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Abstract: Flaviviruses are enveloped, single-stranded RNA viruses that widely infect many animal
species. The envelope protein, a structural protein of flavivirus, plays an important role in host
cell viral infections. It is composed of three separate structural envelope domains I, II, and III
(EDI, EDII, and EDIII). EDI is a structurally central domain of the envelope protein which stabilizes
the overall orientation of the protein, and the glycosylation sites in EDI are related to virus
production, pH sensitivity, and neuroinvasiveness. EDII plays an important role in membrane
fusion because of the immunodominance of the fusion loop epitope and the envelope dimer epitope.
Additionally, EDIII is the major target of neutralization antibodies. The envelope protein is an
important target for research to develop vaccine candidates and antiviral therapeutics. This review
summarizes the structures and functions of ED I/II/III, and provides practical applications for the
three domains, with the ultimate goal of implementing strategies to utilize the envelope protein
against flavivirus infections, thus achieving better diagnostics and developing potential flavivirus
therapeutics and vaccines.
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1. Introduction

Together with the pestivirus and hepacivirus, the flavivirus genus is a member of the Flaviviridae
family. To our knowledge, it is the biggest genus and is comprised of more than 70 viruses including
the arthropod-borne viruses that mainly cause severe vertebrate diseases transmitted by mosquitoes
and ticks. These viruses mainly cause encephalitis and haemorrhagic fever [1]. Most flaviviruses are
zoonotic, meaning that infections may spread between animals and humans [2,3]. Many flaviviruses
are associated with human diseases [4,5]. Presently, the yellow fever virus (YFV), Dengue virus (DENV),
West Nile virus (WNV), tick-borne encephalitis virus (TBEV), Japanese encephalitis virus (JEV) [6–8],
Tembusu virus (TMUV) [9], and Zika virus (ZIKV) [10,11] are the most important arboviruses that
threaten humans and animals in certain regions of the world, causing public health burdens and
veterinary concerns. Thus, there is an urgent need for drugs or therapies to combat these diseases.

2. Flavivirus Genome and Encoded Proteins

Flaviviruses are enveloped, positive-sense single stranded RNA viruses with a genome of
approximately 9.4–13 kb in length. The virion diameter is about 50 nm [12]. The flavivirus genome
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contains only one open reading frame (ORF) flanked by 5’ and 3’ untranslated regions (UTRs) [13],
and some flaviviruses, such as JEV and WNV have −1 open reading frame shift events during
translation [14]. The ORF encodes a polyprotein that is processed into three structural proteins
(a nucleocapsid protein, C; a precursor membrane glycoprotein, prM; and a glycosylated envelope
protein, E), as well as seven non-structural (NS) proteins (NS1, NS2A/B, NS3, NS4A, 2K, NS4B, and
NS5) by viral (NS2B-NS3) or host proteases (host signal peptidase and host furin), although the protease
for NS1-NS2 processing is unknown [15,16] (Figure 1a). The C protein is responsible for encapsidation
to protect the genetic material (Figure 1b). PrM, which is formed by protease hydrolysation during late
viral infection, participates in forming the viral envelope and plays an important role in maintaining
the E protein’s spatial structure [17,18]. Both prM and E form the surface structure of virions [19].
The surface structural protein-E facilitates membrane fusion between the virus and host cell [20–22],
and is the primary viral protein against which neutralizing antibodies are produced [23] and is
indispensable in flavivirus biology [24]. The non-structural proteins coordinate the intracellular aspects
such as viral replication, assembly, proteolysis, maturation, and host immunity regulation [18].
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Figure 1. Flavivirus genome structure and virion. (a) The flavivirus genome consists only of an open
reading frame (ORF) flanked by 5’ and 3’ untranslated regions (UTRs). The 5’UTR contains a type I cap
structure (m7 GpppAm), and the 3’UTR lacks a polyadenylated (polyA) tail [25,26]. The polyprotein
encoded by the ORF is processed into three structural proteins (C, prM, and E) and at least seven
non-structural proteins (NS1, NS2A/B, NS3, NS4A/B, and NS5) by viral (NS2B-NS3) or host cellular
proteases (host signal peptidase and host furin); (b) the C protein is responsible for coating the viral
nucleic acid, and the E protein forms various symmetric structures.

3. Flavivirus Envelope Glycoprotein Structure and its Role in Viral Infection

The E protein forms a raft-like structure that exists as 90 anti-parallel homodimers on the viral
membrane that are 170 Å in length [27,28]. The E protein is normally 53–60 kd depending on the
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number of glycosylation sites. Each flavivirus E protein monomer is organized into three structurally
distinct envelope domains I, II, and III (EDI, EDII, and EDIII) (Figure 2), as determined by X-ray
crystallography [29], electron cryo-microscopy [30], and NMR spectroscopy [31]. The three domains
are connected by flexible hinges that mediate irreversible conformational changes during the viral life
cycle [32], and all three domains are connected to the viral membrane through a helical anchor [33].
In the acidic endosomal environment, the E dimer exposes the highly conserved fusion peptide (FP) at
the tip of EDII stretching from residues 98 to 112 [34].
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Figure 2. E protein structure. The E protein contains three distinct domains (EDI, purple; EDII, orange;
and EDIII, green) and helix-transmembrane domains (TMDs, brown), which are linked by the stem
region (grey).

Flavivirus E proteins belong to the class-II fusion protein, which has a unique structure with
a double membrane spanning the C-terminal anchor. Following the EDI/EDII/EDIII domains is a
stem region that contains two cationic amphipathic helix-transmembrane domains (TMDs, TM1, and
TM2) [5]. TM1 is the stop transfer sequence, and TM2 is the internal signal sequence (Figure 2) that
directs the proper processing and localization of the NS1 protein [35]. The E structural rearrangements
involve a unique portion of the transmembrane segment [21,34,36], which forms a hairpin-like structure
and transforms into a trimer under low pH conditions to increase particle infectivity [37]. The EDI,
EDII, EDIII, and TMDs of the E protein play significant roles in membrane fusion and mediate
irreversible conformational changes during the fusion process (Figure 3a). The carboxy-terminal end
of the E ectodomain contains two α-helical (α1 and α2) stem regions located on the viral membrane
and the transmembrane region [38]. The E protein is pivotal during viral infection (Figure 3b).

The E protein possesses four histidine residues at positions 144, 246, 284, and 319, which are
located at the E dimer interface interdomain and are conserved among all flavivirus E proteins [39,40].
These conserved histidines may be functionally relevant to both the viral uncoating step during
the early stage of the flavivirus lifecycle and to regulating E protein trimerization under acidic pH
conditions [40,41]. Biochemical studies [42,43] have also revealed that temperature and chemicals
(such as formalin or H2O2) alter the E protein structure to inactivate the viruses, suggesting
the E protein’s importance during flavivirus infection. The multifunctional E protein has both
receptor-binding and fusogenic properties [44], as well as a critical role in eliciting neutralizing
antibodies [7]. The E protein is also responsible for directing viral attachment, membrane fusion [34],
penetration, haemagglutination, and host range and cell tropism [23], and is associated with viral
virulence, attenuation [27], virion assembly [45], stability, maturation [21], and tissue tropism [46,47].
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Figure 3. Conformational changes in the E protein during the fusion process (a) and flavivirus infection
of a host cell (b). (a) The E protein undergoes conformational changes during fusion [35]. 1. In the
neutral environment, the E protein monomers dimerize with each other and are anchored via the
transmembrane domain; 2. The EDII fusion loop (FL, red) is exposed to the extracellular environment
under low pH conditions. The E protein undergoes irreversible conformational changes and forms a
hairpin-like structure, while the FL adsorbs the host cell membrane; 3. The E protein changes from
a dimer to a trimer; 4. The viral and host cell membranes fuse; 5. Post-fusion formation. (b) viral
infection of host cells is mediated by receptor-mediated endocytosis. The E protein is responsible for
viral attachment, membrane fusion, and virion assembly; 1. When the virus enters the host cells, the E
protein interacts with cellular receptors, such as lipoprotein receptor-related protein 1 (LRP1), heparan
sulfate, and ribosomal protein SA (RPSA). Low pH conditions trigger the viral envelope to fuse with
the endosomes; 2. Release of viral genome RNA; 3/4. The virus replicates and assembles by budding
into the endoplasmic reticulum (ER) in an immature non-infectious formation; 5. The progeny viruses
mature in the Golgi complex; 6. The progeny viruses are then transported to the cell surface for release
by exocytosis.

3.1. EDI Stabilizes the Overall Orientation of the Protein and Related to Virus Production, pH Sensitivity,
and Neuroinvasiveness

EDI is located at the N-terminus of the E protein but is situated in the middle of the E protein
in the spatial configuration and forms an eight-stranded β-barrel structure to act as a bridge-like
hinge. EDI contains 120 residues in three segments (residues 1–51, 137–189, and 285–302) [27] and
is predominantly composed of type-specific non-neutralizing (non-NT) epitopes [48,49]. EDI is
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flanked on one side by the elongated dimer EDII and on the other side by the immunoglobulin-like
EDIII [7,50,51]. As a central unit, EDI stabilizes the overall orientation of the E protein [39] and
participates in its conformational changes [28]. EDI carries a predicted and comparatively conservative
N-linked glycosylation site at residue Asn 154, consistent with most flaviviruses (DENV occurs at
Asn67 and Asn153) [52]. Viruses with substitutions at these residues to amino acids that are not
glycosylated display decreased levels of cellular attachment [53,54] and neurovirulence in mice [55,56].
These demonstrate that the glycosylation sites are related to virus production, pH sensitivity, and
neuroinvasiveness [54]. In Leslie Goo’s study [33], a single residue lying in the EDI-EDII hinge
region changes during conformational dynamics to alter the neutralization sensitivity and stability of
WNV and DENV virions, and the EDI-EDII hinge is also involved in E protein movements during
virus entry [57,58]. Cell surface glycosaminoglycans (GAGs) are important receptor molecules in
this interaction [59,60], and this distinct sequence element may be involved in various membrane
fusion and receptor binding steps. Glycosaminoglycan-binding affinity by E proteins is determined by
multiple regions including the fusion gene (FG) loop of EDIII.

3.2. EDII Contributes to Virus-Mediated Membrane Fusion

Two elongated loops between the three EDI segments form the finger-like dimerization domain
II. EDI and EDII are discontinuous peptides connected by four peptide linkers to form the EDI/EDII
hinge [61]. To promote membrane fusion and virus entry, the EDI-EDII hinge region, which contains a
complex quaternary epitope, undergoes complex conformational changes during the low pH-triggered
late endosome process [37,62]. EDII contains an S-S bridge stabilized loop at its distal end and
functions as a highly conserved internal fusion peptide (FPs) or fusion loop (FL) in amino acids
98–110 [35,63,64]. The FPs interdigitate with a hydrophobic pocket provided by EDIII-EDI [37], and this
structure is involved in viral interactions with a cellular receptor and contributes to virus-mediated
membrane fusion (Figure 3b). It interacts with prM, blocking the fusion loop (FL) in immature
particles during cellular transportation, promoting further internalization of the virus and dictating
dimer formation [18]. The hydrophobic FL is a highly conserved epitope across all flaviviruses [5].
The hydrophobic residues of FL, including W101, L107, and F108, are highly conserved among most
human-infecting flaviviruses including YFV, DENV-4, and WNV [65,66]. When the virus enters the
target host cell, the distal β-barrel hydrophobic FL of EDII is exposed and inserts into the host cellular
membrane under certain environmental conditions. Many predominately flavivirus cross-reactive
peptides exist in the EDII domain and stimulate the neutralizing antibodies [49]. EDII is also
responsible for anti-parallel E protein homodimerization, and mutations will impact viral replication
and reduce virulence [39].

3.3. EDIII Participates in Receptor Recognition and is Used as an Antigen

Globular EDIII is connected by a flexible structure to the opposite side of the EDI domain and is
located at the C-terminus of the E protein. EDIII contains approximately 100 amino acids [67]. EDIII is
anchored at the C terminus to the two “stem“ helices and two transmembrane helices [68] (Figure 2)
and is stabilized by disulfide bridges. EDIII has a β-barrel shape formed by six anti-parallel β-strands
(β1, β2, β3, β4, β5, and β6) [54]. The β-strands are closed to the N-terminal residues and fold into an
immunoglobulin-like conservative and relatively independent domain which is thought to interact
with cellular receptors [47,69]. EDIII vertically stretches out of the smooth particle surface to form
apophysises, which include the type and subtype epitopes that induce specific neutralizing antibodies.

EDIII also contains important linear antigenic epitopes that directly interact with potent
neutralizing antibodies [70]. These epitopes are the main target cell receptor-binding sites that assist
viral entry into host cells [71]; the target cell surface receptors include heparan sulfates, ribosomal
protein SA, carbohydrate receptors, and low-density lipoprotein receptor-related protein 1 (LRP1) [63].
Some scientists [72] develop peptides or monoclonal antibodies reacting against EDIII. EXE/DPPFG is
a cross-reactive and immunodominant epitope that is highly conserved among flaviviruses [24] and
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has been confirmed by dot-blot assays in various flaviviruses using duck Tembusu-positive serum
that reacts with the epitope [73]. Because of this, EDIII is used as an antigen for serologic diagnosis
and is a potential candidate for a preventative flavivirus vaccine [23]. A previous DENV study [74]
proved that most DENV-neutralizing Abs targeted EDIII; however, these findings were inconsistent
with another study [75] that found that neutralizing Abs also interact with EDII, indicating that other
regions of the E protein may participate in the immunoreaction. Research on the YFV 17D vaccine
strain found that EDIII enhances viral binding to GAGs to the cell surface, attenuating virulence and
impeding viral dissemination [51].

Mutations in EDIII affect host cell tropism and virulence, which has been reported in YFV and
DENV, allowing the virus to escape antibody neutralization, which has also been reported for JEV,
TBEV, and DENV, and these data showed that EDIII is invaluable in the viral lifecycle. Interestingly,
based on the EDIII domain that inhibits the infectivity of cognate viruses, such as DENV, WNV, YFV,
and JEV, some researchers have proposed that EDIII could potentially be used as a therapeutic molecule
in antiviral research. More studies on flavivirus EDIII have been executed with YFV [31], DENV [76,77],
WNV [78], and JEV [43], and have revealed few differences in EIII functions. The neutralizing epitope
region is particularly conserved across viruses. For instance, the neutralizing epitopes in EDIII contain
the residues 306, 307, 308, 330, 332, 366, 391 of WNV [79]; 306, 331, 333, 337, 360, 373–399, and 387 in
JEV [27]; and residues 307, 333–351, and 383–389 in DENV [80]. To reduce the risk of cross-reactive
antibodies, some researches have paid attention to EDIII [77]. In previous studies, some researchers
have provided more detailed molecular information about the function regions or epitopes of EDIII.
For example, in Deng’s study [81], he found that the motif 394HHWH397, which was located within the
terminai end of a β-pleated sheet of a JEV EDIII protein, was the minimal unit of linear epitope that
was recognized by mAb 2B4. Importantly, this motif was highly conserved among JEV strains and
also exists in WNV. This epitope can be recognized not only by JEV-positive swine serum, but also
by WNV-positive swine serum. Mathengtheng and colleagues [1,82] applied serological assays using
native and recombinant EDIII proteins as antigens to evaluate the detection and differentiation of
tick- and mosquito-borne flaviviruses in the Free State providence, which demonstrated that the EDIII
protein of flaviviruses has type-specific epitopes. Cecile’s study [83] showed that as a viral antigen,
the flavivirus EDIII protein specifically captured the antibodies directed against WNV, JEV, or TBEV in
spite of the well-known antigenic cross-reactivity between these flaviviruses. Flavivirus EDIII shows a
similar function in antiviral studies, but its structure varies among strains. For example, the structure
of YFV EDIII is arranged into three β-sheets containing nine β-strands (A, B, C, D, E, F, G, Cx, and
Dx), which differs from that of other flavivirus structures. In YFV, the BC loop has one less amino
acid than mosquito-borne and non-vector-borne viruses, but it is the same length as most tick-borne
viruses. The special epitopes are associated with neutralizing YFV, DENV, WNV, and JEV, but are not
consistently located in EDIII, such as DENV residues 284 and 305 (F-G loop); JEV residues 302, 306,
331, 332, and 333 (B-C loop) [49]; YFV residues 305 and 325 (B-C loop); and WNV residues 310 and
332 (B-C loop) [31]. The properties suggest that flavivirus structures are variable.

4. Envelope Proteins Applications

In most flaviviruses, as the major virion component, the multifunctional glycosylated E protein
mediates infection to susceptible host cells, promoting entry by membrane fusion [84,85] and
stimulating the production of neutralizing antibodies [50]. Thus, it is a potential candidate for
flavivirus prevention and treatment. Notably, the E protein EDIII, which is thought to contain cell
receptor-binding sites, mediates flavivirus infection in several ways [23]. To date, the E protein foci
overlap in both vaccine and therapeutic target. It is used in vaccines and therapeutic applications as
well as in viral detection because of its antigenicity [46,86]. Deng’s study [81] found the EDIII-specific
linear epitope, 394HHWH397 of EDIII, was specifically identified by mAb 2B4, suggesting EDIII may be
a potential diagnostic and therapeutic target. In Cecile’s study [83], as the viral antigen, the flavivirus
EDIII protein specifically captured the antibodies directed against WNV, JEV, or TBEV in spite of the
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well-known antigenic cross-reactivity between these flaviviruses, which stimulated EDIII to be used
as an antigen for the serological diagnosis of flavivirus infections. The flavivirus E protein has many
potential applications (Table 1).

Table 1. E protein applications.

Structures Viruses Strains Gen Bank
Accession Numbers Application Types References

EDIII

YFV 17D strain JX949181.1 vaccine [87]

JEV vaccine [88]

TBEV vaccine [89]

TMUV FX2010 ELISA [85]

WNV

therapeutic [78,90]

E and EDIII NY99-382 AF196835 vaccine [91]

E
mAb [92]

New York 1999 strain FJ151394 diagnostic reagent [93]

EDIII

DENV

B5/ H241 AF289029/U18433 neutralizing epitopes [94]

Hawaii/New Guinea-
C/Guanxi-80-2/H241 vaccine [95]

EDI/EDII hinge rDENV-4 1683917 vaccine [61]

E

DENV-1 WestPac74

mAb [96]

DENV-2 S-16803
DENV-3 CH-53489
DENV-4 TVP-376
ZIKV H/PF/2013
ZIKV PRVABC59

ZIKV

H/PF/2013 KJ776791.2 peptide drugs [69]

50 strains peptide vaccine [97,98]

5IRE diagnostic sites [99]

E: Envelope, EDI/II/III: Envelope Domain I/II/III, YFV: Yellow Fever Virus, JEV: Japanese Encephalitis Virus, TBEV:
Tick Borne Encephalitis Virus, TMUV: Tembusu Virus, DENV: Dengue Virus, ZIKV: Zika Virus, mAb: Monoclonal
antibody, ELISA: Enzyme-linked immunosorbent assay.

5. Discussion

Viruses enter susceptible cells by receptor-mediated endocytosis, and flaviviruses enter the cytoplasm
by viral glycoprotein-mediated membrane fusion at a low pH [37,100]. All viral fusion proteins, including
the E protein, have two membrane-interacting elements: A C-terminal transmembrane anchor that
supports the proteins in the viral membrane and a hydrophobic region (fusion peptides or fusion loops)
that interacts with the cell membrane. In the active fusion state, these elements change from dimers to
trimers [44]. Fusion proteins such as E can reduce the high kinetic barrier from lipid-bilayer fusion by
a battery of membrane-related conformational rearrangements [101]. Investigators are interested in
using E proteins for diagnostic purposes and vaccine candidates. The E protein is a major antigenic
target in neutralizing antibody recognition by blocking viral attachment, membrane fusion, and
endocytosis [39,102]. Moreover, a large number of neutralizing antibodies recognize epitopes located
on domain III, suggesting the EDIII protein may be a useful tool in the detection and differentiation
of flaviviruses [1]. Recent studies have highlighted a new class of epitopes in Dengue virus that are
present only in the dimeric form of the envelope glycoprotein [103–105]. Selective pressure from the
host immune system can propel viral gene evolution, particularly that of the E gene; hence, genetic
changes can render viruses resistant to anti-E neutralizing antibodies [39]. The E protein is associated
with low-pH-dependent membrane fusion between viruses and host cells [106]. The three separate
structural domains execute numerous but associated functions in flavivirus infection. EDII and EDIII
of the E protein synergize during interactions with cellular receptors. The differences in biophysical
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properties among the three domains of the E protein may correlate with the variable flavivirus tolerance
to environmental conditions [107]. The changes in flavivirus E protein structure may significantly
affect viruses and ligand interactions, such as in cell receptors, drugs, and antibodies. Because of the
conservatism of E proteins among flaviviruses and the intimate connection between DENV and ZIKV,
Dejnirattisai [108] used the E protein of DENV to detect the infection of ZIKV.

In future studies, it is imperative to either design inhibitors that compete with the E protein
to interact with cell receptors or medicines that directly interact with the E protein. It is difficult
to ascertain the factors that affect viral entry, so a profound understanding and in-depth analysis
of E protein structure and function will be a breakthrough in flavivirus research and will also help
us to sufficiently understand flavivirus biological properties and virus-cell interaction mechanisms.
Although many biological flavivirus properties have been reported, no efficient clinical drugs are
available. More fundamental studies on E proteins in flavivirus infections should be conducted in
the future.
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