detail a simple heuristic to devise preparation games
G whose average score approximately satisfies Eq. (11). If, in

addition, f θρ; tr ½W ðθρÞρ�
� 	

≤ δ for all ρ 2 C, then one would

expect that GðPÞ≾δ for all C-constrained strategies P 2 S.
Fix the quantities ϵ > 0, θ0 2 Rm and the probability distribu-

tions {pk(x): x∈ {0, 1, . . . ,m}}, for k= 1, . . . , n. For x= 1, . . . ,m,
let fMx

aðθÞ : a ¼ �1; 1g be a POVM such that

Mx
1ðθÞ �Mx

�1ðθÞ ¼
1
K

∂

∂θx
W ðθÞ: ð13Þ

Similarly, let fM0
�1ðθÞ;M0

1ðθÞg be a POVM such that

M0
1ðθÞ �M0

�1ðθÞ ¼ W ðθÞ: ð14Þ
A gradient-based preparation game is given by the following.

1. The possible game configurations are vectors from the set
Sk= {−(k−1), . . . , k−1}m+1, for k= 1, . . . , n. Given sk∈ Sk,
we will denote by ~sk the vector that results when we erase
the first entry of sk.

2. At round k, the referee samples the random variable x∈ {0,
1, . . . ,m} from pk(x). The referee then implements the
physical POVM Mx

aðθkÞ, with θk ¼ θ0 þ ϵ~sk, obtaining the
result ak∈ {− 1, 1}. The next game configuration is
skþ1 ¼ sk þ ak xj i.

3. The final score of the game is f θn;
s0n

∑n
k¼1 pkð0Þ

� 	
.

More sophisticated variants of this game can, for instance, let ϵ
depend on k, or take POVMs with more than two outcomes into
account. It is worth remarking that, for fixed m, the number of
possible game configurations scales with the total number of
rounds n as O(nm+1).

If the player uses an i.i.d. strategy, then the sequence of values
ðθkÞk reflects the effect of applying stochastic gradient descent15 to
solve the optimization problem (12). Hence, for the i.i.d. strategy
ρ⊗n and n≫ 1, one would expect the sequence of values ðθkÞk to
converge to θρ, barring local maxima. In that case, the average
score of the game will be close to (11) with high probability. For
moderate values of n, however, it is difficult to anticipate the
average game scores for strategies in E and S, so that a detailed
analysis with the procedure from eq. (2) becomes necessary (see
the applications below for an example).

Applications: Entanglement certification as a preparation
game. A paradigmatic example of a preparation game is entan-
glement detection. In this game, the player is an untrusted source
of quantum states, while the role of the referee is played by one or
more separate parties who receive the states prepared by the
source. The goal of the referee is to make sure that the source has
indeed the capacity to distribute entangled states. The final score
of the entanglement detection preparation game is either 1
(certified entanglement) or 0 (no entanglement certified), that is,
g : �S ! f0; 1g. In this case, one can identify the final game

configuration with the game score, i.e., one can take �S ¼ f0; 1g.
The average game score is then equivalent to the probability that
the referee certifies that the source can distribute entangled states.

Consider then a player who is limited to preparing separable
states, i.e., a player for whom C corresponds to the set of fully
separable states. Call the set of preparation strategies available to
such a player S. Ideally, we wish to implement a preparation
game such that the average game score of a player using strategies
from S (i.e., the probability that the referee incorrectly labels the
source as entangled) is below some fixed value eI. In hypothesis
testing, this quantity is known as type-I error. At the same time, if
the player follows a class E of preparation strategies (involving the
preparation of entangled states), the probability that the referee
incorrectly labels the source as separable is upper bounded by eII.
This latter quantity is called type-II error. In summary, we wish to
identify a game G such that pð1jPÞ≤ eI, for all P 2 S, and
pð0jPÞ≤ eII, for all P 2 E.

In the following, we consider three types of referees, with
access to the following sets of measurements:

1. Global measurements: M1 denotes the set of all
bipartite POVMs.

2. 1-way Local Pauli measurements and Classical Commu-
nication (LPCC): M2 is the set of POVMs conducted by
two parties, Alice and Bob, on individual subsystems, where
Alice may perform a Pauli measurement first and then,
depending on her inputs and outputs, Bob chooses a Pauli
measurement as well. The final outcome is a function of
both inputs and outcomes.

3. Local Pauli measurements: M3 contains all POVMs where
Alice and Bob perform Pauli measurements x, y on their
subsystems, obtaining results a, b, respectively. The overall
output is γ= f(a, b, x, y), where f is a (non-deterministic)
function.

Few-round protocols for entanglement detection. We first
consider entanglement detection protocols with just a single
round (n= 1). Let E= {ρ1, . . . , ρr−1} be a set of r− 1 bipartite
entangled states. Our objective is to minimise the type-II error,
given a bound eI on the acceptable type-I error. To express this
optimization problem as in (3), we define Si � fρig, for i= 1, . . . ,
r− 1, and Sr � S, the set of separable strategies. In addition, we
take f(v)= v1 and choose A, b so that vr= eI, v1= . . .= vr−1.
Finally, we consider complementary score functions g; g 0 : �S !
f0; 1g and assign the scores gi = g for i= 1, . . . , r− 1, and
gr ¼ g 0. All in all, the problem to solve is

min
ðMð1Þ

sj;Þs; eII
eII

s:t: tr ðMð1Þ
0j;ρiÞ≤ eII; i ¼ 1; :::r � 1;

eII�Mð1Þ
1j; 2 C�;

ðMð1Þ
sj;Þs 2 M:

ð15Þ

To optimize over the dual C� of the set of separable states, as
required in (15), we invoke the Doherty–Parillo–Spedalieri (DPS)
hierarchy16,17. As shown in the Methods, the dual of this
hierarchy approximates the set of all entanglement witnesses
from the inside and converges as n→∞. In the case of two qubits
the DPS hierarchy already converges at the first level. Hence, the
particularly simple ansatz

eII� ∑
s2S2

Mð1Þ
sj;hg ðsÞi ¼ V0 þ VT B

1 ; ð16Þ

where V0, V1 ≥ 0 and T B is the partial transpose over the second
subsystem, already leads us to derive tight bounds on the possible
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eII, given eI and the class of measurements available to the referee.
For larger dimensional systems, enforcing condition (16) instead
of the second constraint in (15) results in a sound but perhaps
suboptimal protocol (namely, a protocol not necessarily mini-
mizing eII). Nevertheless, increasing the level of the DPS dual
hierarchy generates a sequence of increasingly better (and sound)
protocols whose type-II error converges to the minimum possible
value asymptotically.

Eq. (15) requires us to enforce the constraint ðMð1Þ
sj;Þs 2 M. For

M ¼ M1, this amounts to demanding that the matrices ðMð1Þ
sj;Þs

are positive semidefinite and add up to the identity. In that case,
problem (15) can be cast as a semidefinite program (SDP)18.

For the casesM ¼ M2;M3, denote Alice and Bob’s choices of
Pauli measurements by x and y, with outcomes, a, b respectively,
and call γ∈ {0, 1} the outcome of the 1-way LPCC measurement.
Then we can express Alice and Bob’s effective POVM as

Mð1Þ
γj; ¼ ∑

a;b;x;y
Pðx; y; γja; bÞAajx � Bbjy; ð17Þ

where the distribution P(x, y, γ∣a, b) is meant to model Alice and
Bob’s classical processing of the outcomes they receive. For
M ¼ M2, P(x, y, γ∣a, b) must satisfy the conditions

∑
y;γ

Pðx; y; γja; bÞ ¼ PðxÞ and ∑
γ
Pðx; y; γja; bÞ ¼ Pðx; yjaÞ;

ð18Þ
whereas, for M ¼ M3, P(x, y, γ∣a, b) satisfies

∑
γ
Pðx; y; γja; bÞ ¼ Pðx; yÞ: ð19Þ

For M ¼ M2;M3, enforcing the constraint ðMð1Þ
sj;Þs 2 M thus

requires imposing a few linear constraints on the optimization
variables P(x, y, γ∣a, b). For these cases, problem (15) can
therefore be cast as an SDP as well.

In Fig. 3, we compare the optimal error trade-offs for M ¼
M1;M2;M3 and further generalise this to scenarios, where, e.g.

due to experimental errors, the device preparing the target state ρ
is actually distributing states ϵ-close to ρ in trace norm. The
corresponding numerical optimisations, as well as any other
convex optimization problem solved in this paper, were carried
out using the semidefinite programming solver MOSEK19, in
combination with the optimization packages YALMIP20 or
CVX21. We provide an example of a MATLAB implementation
of these optimisations22.

We next consider the problem of finding the best strategy for
M ¼ M2;M3 for n-round entanglement detection protocols. In
this scenario, our general results for Maxwell demon games are
not directly applicable. The reason is that, although both Alice
and Bob are just allowed to conduct a finite set of physical
measurements (namely, the three Pauli matrices), the set of
effective local or LPCC measurements which they can enforce in
each game round is not discrete. Nonetheless, a simple
modification of the techniques developed for Maxwell demon
games suffices to make the optimizations tractable. For this, we
model Alice’s and Bob’s setting choices ðxiÞi, ðyiÞi and final score γ
of the game, depending on their respective outcomes ðaiÞi, ðbiÞi
through conditional distributions

Pðx1; y1; x2; y2; :::; xn; yn; γja1; b1; :::; an; bnÞ: ð20Þ
Depending on whether the measurements in each round are

taken from M2 or M3 this distribution will obey different sets of
linear constraints. For the explicit reformulation of problem (3) as
an SDP in this setting, we refer to the Methods.

Solving this optimization problem, we find the optimal multi-
round error trade-offs for two-qubit entanglement detection in
scenarios where the POVMs considered within each round are
either in the set M2 (LPCC) or M3 (Local Pauli measurements),
see Fig. 4.

Now let us consider the scenario from above where within each
round a measurement from class M3 is applied in more detail.
Does the adaptability of the choice of POVM between the rounds
in a Maxwell demon game actually improve the error trade-offs?

Fig. 3 One-shot entanglement certification for ϕ
�� � ¼ 1ffiffi

2
p ð 00j i þ 1þj iÞ. The referee has access to measurement strategies from the sets M1 (blue), M2

(red), M3 (yellow). We display the mimimal eII for fixed eI. As each game corresponds to a hypothesis test, the most reasonable figure of merit is to
quantify the type-I and type-II errors (eI, eII) a referee could achieve. These error pairs lie above the respective curves in the plots, any error-pair below is
not possible with the resources at hand. Our optimisation also provides us with an explicit POVM, i.e., a measurement protocol, that achieves the optimal
error pairs. a Entanglement detection for exact state preparation. The minimal total errors for ϕ

�� �
are eI+ eII= 0.6464 withM1, eI+ eII= 0.8152 withM2,

and eI+ eII= 0.8153 with M3. For most randomly sampled states, these errors are much larger. We remark that there are also states, such as the singlet,
where M2 and M3 lead to identical optimal errors. b Entanglement detection for noisy state preparation. To enforce that all states close to ρ ¼ ϕ

�� �
ϕ
� ��

remain undetected with probability at most eII, we need to invoke eq. (7), with C ¼ fρ0 : ρ0 � 0; tr ðρ0Þ ¼ 1; k ρ� ρ0k1 
 ϵg. In the Methods we show how to
derive the dual to this set. The plot displays the ϵ= 0.1 case.
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Specifically, we aim to compare the case where the referee has to
choose a POVM from M3 for each round of the game
beforehand to the case where they can choose each POVM from
M3 on the fly based on their previous inputs and outputs. The
answer to this question is intuitively clear when we consider a set
E of more than one state, since then we can conceive a strategy
where in the first round we perform a measurement that allows us
to get an idea which of the states in E we are likely dealing with,
while in the second round we can then use the optimal witness for
that state. However, more surprisingly, we find that this can also
make a difference for a single state E ¼ f ψ

�� �
ψ
� ��g. For instance, for

the state ψ
�� � ¼ 1ffiffi

2
p ð 0þj i þ 1� ij iÞ with �ij i ¼ 1ffiffi

2
p ð 0j i � i 1j iÞ, we

find that, in two-round games, the minimum value of eI+ eII
equals 0.7979 with adaptation between rounds and 0.8006
without adaptation (see23 or the Methods for a statistical
interpretation of the quantity eI+ eII).

This result may strike the reader as surprising: on first
impulse, one would imagine that the best protocol to detect the
entanglement of two preparations of a known quantum state ρ
entails testing the same entanglement witness twice. A possible
explanation for this counter-intuitive phenomenon is that
preparations in E and S are somehow correlated: either both
preparations correspond to ρ or both preparations correspond
to a separable state. From this point of view, it is not far-fetched
that an adaptive measurement strategy can exploit such
correlations.

Our framework also naturally allows for the optimization over
protocols with eII= 0 and where the corresponding eI error is
being minimised, thus generalising previous work on detecting
entanglement in few experimental rounds24,25. Using the dual of
the DPS hierarchy for full separability26, we can furthermore
derive upper bounds on the errors for states shared between more
than two parties. Similarly, a hierarchy for detecting high-
dimensional entangled states27 allows us to derive protocols for
the detection of high-dimensional entangled states using
quantum preparation games28.

Due to the exponential growth of the configuration space,
optimisations over Maxwell demon adaptive measurement
schemes are hard to conduct even for relatively low values of n.
Devising entanglement detection protocols for n≫ 1 requires
completely different techniques.

Many-round protocols for entanglement detection. In order to
devise many-round preparation games, an alternative to carrying
out full optimizations is to rely on game composition. In this
regard, in Fig. 5 we compare 10 independent repetitions of a 3-
round adaptive strategy to 30 independent repetitions of a 1-shot
protocol, based on (10). This way of composing preparation
games can easily be performed with more repetitions. Indeed, for
m= 1000 repetitions we find preparation games with errors at the
order of ≈ 10−14. In the asymptotic regime, the binomial dis-
tribution of the number of 1-outcomes for a player restricted to
separable strategies (see eq. (10)) can be approximated by a

Fig. 4 Maxwell demon games played for various numbers of rounds. The referee has access to measurement strategies from the sets M2 (a) and M3

(b) within each round. The choice of the overall POVM implemented in each round will, in either case, depend on all inputs and outputs of previous rounds.
The curves display the optimal trade-off between type-I and type-II error, (eI, eII), for n= 1 (yellow), n= 2 (green) and n= 3 (blue) for E ¼ f ϕ

�� �
ϕ
� ���ng.

Fig. 5 Comparison of independent repetitions of 1-shot and 3-round
games for E ¼ f ϕ

�� �
ϕ
� ��g, in terms of the trade-off between type-I error, eI,

and type-II error, eII. The games Gð30Þ
22 (yellow), Gð30Þ

25 (red) and Gð30Þ
28

(purple) are obtained through 30 independent repetitions of optimal one-
shot games G restricted to measurements in M2. These are compared to
the optimal 3-round adaptive protocols G0 with measurements M2

performed in each of the three rounds, independently repeated 10 times as
G

0 ð10Þ
8 (blue). The 1 and 3-round games G and G0 were also analyzed in

Fig. 4. We observe that the repetition of an adaptive protocol outperforms
the others in the regime of low total error eI+ eII.
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normal distribution. For eI<μ � v
m, this leads to a scaling as

eIðmÞ � e�
mðμ�eIÞ2
2eI ð1�eIÞ (similarly for (1− eII) when μ < 1− eII, and

where the player is preparing states from E).
Recall also that the heuristic presented in Box 2 is another

viable option for moderate round numbers. We illustrate this in
the Methods, where we use it to devise 20-round protocols for
entanglement detection.

Finally, we apply gradient descent as a guiding principle to
devise many-round protocols for entanglement quantification.
For experimental convenience, the preparation game we develop
is implementable with 1-way LOCC measurements.

We wish our protocol to be sound for i.i.d. strategies in
E ¼ fρ�n : ρ 2 Eg, with E being the set of all states

ψθ

�� � ¼ cosðθÞ 00j i þ sinðθÞ 11j i; ð21Þ
for θ∈ (0, π/2). For such states, the protocol should output a
reasonably good estimate of ψθ

�� �
’s entanglement entropy

S ð ψθ

�� �Þ ¼ h ðcos2ðθÞÞ, with h ðxÞ ¼ �xlog ðxÞ � ð1� xÞlog ð1�
xÞ the binary entropy. Importantly, if the player is limited to
preparing separable states, the average score of the game should
be low.

Following eq. (11), we introduce

W ðθÞ ¼ 1
2
Z � Z þ þj i þh j � sinð2θÞX þ cosð2θÞZð Þ½ �

þ 1
2

�j i �h j � � sinð2θÞX þ cosð2θÞZð Þ½ �:
ð22Þ

This operator satisfies ∥W(θ)∥ ≤ 1 and ψθ

�� �
is the only

eigenvector of W(θ) with eigenvalue 1. W(θ) can be estimated
via 1-way LOCC with the POVM M0

�1ðθÞ ¼ I�W ðθÞ
2 ,

M0
1ðθÞ ¼ IþW ðθÞ

2 . Furthermore, consider

∂

∂θ
W ¼ þj i þh j � cosð2θÞX� sinð2θÞZð Þ

� �j i �h j � cosð2θÞX þ sinð2θÞZð Þ:
ð23Þ

This dichotomic observable can be estimated via eq. (13) with the

1-way LOCC POVM defined by

M1
�1ðθÞ ¼ þj i þh j � 1

2
I� cosð2θÞX þ sinð2θÞZð Þ

þ �j i �h j � 1
2
Iþ cosð2θÞX þ sinð2θÞZð Þ;

M1
1ðθÞ ¼ I�M1

�1ðθÞ;

ð24Þ

which satisfies M1
1 �M1

�1 ¼ ∂
∂θ W.

Let us further take f ðθ; vÞ ¼ h cos2ðθÞ� �
Θðv � ð1� λþ

λδðθÞÞÞ with 0 ≤ λ ≤ 1 and δðθÞ ¼ maxρ2C tr ½W ðθÞρ�. This
captures the following intuition: if the estimate v of tr[W(θn)ρ]
is below a convex combination of the maximum value achievable
(namely, ψθ

� ��W ðθn ¼ θÞ ψθ

�� � ¼ 1) and the maximum value
δ(θn) achievable by separable states, then the state shall be
regarded as separable and thus the game score is set to zero. In
Fig. 6, we illustrate how this game performs.

Discussion
We have introduced quantum preparation games as a convenient
framework to analyze the certification and quantification of
resources. We derived general methods to compute the (max-
imum) average score of arbitrary preparation games under dif-
ferent restrictions on the preparation devices: this allowed us to
prove the soundness or security of general certification protocols.
Regarding the generation of such protocols, we explained how to
conduct exact (approximate) optimizations over preparation
games with a low (moderate) number of rounds. In addition, we
introduced two methods to devise large-round preparation
games, via game composition and through gradient descent
methods. These general results were applied to devise novel
protocols for entanglement detection and quantification. To our
knowledge, these are the first non-trivial adaptive protocols ever
proposed for this task. In addition, we discovered that, against the
common practice in entanglement detection, entanglement cer-
tification protocols for a known quantum state can often be
improved using adaptive measurement strategies.

Fig. 6 Gradient descent based preparation game. The parameters are taken to be ϵ= 0.1, λ= 0.1 and θ0= 0. The probability of measuring M0
1 ;M

0
�1

� 

in

round k is chosen according to pkð0Þ ¼ 1
1þe�ð2k�nÞ. This captures the intuition that in the first few rounds it is more important to adjust the angle, while in later

rounds the witness should be measured more often. a The score assigned to i.i.d. preparation strategies as a function of the parameter θ of ψθ

�� �
for n= 41

rounds for E (blue) compared to the optimal separable value (red). As expected, the average game scores of the i.i.d. strategies f ψθ

�� �
ψθ

� ���n
: θg mimic the

shape of the curve h ðcos2ðθÞÞ and the scores obtainable with the set of separable strategies S perform significantly worse compared to the states from E
with angles close to θ ¼ π

4. b The optimal scores achievable by players capable of preparing bipartite quantum states of bounded negativity30, obtained
through application of eq. (2). We observe that the average score of the game constitutes a good estimator for entanglement negativity.
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Even though we illustrated our general findings on quantum
preparation games with examples from entanglement theory,
where the need for efficient protocols is imminent, we have no
doubt that our results will find application in other resource
theories. With the current push towards building a quantum
computer, a second use of our results that should be particularly
emphasized is the certification of magic states. More generally,
developing applications of our work to various resource theories,
including for instance the quantification of non-locality, is an
interesting direction for future work.

Another compelling line of research consists in studying the
average performance of preparation games where Assumption 1
does not hold. In those games, a player can exploit the action of
the referee’s measurement device to generate states outside the
class allowed by their preparation device. Such games naturally
arise when the player is limited to preparing resource-free states
for some resource theory, but the referee is allowed to conduct
resourceful measurements. An obvious motivating example of
these games is the detection of magic states via general
POVMs.

Finally, it would be interesting to explore an extension of
preparation games where the referee is allowed to make the
received states interact with a quantum system of fixed dimension
in each round. This scenario perfectly models the computational
power of a Noisy Intermediate-Scale Quantum (NISQ) device. In
view of recent achievements in experimental quantum comput-
ing, this class of games is expected to become more and more
popular in quantum information theory.

Methods
The maximum average score of finitely correlated strategies. Here we explain
how to compute the maximum average score achievable in a preparation game by a
player conducting a finitely correlated strategy (see Fig. 2), under the assumption
that the quantum operation effected by the preparation device is known, but not
the initial state of the environment.

In such preparations, the player’s device interacts with an environment A. More
specifically, in each round, the referee receives a state

trA ∑
i
KiρK

y
i

� �
;

where ρ is the current state of the environment and Ki : HA ! HA �H are the
Kraus operators, which evolve the environment and prepare the state that the
referee receives. Since the same environment is interacting with each prepared
state, the states that the referee receives in different rounds are generally correlated.

Suppose that the referee concludes the first round of their adaptive strategy in the
game configuration s. The (non-normalized) state of the environment will then be

∑
i1 ;j1 ;l1

l1
� ��Mð1Þ

sj; j1
�� �

~Ki1 ;j1
ρð~Ki1 ;l1

Þy; ð25Þ

where ~Kij ¼ IA � j
� ��� �

Ki. Iterating, we find that, if the referee observes the sequence
of game configurations ;; s2; :::; sn;�s, then the final state of the environment will be

∑
i;j;l

l1
� ��Mð1Þ

s2 j; j1
�� �

::: ln
� ��MðnÞ

�sjsn jn
�� �

~Kin ;jn
:::~Ki1 ;j1

ρð~Ki1 ;l1
Þy:::ð~Kin ;ln

Þy: ð26Þ

The probability to obtain such a sequence of configurations is given by the trace of the
above operator. The average score of the game is thus tr[ρΩ], where the operator Ω is
defined by

Ω ¼ ∑
s2 ;:::;sn ;�s

∑
i;j;l

l1
� ��Mð1Þ

s2 j; j1
�� �

::: ln
� ��MðnÞ

�sjsn jn
�� �ð~Ki1 ;l1

Þy:::ð~Kin ;ln
Þy ~Kin ;jn

:::~Ki1 ;j1
hg ð�sÞi:

ð27Þ
Note that Ω can be expressed as the composition of a sequence of linear

transformations. More concretely, consider the following recursive definition

ΩðnÞ
s ¼ ∑

�s2�S
∑
i;j;l

ð~Ki;jÞ
y ~Ki;l lh jMðnÞ

�sjs j
�� �hg ð�sÞi;

ΩðkÞ
s ¼ ∑

i;j;l
∑

s02Skþ1

ð~Ki;jÞ
y
Ωðkþ1Þ

s0
~Ki;l lh jMðkÞ

s0 js j
�� �: ð28Þ

Then it can be verified that Ω ¼ Ωð1Þ
; . Calling D the Hilbert space dimension of

the environment, the average score of the considered preparation game can thus be
computed with O D2∑kjSkjjSkþ1j

� �
operations.

In realistic experimental situations, the player will not know the original
quantum state ρA of the environment. In that case, we may be interested in

computing the maximum average score achievable over all allowed environment
states. Let us assume that ρA 2 A, for some convex set A. Then, the maximum
average score, v, is

max
ρA2A

tr ½ρAΩ�: ð29Þ
In case the environment is fully unconstrained, this quantity equals the

maximum eigenvalue of Ω.
This condition can be seen to be equivalent to

vI�Ω 2 A�; ð30Þ
where A� denotes the dual of A, i.e., A� ¼ fX : tr ðXρÞ≥ 0; 8ρ 2 Ag. In the
particular case where the initial state of the environment is unconstrained, the
condition turns into

vI�Ω≥ 0: ð31Þ
Since Ω is a linear function of the optimization variables, condition (30)– or

(31)– is a convex constraint and thus we can handle it within the framework of
convex optimization theory.

Enforcing C-constrained preparation strategies in Maxwell-demon games. In
the following we show how to turn (8) into a set of linear constraints on {P(y0, . . . ,
yn∣a0, . . . , an): a0, . . . , an}. We then show how to formulate the constraints (5),
when S is a set of C-constrained strategies in terms of the variables {P(y0, . . . ,
yn∣a0, . . . , an): a0, . . . , an}. This allows us to treat the optimization of multi-round
Maxwell demon games with convex optimization techniques.

Let us first show that (8) and (9) are equivalent. That any distribution of the
form (8) satisfies (9) can be checked with a straightforward calculation. Conversely,
for any set of distributions {P(y0, . . . , yn∣a0, . . . , an): a0, . . . , an} satisfying (9), there
exist distributions Pk(xk∣sk), P(γ|sn+1)such that (8) holds12. Indeed, one can derive
the latter from fPðx1; :::; xkja0; a1; :::; ak�1Þgk via the relations

PkðxkjskÞ ¼ Pðx1 ;:::;xk ja0 ;:::;ak�1Þ
Pðx1 ;:::;xk�1 ja0 ;:::;ak�2 Þ

Pðγjsnþ1Þ ¼ Pðx1 ;:::;xn ;γja0 ;a1 ;:::;anÞ
Pðx1 ;:::;xn ja0 ;a1 ;:::;an�1 Þ :

ð32Þ

For fixed measurements fNðkÞ
ajx : a; xg, optimizations over Maxwell demon games

thus reduce to optimizations over non-negative variables P(x1, . . . , xn, γ∣a0, a1, . . . , an)
satisfying eq. (9), positivity and normalization

∑
y0 ;:::;yn

Pðy0; :::; ynja0; :::; anÞ ¼ 1 8a0; :::; an: ð33Þ
We next show how to enforce the constraint (5) when S corresponds to the set

of C-constrained preparation strategies, for some set of states C. Similarly to (2), we
can enforce this constraint inductively. For k= 1, . . . , n, let νðkÞsk

, ξsnþ1
be

optimization variables, satisfying the linear constraints

ξsnþ1
¼ ∑

γ2G
γPðx1; :::; xn; γja0; a1; :::; anÞ; ð34Þ

νðnÞsn
I� ∑

an ;xn
ξsnþ1

NðnÞ
an jxn 2 C�; ð35Þ

and

νðkÞsk
I� ∑

ak ;xk
νðkþ1Þ
skþ1

Nðkþ1Þ
akþ1 jxkþ1

2 C�: ð36Þ

We claim that νð1Þ; is an upper bound on the maximum average score achievable
by a player restricted to prepare states in C. Indeed, let ρðkÞsk

2 C be the player’s
preparation at stage k conditioned on the game configuration sk. Multiply eq. (35)
by ρðnÞsn

and take the trace. Then, since eq. (35) belongs to the dual set of C, we have
that

νðnÞsn
≥ ∑

an ;xn
∑
γ2G

γPðx1; :::; xn; γja0; a1; :::; anÞ tr N ðnÞ
an jxnρ

ðnÞ
sn

h i
: ð37Þ

Next, we multiply both sides of the above equation by tr ½Nðn�1Þ
an�1 jxn�1

ρðn�1Þ
sn�1

� and
sum over the variables an−1, xn−1. By eq. (36), the result will be upper bounded by
νðn�1Þ
sn�1

. Iterating this procedure, we arrive at

ν
ð1Þ
; ≥ ∑

a1 ;:::;an ;x1 ;:::;xn
∑
γ2G

γPðx1; :::; xn; γja0; a1; :::; anÞ
Yn
k¼1

tr ½NðkÞ
ak jxkρ

ðkÞ
sk
�: ð38Þ

The right-hand side is the average score of the game. Call ωðkÞ
sk

2 C� the operator
expressions appearing in eqs. (35), (36). Note that, if there exist states ρðkÞsk

2 C such

that tr ½ωðkÞ
sk
ρðkÞsk

� ¼ 0, i.e., if all the dual elements are tight, then the preparation

strategy defined through the states fρðkÞsk
g achieves the average score ν

ð1Þ
; .

In sum, optimizations of the sort (3) over the set of all Maxwell demon games
require optimizing over P under non-negativity and the linear constraints (9), (33).
Constraints of the form (5) for S ¼ fPg translate as extra linear constraints on P
and the upper bound variable v. When S corresponds to a finitely correlated
strategy with unknown environment state, we can formulate condition (5) as the
convex constraint (30). Finally, when S corresponds to a set of C-constrained
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strategies, condition (5) is equivalent to enforcing constraints (34), (35) and (36) on
P and the slack variables ν; ξsnþ1

, with v � ν
ð1Þ
; .

Computing the average score of a meta-preparation game. Our starting point is
an n-round meta-game with configuration spaces S= (S1, S2, . . . , Sn+1), with
S1 ¼ f;g. In each round k, the referee runs a preparation game Gk(sk). Depending
on the outcome ok∈Ok of the preparation game, the referee samples the new
configuration sk+1 from the distribution ck(sk+1∣ok, sk). The final score of the meta-
game is decided via the non-deterministic function γ : Snþ1 ! R.

To find the optimal score achievable by a player using C-constrained strategies,
we proceed as we did for preparation games. Namely, define νðkÞs as the maximum
average score achievable by a C-constrained player, conditioned on the game being
in configuration s∈ Sk at round k. Then we see that

νðnÞs ¼ max
P2S

∑
o;s0

pðojP;GnðsÞÞcnðs0js; oÞhγðs0Þi;

νðkÞs ¼ max
P2S

∑
o;s0

pðojP;GkðsÞÞckðs0js; oÞνðkþ1Þ
s0 :

ð39Þ

Note that the first optimization above consists in finding the maximum average
score of the preparation game Gn(s) with score function g ðoÞ ¼ ∑s0 cnðs0js; oÞγ ðs0Þ.
Similarly, the second optimization corresponds to computing the maximum score
of a preparation game with score function g ðoÞ ¼ ∑s0 ckðs0js; oÞνðkþ1Þ

s0 . Applying
formula (2) iteratively, we can thus compute the average score of the meta-
preparation game through Oðnn0Þ operations, where n0 denotes the maximum
number of rounds of the considered preparation games.

Notice as well that formula (39) also applies to compute the score of a metaj-
preparation game, if we understand {Gk(s): s∈ Sk, k} as metaj−1-preparation games.

Now, consider a scenario where the games (or metaj−1-games) have just two
possible final configurations, i.e., o∈ {0, 1}. In that case,

νðnÞs ¼ ΓðnÞs;1 þmax
P2S

pð0jP;GnðsÞÞðΓðnÞs;0 � ΓðnÞs;1 Þ;

νðkÞs ¼ ΓðkÞs;1 þmax
P2S

pð0jP;GkðsÞÞðΓðkÞs;0 � ΓðkÞs;1 Þ;
ð40Þ

where

ΓðnÞs;o � ∑
s0
cnðs0js; oÞhg ðs0Þi; Γ ðkÞ

s;o � ∑
s0
ckðs0js; oÞνðkþ1Þ

s0 ; ð41Þ
for o= 0, 1.

Call pmaxðGÞ (pminðGÞ) the solution of the problem maxP2Spð0jG;PÞ
(min
P2S

pð0jG;PÞ). Then we have that

νðnÞs ¼
ΓðnÞs;1 þ pmaxðGnðsÞÞðΓðnÞs;0 � ΓðnÞs;1 Þ; for ΓðnÞs;0>Γ

ðnÞ
s;1 ;

ΓðnÞs;1 þ pminðGnðsÞÞðΓðnÞs;0 � ΓðnÞs;1 Þ; otherwise ;

(

νðkÞs ¼
ΓðkÞs;1 þ pmaxðGkðsÞÞðΓðkÞs;0 � ΓðkÞs;1 Þ; for ΓðkÞs;0>Γ

ðkÞ
s;1 ;

ΓðkÞs;1 þ pminðGkðsÞÞðΓðkÞs;0 � ΓðkÞs;1Þ; otherwise :

(

If the same set J of metaj−1-games are re-used at each round of the considered
metaj-game, this formula saves us the trouble of optimizing over metaj−1-games for
every round k and every s∈ Sk. The complexity of computing the maximum
average score is, in this case, of order O(n)+ 2∣J∣c, where c is the computational
cost of optimizing over a metaj−1-game.

Think of a metaj-game where a given metaj−1-game G (with scores o∈ {0, 1}) is
played m times, sk∈ {0, . . . , k− 1} corresponds to the number of 1’s obtained, and
success is declared if sm+1 ≥ v, for some v∈ {0, . . . ,m}. Then, we have that

ΓðnÞs;o ¼ Θðsþ o� vÞ; ΓðkÞs;o ¼ ν
ðkþ1Þ
sþo ; ð42Þ

where Θ(x)= 0, for x < 0 or 1 otherwise. It is thus clear that ΓðkÞs;0 ≤ Γ
ðkÞ
s;1 for all k, and

so the best strategy consists in always playing to maximize pð1jG;PÞ in each round.
In turn, this implies the binomial formula (10) derived in13.

Furthermore, as shown in23, if the player uses a strategy Q =2S to play G, with
GðQÞ≥GðP?Þ, then the average value of p(G, v,m) can be seen to satisfy

∑
m

v¼0
pðmÞðvjQÞpðG; v;mÞ≤ 1� GðQÞ � GðP?Þð Þ2� �m

; ð43Þ

where pðmÞðvjQÞ denotes the probability of winning v times with strategy Q. This
relation has important applications for hypothesis testing: if, by following the
strategy Q, we wish to falsify the hypothesis that the player is using a strategy in P,
all we need to do is play a preparation game for which GðQÞ � GðP?Þ is large
enough multiple times.

Optimizing over the set of separable states and its dual. In the main text, we
frequently encountered convex constraints of the form

vI�W 2 C�; ð44Þ
where W is an operator and C is a convex set of quantum states. Furthermore, we
had to conduct several optimizations of the form

f ? ¼ max
ρ2C

tr ½Wρ�: ð45Þ

In the following, we will explain how to tackle these problems when C corresponds
to the set SEP of separable quantum states on some bipartite Hilbert space
HA �HB.

In this regard, the Doherty-Parrilo-Spedalieri (DPS) hierarchy16,17 provides us
with a converging sequence of semi-definite programming outer approximations to
SEP. Consider the set Ek of k+ 1-partite quantum states defined by

Ek ¼ fρAB1 ¼ Bk
: ΠkρAB1 ¼ Bk

Πk ¼ ρAB1 ¼ Bk
; ρ

T S
AB1 ¼ Bk

≥ 0 8 S 2 N and tr ½ρAB1 ¼ Bk
� ¼ 1g; ð46Þ

where Πk is the projector onto the symmetric subspace of HB1
� � � � �HBk

; N is

the power set of {B1,…Bk}; and T S denotes the partial transpose over the
subsystems S.

We say that the quantum state ρAB admits a Bose-symmetric PPT extension to k
parts on system B iff there exists ρAB1 ¼Bk

2 Ek such that ρAB ¼ trB2 ;:::;Bk
ðρAB1 ¼Bk

Þ.
Call SEPk the set of all such bipartite states. Note that the condition ρAB∈ SEPk

can be cast as a semidefinite programming constraint.
As shown in16,17, SEP1⊃ SEP2⊃ . . .⊃ SEP and limk!1SEPk ¼ SEP. Hence,

for C ¼ SEP, we can relax optimizations over (45) by optimizing over one of the
sets SEPk instead. Since SEPk⊃ SEP, the solution f k of such a semidefinite
program will satisfy f k≥f⋆. Moreover, limk!1 f k ¼ f ? . For entanglement detection
problems, the use of a relaxation of C in optimizations such as (2) results in an
upper bound on the maximum average game score.

To model constraints of the form (44), we similarly replace the dual of SEP by
the dual of SEPk in eq. (44), that, as we shall show, also admits a semidefinite
programming representation. Since SEP*⊃ (SEPk)*, we have that vI�W 2
ðSEPkÞ� implies vI�W 2 SEP�. However, there might exist values of v such that
vI�W 2 SEP� , but vI�W=2ðSEPkÞ� . Such replacements in expressions of the
form (61) will lead, as before, to an overestimation of the maximum average score
of the game for the considered set of preparation strategies.

Let us thus work out a semidefinite representation for the set ðSEPkÞ� . By
duality theory18, we have that any W 2 E�

k must be of the form

W ¼ ðC � ΠkCΠkÞ þ ∑
S2N

MT S
S ; ð47Þ

for some positive semidefinite matrices fMSgS . Indeed, multiplying by ρAB1 ;:::;Bk
2

Ek and taking the trace, we find, by virtue of the defining relations (46) that the
trace of ρAB1 ;:::;Bk

with respect to each term in the above equation is non-negative.
Multiplying on both sides of (47) by Πk, we arrive at the equivalent condition

ΠkWΠk ¼ Πk ∑
S2N

MT S
S

� �
Πk: ð48Þ

Now, let V 2 ðSEPkÞ� , and let ρAB∈ SEPk with extension ρAB1 ;:::;Bk
2 Ek . Then

we have that

tr ½VρAB� ¼ tr ðV � I�k�1
B ÞρAB1 ;:::;B2

h i
≥ 0: ð49Þ

Since this relation must hold for all ρAB1 ;:::;Bk
2 Ek , it follows that

V � I�k�1
B 2 E�

k . In conclusion, V 2 ðSEPkÞ� iff there exist positive semidefinite
matrices fMSgS such that

ΠkðV � I�k�1
B ÞΠk ¼ Πk ∑

S2N
MT S

S

� �
Πk: ð50Þ

This constraint obviously admits a semidefinite programming representation.
For dim ðHAÞ dim ðHBÞ≤ 6, SEP1= SEP29. In such cases, we have by eq. (50),

that

SEP� ¼ fV : V ¼ V0 þ VT B
1 ;V0;V1 ≥ 0g: ð51Þ

Maxwell demon games for entanglement detection. Here we provide the
technical details regarding the applications of Maxwell demon games to entan-
glement certification. We consider honest players with i.i.d. strategies
E ¼ fρ�n : ρ 2 Eg, and we are interested in the worst-case errors
maxρ2EeIIðM; ρ�nÞ.

In each round k, Alice and Bob must choose the indices xk, yk of the
measurements that they will conduct on their respective subsystems. That is, in
round k Alice (Bob) will conduct the measurement fAðkÞ

ajx : ag (fBðkÞ
bjy : bg), with

outcome ak (bk). To model their (classical) decision process, we will introduce the
variables {P(x1, y1, x2, y2, . . . , xn, yn, γ∣a1, b1, . . . , an, bn)}.

P(x1, y1, x2, y2, . . . , xn, yn, γ∣a1, b1, . . . , an, bn) will satisfy some linear restrictions
related to the no-signalling to the past condition, whose exact expression depends
on how Alice and Bob conduct their measurements in each round. If, in each
round, Alice and Bob make use of 1-way LOCC measurements from Alice to Bob
(measurement class M2), then P will satisfy the constraints

∑
γ
Pðx1; y1; :::; xn; yn; γja1; b1; :::; an; bnÞ ¼ Pðx1; y1; x2; y2; :::; xn; ynja1; b1; :::; an�1; bn�1; anÞ;

∑
xk ;:::;xn ;yk :::yn

Pðx1; y1; :::; xn; ynja1; b1; :::; an�1; bn�1; anÞ ¼ Pðx1; y1; x2; y2; :::; xk�1; yk�1ja1; b1; :::; ak�2; bk�2; ak�1Þ;

∑
xkþ1 :::;xn ;yk ;:::;yn

Pðx1; y1; :::; xn; ynja1; b1; :::; an�1; bn�1; anÞ ¼ Pðx1; y1; x2; y2; :::; xkja1; b1; :::; ak�1; bk�1Þ:

ð52Þ
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If, on the contrary, Alice and Bob use local measurements in each round
(measurement class M3), then the constraints on P will be

∑
γ
Pðx1; y1; :::; xn; yn; γja1; b1; :::; an; bnÞ ¼ Pðx1; y1; x2; y2; :::; xn; ynja1; b1; :::; an�1; bn�1Þ;

∑
xk ;:::;xn ;yk :::yn

Pðx1; y1; :::; xn; ynja1; b1; :::; an�1; bn�1Þ ¼ Pðx1; y1; x2; y2; :::; xk�1; yk�1ja1; b1; :::; ak�2; bk�2Þ:
ð53Þ

As explained in Results, the constraints (34), (35), (36) require minor
modifications, to take into account that, in each round, the set of effective
measurements of Alice and Bob is not finite (although the set of local
measurements of either party is). More specifically, we define sk= (x1, y1, a1,
b1, . . . , xk−1, yk−1, ak−1, bk−1) to be the game configuration at the beginning of
round k. To enforce eq. (5) for C-constrained strategies (where, in this case, C
denotes the set of separable quantum states), we introduce the following relations:

ξsnþ1
¼ ∑

γ2G
γPðx1; :::; yn; γja0; b0; :::; an; bnÞ; ð54Þ

νðnÞsn
I� ∑

an ;bn ;xn ;yn
ξsnþ1

AðnÞ
an jxn � BðnÞ

bn jyn 2 C�;

νðkÞsk
I� ∑

ak ;bk ;xk ;yk
νðkþ1Þ
skþ1

Aðkþ1Þ
akþ1 jxkþ1

� Bðkþ1Þ
bkþ1 jykþ1

2 C�:
ð55Þ

The dual of ϵ-balls of quantum states. To enforce relation (5) when S corre-
sponds to the set of strategies achievable by a player constrained to prepare states
within an ϵ-ball around a quantum state ρ, we need to find the dual of the set of
states

Cðρ; ϵÞ ¼ fρ0 : ρ0 ≥ 0; tr ðρ0Þ ¼ 1; k ρ0 � ρk1 ≤ ϵg:
For this purpose, let us consider the optimisation problem

min
ρ0

tr ½Mρ0 �
s:t: ρ0 2 Cðρ; ϵÞ;

ð56Þ

which has a non-negative solution if and only if M 2 C�ðρ; ϵÞ. This problem can be

written as

min
ρ0 ;Z

tr ½Mρ0 �
s:t: ρ0 ≥ 0; tr ðρ0Þ ¼ 1;

Z þ ρ0 � ρ≥ 0;

Z � ρ0 þ ρ≥ 0;

tr ½Z� ¼ ϵ:

ð57Þ

Now, note that the dual to this semi-definite program is

max
A;μ;λ

2 tr ½Aρ� � λð1þ ϵÞ � μ

s:t: A≥ 0;

λI� A≥ 0;

ðμþ λÞIþM � 2A≥ 0;

ð58Þ

and that the two problems are strongly dual. Thus, (58) has a non-negative solution
if and only if (57) does. This implies that

C�ðρ; ϵÞ ¼ fM : 9μ; λ 2 R; A ≥ 0; s:t: λI� A≥ 0; ðμþ λÞIþM� 2A≥ 0; 2 tr ½Aρ� � λð1þ ϵÞ � μ≥ 0g:

ð59Þ

Round-by-round optimization of preparation games. In the following, we
illustrate how to optimize the POVMs of an individual round of a preparation
game. This is the main subroutine in the heuristic presented in Box 2. We then
describe the application of this one-round optimisation to a particular problem:
entanglement detection of finitely correlated states. We further illustrate the effi-
ciency of our coordinate-descent-based heuristic, as presented in Box 2, in this
example.

To optimise over a single game round, notice that Eq. (2) implies the conditions

μðnÞs I� ∑
�s2�S

h g ð�sÞiMðnÞ
�sjs ; μðkÞs I�∑

s0
MðkÞ

s0 jsμ
ðkþ1Þ
s0 2 C�: ð60Þ

Optimizations over fMðkÞ
skþ1 jsk : sk; skþ1g under a constraint of the form (5) can

thus be achieved via the following convex optimization scheme: first, compute
fμðjÞs : j>kg by induction via Eq. (2). Next, impose the constraints

μð1Þ; ≤ v;

μðjÞs I�∑
s0
MðjÞ

s0 jsμ
ðjþ1Þ
s0 2 C�; for j ¼ 1; :::; k:

fMðkÞ
skþ1 jsk : skþ1g 	 M; for sk 2 Sk :

ð61Þ

Note that, in the second constraint of Eq. (61), either MðjÞ
s0 js or μ

ðjþ1Þ
s0 is an

optimization variable, but not both. This means that all the above are indeed
convex constraints.

Remarkably, expressing condition (5) for i.i.d., finitely-correlated and
C-constrained strategies requires adding Oð∑j≤ kjSjjÞ new optimization variables,
related to the original ones through a set of Oð∑j≤ kjSjjÞ constraints, all of which
can be calculated with Oð∑jjSjjjSjþ1jÞ operations. As long as the number of game
configurations is not excessive, one can therefore carry these optimizations out for
games with very large n.

We are now ready to test the practical performance of the heuristic described in
Box 2. To this aim, consider the following entanglement detection scenario: an
honest player is attempting to prepare the maximally entangled state
jψπ

4
i ¼ 1ffiffi

2
p 00j i þ 11j ið Þ, but, before being transmitted, the state interacts with the

local environment ρA for a brief amount of time τ. Specifically, we take the
environment to be a dA-dimensional quantum system that interacts with the
desired state through the Hamiltonian

HI ¼ ayA � I� 0j i 1h j þ 0j i 1h j � Ið Þ þ aA � I� 1j i 0h j þ 1j i 0h j � Ið Þ; ð62Þ

where ayA and aA are raising and lowering operators acting on the environmental
system, respectively. We let the environment evolve only when it interacts with
each new copy of jψπ

4
i. By means of global bipartite measurements M1, we wish to

detect the entanglement of the states prepared by the honest player. Our goal is
thus to devise adaptive measurement protocols that detect the entanglement of a
family of finitely correlated strategies of fixed interaction map, but with an
unknown initial environment state.

When the player is following such a finitely correlated strategy, optimizing the
kth round measurements amounts to solving the following semi-definite program:

min
MðkÞ ;fμðjÞ :j≤ kg

eII

s:t: fMðkÞ
s0 jsgs0 	 M1; for s 2 Sk

μð1Þ; ¼ eI;

μðjÞs I�∑
s0
MðjÞ

s0 jsμ
ðjþ1Þ
s0 2 C�; for j ¼ 1; :::; k;

ΩðMðkÞÞ � ð1� eIIÞI≥ 0;

ð63Þ

Fig. 7 Error trade-off for a finitely correlated scenario with bounded
configuration space. The results are obtained with a 10-dimensional
unknown environment that interacts with a maximally entangled state for
τ= 0.1 according to the Hamiltonian (62). There were 20 measurement
rounds (n= 20), and in each of the first 19 rounds a 6-outcome
measurement was performed, with the option of outputting 0 available as
one of the outcomes of each measurement. These results were obtained
through the method outlined in the main text. For each value of eI, we plot
the minimum eII achieved in 10 runs (each time with a different random
initialization of the measurements). Each run has been optimized until
convergence was achieved. Although the type-II errors obtained are
reasonably small, the curve presents large discontinuities and, in fact, is not
even decreasing. Presumably, for many of the values of eI, the initial
(random) measurement scheme fed into the algorithm led the latter to a
local minimum. This explains, e.g., the sudden drop of the type-II error after
eI= 0.5.
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where M(j) (μ(j)) stands for fMðjÞ
s0 js : s

0 2 Sjþ1; s 2 Sjg (fμðjÞs : s 2 Sjg) and Ω(M(k)) is
defined according to (28). The quantities {μ(j): j > k} do not depend on M(k), and
hence can be computed via eq. (2) before running the optimization.

We consider a configuration space where ∣Sk∣=m for all k= 2, 3,…, n, and Sn+1

= {0, 1}. In other words, the first n− 1 measurements are carried out with m-
outcome POVMs, and the last measurement is dichotomic. Furthermore, in each
round, we include the possibility of terminating the game early and simply
outputting 0 (i.e., 0∈ Sk). This models a scenario where the referee is convinced
early that they will not be able to confidently certify the states to be entangled.
Applying the coordinate-descent heuristic in Box 2 for different values of eI, we
arrive at the plot shown in Fig. 7.

Data availability
All raw data generated for the figures presented in this work are available from the
corresponding author upon reasonable request.
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