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Abstract

Background: Pmp22, a member of the junction protein family Claudin/EMP/PMP22, plays an important
role in myelin formation. Increase of pmp22 transcription causes peripheral neuropathy, Charcot-Marie-
Tooth disease typelA (CMTIA). The pathophysiological phenotype of CMTIA is aberrant axonal
myelination which induces a reduction in nerve conduction velocity (NCV). Several CMTIA model
rodents have been established by overexpressing pmp22. Thus, it is thought that pmp22 expression must
be tightly regulated for correct myelin formation in mammals. Interestingly, the myelin sheath is also
present in other jawed vertebrates. The purpose of this study is to analyze the evolutionary conservation
of the association between pmp22 transcription level and vertebrate myelin formation, and to find the
conserved non-coding sequences for pmp22 regulation by comparative genomics analyses between jawed

fishes and mammals.

Results: A transgenic pmp22 over-expression medaka fish line was established. The transgenic fish had
approximately one fifth the peripheral NCV values of controls, and aberrant myelination of transgenic fish
in the peripheral nerve system (PNS) was observed. We successfully confirmed that medaka fish pmp22
has the same exon-intron structure as mammals, and identified some known conserved regulatory motifs.

Furthermore, we found novel conserved sequences in the first intron and 3'UTR.

Conclusion: Medaka fish undergo abnormalities in the PNS when pmp22 transcription increases. This
result indicates that an adequate pmp22 transcription level is necessary for correct myelination of jawed
vertebrates. Comparison of pmp22 orthologs between distantly related species identifies evolutionary

conserved sequences that contribute to precise regulation of pmp22 expression.
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Background

Peripheral myelination is important for rapid body move-
ment and sensing several environmental stimuli [1]. The
pmp22 gene encodes a hydrophobic tetraspan membrane
protein which is a member of the junction protein family
Claudin/EMP/PMP22 [2]. In the peripheral nerve system
(PNS), PMP22 contributes to the formation and mainte-
nance of the myelin sheath [3,4]. It is known that in mam-
mals an increase of the pmp22 transcription level induces
a reduction in nerve conduction velocity (NCV), coupled
with abnormal axonal myelination. In Charcot-Marie-
Tooth disease typelA (CMT1A) patients, the majority
have a heterozygous tandem duplication of chromosome
17p11.2-p12, a 1.5 Mbp region that includes pmp22, and
the patients undergo slow NCV and distal muscle weak-
ness [3,5]. Thus, pmp22 transcription is likely to be tightly
regulated to prevent over-expression. Understanding the
regulatory mechanisms of this gene might improve treat-
ment of CMT1A patients.

Promoter regions and some regulatory motifs of mamma-
lian pmp22 have been reported. Transgenic rodent studies
have shown the promoter regions and sequence conserva-
tion of the gene [6,7]. Some in vitro studies have identified
regulatory motifs for Schwann cell specific expression of
pmp22 [8,9]. However, unidentified functional sequences
for modulation of pmp22 expression might be found by
comparative genomics analyses.

The comparative genomics approach between jawed
fishes and mammals facilitates the identification of novel
conserved motifs [10,11]. Pufferfish, a teleost fish, have a
compact genome, which has few redundant non-coding
regions and is useful for finding functional sequences
[12,13]. The elephant shark, a cartilaginous fish, has a
genome with more conserved sequences with the human
genome than the teleost fish genomes, and is expected to
assist in the identification of novel essential motifs [14].
Pufferfish and the elephant shark are, however, unsuitable
for experimental procedures. Two well known experimen-
tal teleost fish, zebrafish and medaka are available for
both bioinformatics analyses and laboratory research.

In the present vertebrate phylogeny, the myelin sheath is
seen only among jawed vertebrates [1,15]. It is unclear
whether an adequate pmp22 transcription level is neces-
sary for correct myelination in all jawed vertebrates. To
address this issue, we established a transgenic medaka fish
line overexpressing pmp22 and analyzed aberrations in
their PNS. Although zebrafish is more universally used for
experiments, we focused on medaka fish [16], because the
medaka fish genome has shorter non-coding regions than
the zebrafish [17], and thus is advantageous for bioinfor-
matics analyses. Comparative genomics analyses were
performed to identify conserved non-coding sequences.
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Our study reveals that pmp22 has an important role in
myelin formation not only in mammals but also in fishes,
and shows that the gene structure and some regulatory
motifs are conserved among jawed vertebrates.

Results

In silico identification of the pmp22 ortholog in medaka
fish

To identify the pmp22 ortholog in medaka fish, a phylo-
genic tree of the EMP/PMP22 family was drawn based on
the amino acid sequence alignment (Figure 1A). The tele-
ost fish genomes, which have undergone another genome
duplication compared to other vertebrates [12,18], have
pmp22 paralogs. In medaka fish, two candidate EST
sequences for pmp22, including the full length coding
regions, are on LG8 and LG19, both of which correspond
to human chromosome 17 [19]. The pmp22 cluster that
includes mammalian orthologs is clearly separated from
the other sequences (bootstrap value, 981). The medaka
fish EST sequence AM313848, which maps to the syntenic
region of LG19, clustered with mammalian PMP22
sequences. The transmembrane regions, N41 glycosyla-
tion site (NXS/T) and C terminus ER-retention/retrieval
signal (LRKRE) [20] are conserved in the PMP22 cluster
(Figure 1B). This suggests that the gene on LG19 has been
conserved as pmp22 in medaka fish (ol_pmp22) and the
other gene has been destined for degradation or neo-func-
tionalization. Thus, we focused on the ol_pmp22 candi-
date encoded on LG19. OI_pmp22 endogenous
transcription was detected in multiple tissues of adult fish
(additional file 1).

Reduction in peripheral nerve conduction velocity and
aberrant myelination in the ol_pmp22 over-expression
fish

We constructed a plasmid containing the promoterless
FRT flanked EGFP coding sequence with a polyadenyla-
tion site. The FLP/FRT recombination system is more
active than the Cre/loxP system at approximately 26°C
[21], which is a suitable temperature for medaka fish
breeding. An 11 kbp fragment containing the region
upstream of the ol_pmp22 translation start codon and the
FLAG tagged ol_pmp22 coding region with a polyadenyla-
tion site were inserted into the promoter and downstream
of the FRT flanked region, respectively (additional file 2).
This construct was injected into the one-cell stage medaka
fish STII (wild type) [22]. We obtained a transgenic fish
line with EGFP expression, regulated by the region
upstream of the ol_pmp22 translation start codon, (GFP
fish). We observed distinct GFP fluorescence from 3 day
postfertilization (dpf) (additional file 3). Strong EGFP flu-
orescence was observed in the boundary region of the
midbrain/hindbrain, longitudinal fissure of cerebrum,
eye epithelium, olfactory epithelium, spinal cord, gill,
liver, kidney, pharynx, intestine, bulbous arteriosus and
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Figure | (see previous page)

Sequence conservation of PMP22 in jawed vertebrates. (A) Phylogenic tree of amino acid sequences of the EMP/PMP22
family in jawed vertebrates was drawn by using clustelX and N]J plot. The numbers at the nodes are bootstrap values based on
10,000 replications. Sequences from each subfamily clustered together. The red arrowhead shows the corresponding sequence
of ol_pmp22. (B) The amino acid alignment consisting of the mammalian, avian, amphibian, fish pmp22 genes and medaka fish
paralogs was drawn by using clustelX and GeneDoc. The white letter on the black background indicates 100 percent con-
served blocks. The white letter on the dark gray background indicates 80 percent or greater conserved blocks. The black let-
ter on the bright gray background indicates 60 percent or greater conserved blocks. Red and blue squares indicate
conservation of the N4| glycosylation site (NXS/T) and C terminus ER-retention/retrieval signal (LRKRE), respectively. Hs:
Homo sapiens (human), Mm: Mus musculus (mouse), Rn: Rattus norvegicus (rat), Gg: Gallus gallus (chicken), Xt: Xenopus tropicalis,
Xl: Xenopus laevis, Tn: Tetraodon nigroviridis, Tr: Takifugu rubripes, Ga: Gasterosteus aculeatus (stickleback), Ol: Oryzias latipes
(medaka fish), Dr: Danio rerio (zebrafish).

Figure 2

GFP expression of the transgenic fish in adult Schwann cells. Inmunofluorescence staining of adult PNS was per-
formed with a monoclonal antibody to GFP. Adult trunks of wild type (A-C) and transgenic GFP fish (D-F) were sliced horizon-
tally (10 um). The pictures show bright-field (A, D), fluorescence (B, E), and merged images (C, F). Myelin structures were
observed between muscles (white arrow head). Bars: 20 um.
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fin fibroblast in the 10 dpf GFP fish (additional file 3).
Though there was a time lag from GFP transcription to flu-
orescence, the GFP fish fluorescence pattern was consist-
ent with a zebrafish pmp22 study, which was the first
report of fish pmp22 [23]. An immunofluorescence study
using anti-GFP antibody showed transgene expression in
adult Schwann cells, indicating that the 11 kbp region
upstream of the ol_pmp22 translation start codon contains
sequences for Schwann cell expression (Figure 2). Then,
we injected the synthesized flp recombinase mRNA into

http://www.biomedcentral.com/1471-2202/10/60

the one-cell stage GFP fish to remove the FRT flanked
region, and established the ol_pmp22 over-expression fish
line (pmp22 fish). The transgene, FLAG tagged ol_pmp22,
was transcribed in the pmp22 fish, and transcribed at a
low level in the GFP fish (Figure 3A). However quantita-
tive RT-PCR showed no significant difference in total
ol_pmp22 mRNA levels between the wild type and GFP
fish. Compared to the control lines, wild type and GFP
fish, the ol_pmp22 transcription level was approximately
two-fold higher in the pmp22 fish (Figure 3B).
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Figure 3

Relation between pmp22 transcription levels and peripheral NCV, and swimming ability in medaka fish. (A) The
transgene, FLAG tagged ol_pmp22, expression in 8dpf fish. RT-PCR was performed with primers to FLAG and the SV40 polya-
denylation site. M: 100 bp marker, w: wild type, g: GFP fish, p: pmp22 fish. (B) Relative transcription levels of ol_pmp22 in 8 dpf
wild type, GFP fish and pmp22 fish. Beta-actin transcripts were used for an internal control. Relative transcription levels were
quantified by defining the wild type average as 1.0 (0.656 to 1.522). Relative quantification of the GFP fish and pmp22 fish was
1.123 (0.898 to 1.405) and 2.056 (1.781 to 2.372), respectively. The minimum and maximum were estimated according to the
manufacturer's instructions. Ct: threshold cycle. (**P < 0.05) (C) Population spikes stimulated by 100 pA with or without | uM
TTX. The large spike is an artifact observed at around 5 seconds (black arrow). The spikes appearing at 6 to 7 seconds, action
potential (black arrowhead), were not observed with TTX. (D, F, E) Population spikes of the wild type, D, GFP fish, E, and the
pmp22 fish, F. Samples were stimulated with 60 pA. Spikes recorded at two adjacent channels (300 um distance) were merged.
The vertical dashed lines are drawn on each peak time. (G) Peripheral NCV was measured by dividing the distance between
two channels by the time lag of the peaks. The peripheral NCV values of wild type, GFP fish and pmp22 fish were 9.566 + 1.542
m/s, 9.700 £ 1.457 m/s and 1.924 £ 0.738 m/s, respectively (n = 5, **P < 0.05). (H) Flow distance of each line in running water
(0.25 m/s). Positions from the start point was recorded every 0.5 seconds (n = 3, *P < 0.1).
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To observe the electrical excitability of the fish PNS, pop-
ulation spikes of nerve fibers activated by electrical stimu-
lation were detected in sagittal sections of the adult fish
trunk. Activated spikes were not observed with the
sodium channel blocker, TTX (1 uM) with 100 pA stimu-
lation, suggesting that the spikes were generated by elec-
trical excitability of neurons (Figure 3C). We observed the
peaks of population spikes immediately after 60 pA stim-
ulation and estimated the NCV by the distance between
two channels divided by the time lag of the peaks (Figure
3D, E, F). The wild type and GFP fish had similar NCVs
(9.566 + 1.542 m/s, n = 5 and 9.700 + 1.457 m/s, n = 5,
respectively), while the pmp22 fish had approximately
one fifth the control line NCV value (1.924 + 0.738 m/s,
n = 5) (Figure 3G).

To test kinematic abnormalities, we observed medaka fish
swimming in running water. Medaka fish usually swim
against the current to keep their position. However, in a
rapid current, the fish were swept downstream while
swimming against the current. We measured flow dis-
tances of the wild type, GFP fish and pmp22 fish per time
in rapid water current (0.25 m/s). The pmp22 fish had a
tendency to be swept away faster than the control lines
(Figure 3H), indicating that pmp22 over-expression causes
weak swimming ability in medaka fish.

From external observations, there were not obvious mor-
phological and developmental abnormalities between the
controls and pmp22 fish. However, aberrations were
observed in cross sections of pmp22 fish motor nerve fib-
ers by electron microscopy (Figure 4). The pmp22 fish
might have undergone hypo- and hypermyelination in
the PNS, similar to the mammalian CMT1A phenotype. In
the pmp22 fish PNS, almost all observed myelin sheaths
were likely to be thin and uncompacted (Figure 4D). We
observed abnormal features, which looked like attenuated
fibers, in- and outfolding myelin (Figure 4E, F, G),
enlarged Schwann cell nuclei (Figure 4B, H, 1), bare axons
(Figure 4H), wide periaxonal spaces (Figure 4B, K), loose
basal laminas (Figure 4B, L), and granules between the
nerve fiber and myelin sheath (Figure 4B, K). Further-
more, we observed macrophages near the fibers with mye-
lin debris (Figure 4M, N). These abnormalities were not
observed in the wild type PNS. Although the typical onion
bulb formation, which is the remarkable feature of demy-
elinating-remyelinating neuropathies, was not observed
in the pmp22 fish, our observations indicate that preven-
tion of pmp22 over-expression is important for keeping
fast peripheral NCV and maintaining the myelin sheath in
jawed vertebrates.

Alternative first exons have been conserved in ol_pmp22
Human and rodent pmp22 genes have alternative untrans-
lated first exons, 1A and 1B [24]. ExonlA, located

http://www.biomedcentral.com/1471-2202/10/60

upstream of exonlB, is transcribed in Schwann cells,
while the 1B transcript is ubiquitously expressed. In the
database, ol_pmp22 EST sequences always have the same
first exon. To confirm whether ol_pmp22 has a single first
exon or alternative first exons, we constructed the EGFP
expression constructs regulated by several regions
upstream of the ol_pmp22 translation start codon, and
analyzed the EGFP fluorescence patterns by a transient
expression assay. The constructs, p11-0, p6.5-0, p3-0,
p6.5-3, and p11-5, contain 11 kbp, 6.5 kbp, 3 kbp, 6.5
kbp to 3 kbp followed by 0.5 kbp, and 11 kbp to 5 kbp
upstream of the translation start codon, respectively (Fig-
ure 5F). The fish injected with p11-0 and p6.5-0 had EGFP
fluorescence in morphologically identified Schwann cells
[25] and other tissues (Figure 5A, B). Although our tran-
sient expression assay was not quantitative, the p11-0 fish
had more EGFP expression than the p6.5-0 fish, except in
the Schwann cells. The p3-0 fish had no visible EGFP
expression in the Schwann cells; however, it had fluores-
cence in other tissues (Figure 5C). Compared to the p3-0
fish, EGFP expression in the p6.5-3 fish was distinct in
Schwann cells, but not in other tissues (Figure 5D). We
identified the first exon of the EGFP transcript of the p6.5-
3, as the region corresponding to ol_pmp22 exonlA
(DDBJ: AB465505). The transcription start site (TSS) of
the ol_pmp22 1A transcript is located 5,193 bp upstream
of the translation start codon. Then we observed EGFP flu-
orescence only in Schwann cells of the p11-5 fish (Figure
5E). This finding suggests that the exon-intron structure of
pmp22 has been conserved in jawed vertebrates.

Primer sets for the detection of 1A, 1B and total ol_pmp22
transcripts were designed. We measured mRNA levels in
the whole bodies of 4, 6, 8, 14 and 30 dpf wild type fish
(additional file 4). Beta-actin transcripts were detected for
an internal control. Each average of 4 dpf ol_pmp22 levels
was defined as 1.0 to quantify the relative transcription
levels of total, 1A and 1B (Figure 6). The 1A transcript was
significantly upregulated in 8 dpf, then decreased in 14
dpf and increased again in 30 dpf. On the other hand, in
transient expression assays, the fish with p11-5, lacking
the region downstream of exonlA, had no fluorescence
until the hatching stage (8-10 dpf), whereas the others,
pll, p6.5 and p6.5-3 fish, were visible in the Schwann cell
lineage from the embryonic stage (data not shown). These
results suggest that the regulatory mechanism of 1A tran-
scription before the hatching stage is different from after
hatching, and intron1A contains the region for embryonic
stage specific regulation.

Conserved sequences in the pmp22 region

Some regulatory motifs have already been identified in
the promoter regions of human and rodent pmp22
exonlA [8,24]. NF1 is a conserved non-coding sequence
of myelin genes and is located between the TATA-box and
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Figure 4
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Electron microscopy observation of cross sections of medaka fish motor nerve fibers. Cross sections of the wild
type (A, C) and the pmp22 fish (B, D-N) are shown. The pmp22 fish myelin sheath, D, was thinner than the wild type, C. The
attenuated fiber (B; black arrow), enlarged nuclear (B; white arrow, H, I; white arrowhead), large periaxonal space (B, K; white
arrowhead), granules (B, K; back arrowhead) and loose basal lamina (B, L; black dashed arrow) were observed in the pmp22
fish PNS. (E) Hypermyelination (black arrowhead) and outfolding (white arrowhead). (F, G) Infolding (black arrowhead). (H)
Bare axon (black arrowhead). (1, J) Myelin uncompaction (black arrowhead). (M, N) Myelin debris (black arrowhead) was
observed in macrophages. Bars: 2 um for A and B, 100 nm for C and D, 500 nm for E-N.

the TSS of the pmp22 1A promoter. SREB is the binding
site for the sterol regulatory element binding proteins
which are transcription factors for cholesterol homeosta-
sis. The FP330 motif B is a conserved regulatory motif in
myelin gene promoters. CREB, which is the binding site
for the cyclic AMP response element binding protein, has
been conserved in several gene promoters in vertebrates
[26,27]. Thus, we analyzed the pmp22 conserved non-cod-
ing sequences in jawed vertebrates.

First, in the ol_pmp22 region, we examined the region
upstream of exonlA and downstream of the stop codon
(DDBJ: AB465503 and DDB]J: AB465504, respectively).
We scanned for four known conserved mammalian motifs
in the promoter region of ol_pmp22 exonlA by a motif
finding program [28]. Although NF1 and SREB were not
found, we identified two known regulatory motifs, FP330
motif B and CREB (Figure 7). The FP330 motif B is located
immediately upstream of the TSS of human and rodent
pmp22 exonlA [24]. The rat Schwannoma cell study
revealed that the region around the FP330 motif B is
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Figure 5

GFP fluorescence in the transient expression assay for identification of the alternative first exons. Transgene
expression regulated by several constructs containing regions upstream of the translation start codon of ol_pmp22 was
observed as GFP fluorescence. (A-E) Dosal view of anterior of fish with the p11-0, p6.5-0, p3-0, p6.5-3 and pI |-5 constructs,
respectively. White arrowheads show GFP expressing morphologically identified Schwann cells. Bars: 200 um. (F) The alterna-
tive first exons and exon2 of ol_pmp22 and constructs for the transient expression assay.

involved with positive regulation of pmp22 1A transcrip-
tion, and identified the important residues of this motif
for DNA-protein interaction (CCAT), located at 3 bp to 6
bp downstream of the motif [9]. The FP330 motif B is also
found in the promoter region of ol_pmp22 exonlA (-57 to
-46, relative to the TSS of the ol_pmp22 1A transcript),
however the important residues are not fully conserved
(CAAA), which is the sequence at the corresponding posi-
tion in mammals. In the promoter region of human
pmp22 (hs_pmp22), CREB is identified as the silencer at 1.7
kbp upstream of the 1A TSS [8]. We identified CREB sites
at -843 to -836 and -266 to -259 in mouse pmp22
(mm_pmp22) exonlA and ol_pmp22 exonlA, respectively.

To identify novel conserved non-coding sequences of
pmp22 in jawed vertebrates, we performed comparative
genomics analyses. Among hs_, mm_ and ol_pmp22, the
multiple alignment of genomic sequences revealed some
conserved sequences in the non-coding regions (Figure 8).
Then, we analyzed these conserved regions in pmp22 of
jawed vertebrates. Although, some conserved non-coding
regions, located in intron2-4 among hs_, mm_ and
ol_pmp22, were not found in other species, the 3'UTR
sequence was highly conserved among jawed vertebrates,
which includes an mRNA destabilization signal (ATTTA)
(Figure 9, 10A). This conserved sequence starts approxi-
mately 100 bp to 200 bp downstream of the pmp22 stop
codon. Next, we searched for short conserved sequences
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Conserved motifs in the promoter region of exonl A of hs_, mm_ and ol_pmp22. The figure shows the positions of
conserved regulatory motifs for pmp22 transcription. The numbers indicate the position relative to each TSS. The hs_ and
mm_pmp22 have half of the CREB site (TGAC). The ol_pmp22 has the TG variant of CREB site (TGATGTCA). The position
and sequence of the FP330 motif B (CTCTCAGGC) are conserved.

by a motif finding program [29]. We tried several combi-
nations of the species in each region. One significant
sequence pattern was found in intron1A among human,
mouse, rat and medaka fish. Because exon1A has only
been identified in human, mouse, rat and medaka fish, we
searched for this pattern in the upstream region of exon1B
in other species. This pattern was significantly conserved
in jawed vertebrates, suggesting that the pattern is likely to
be functional (Figure 9, 10B).

Discussion

Pmp22 over-expression causes reduction in peripheral
NCYV and aberrant myelination in jawed vertebrates
Increase of pmp22 expression causes CMT1A in humans
and rodents. CMT1A patients, which have a heterozygous
tandem duplication of a 1.5 Mbp region that includes
hs_pmp22, have reduced peripheral NCV, aberrant myeli-
nation and distal muscle atrophy [3,5]. CMT1A rodent
models with pmp22 over-expression, have been estab-
lished to understand and treat this neuropathy [30-32]. In
mouse models with a human YAC containing hs_pmp22,
the degree of the CMT1A phenotype depends on the
hs_pmp22 transcription level associated with YAC copy
number [33,34]. The C22 mouse, a CMT1A model with 7
YAC copies, shows significant demyelinating neuropathy.
A mouse study with tetracycline inducible pmp22 over-
expression reveals that demyelination occurs only when

pmp22 is highly expressed in adult, and that the neuro-
pathic phenotype is reversible [35]. Rat in vivo and in vitro
studies show that progesterone promotes pmp22 1A tran-
scription in Schwann cells [36,37]. A CMT1A rat model,
having 1.6 fold higher pmp22 transcription than wild type
rats, is used for the progesterone antagonist test. The pro-
gesterone antagonist reduces pmp22 expression level. The
treated CMT1A rats show higher motor performance than
controls with the relief of muscle atrophy and sciatic nerve
demyelination [38]. Ascorbic acid improves the CMT1A
phenotype through the inhibition of cyclic AMP stimula-
tion of pmp22 transcription. The ascorbic acid treated C22
mice have more activity, correct myelination and a longer
life span than control neuropathy mice [39]. The princi-
ples of these treatments are based on the reduction of
pmp22 transcription. Recently, another approach for the
treatment of this neuropathy has been reported. In the
C22 Schwann cells, there are large aggresomes, including
PMP22 and ubiquitin, at perinuclear regions [40]. Also,
the HSP90 inhibitor promotes heat shock protein expres-
sion, and corrects Schwann cell myelination with clear-
ance of aggregated PMP22 [41].

The myelin sheath enables saltatory conduction in ani-
mals [1]. The jawed vertebrates have myelinated axons
and conserved pmp22. To analyze the relationship
between pmp22 transcription level and peripheral myeli-
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Multiple alignment of the region of pmp22 in human, mouse and medaka fish. The alignment was performed by
LAGAN and presented by VISTA. The x-axis is the ol_pmp22 sequence. The y-axis is conservation from 0% to 100%. Top and
bottom panels indicate the conservation of hs_ and mm_pmp22 with ol_pmp22, respectively. Blue and red shades indicate con-
servation, criteria: 70% or greater identity and minimum length of 20 bp, of transcribed regions (blue) and the other regions

(red).

nation in medaka fish, pmp22 fish were established.
Compared with control lines, ol_pmp22 overexpressing
fish, having approximately two-fold higher transcription
of ol_pmp22, have one fifth peripheral NCV and aberrant
PNS myelination, in spite of the transgene lacking intron
2-4 and the region downstream of the coding regions
(Figure 3, 4). CMT1A patients and rodent models have
hypo- and hypermyelination, attenuated fibers and onion
bulb formations in the PNS [3,32]. In PNS, PMP22 inter-
acts with a6B4 integrin to stabilize the attachment
between the basal lamina and myelin sheath [42]. The 4
integrin and distroglycan double knockout mice lose mye-
lin sheath stability with loose basal laminas and macro-
phage infiltration [43]. The macrophage-mediated myelin
disruption occurs in human CMT1A with the pmp22
duplication [44], the C61 mouse with 4 YAC copies [45],
the myelin glycoprotein PO heterozygous deficient mouse
[46], and the gap junction protein CX32 null mouse [47].
PO and CX32 contribute to myelin formation in PNS [4].

Similar to these phenotypes observed in the PNS in mam-
mals, we found loose basal laminas and macrophages
including myelin debris in the PNS of pmp22 fish (Figure
4). Therefore our observations of the pmp22 fish suggest
that the association of pmp22 expression levels with mye-
lin maintenance is common among jawed vertebrates.
Although, the pmp22 fish have normal growth, feeding
and mating throughout life in the laboratory, it seems that
prevention of pmp22 over-expression provides some
advantages for selective pressure because of reduced NCV,
weak swimming ability against the current and aberrant
myelination caused by pmp22 over-expression in medaka
fish.

The exon-intron structure and non-coding motifs of
pmp22 are conserved

The PMP22 sequence is highly conserved in jawed verte-
brates, but less so in the chordate [48]. Alignments show
that there are many conserved non-coding regions among
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mammals, and some regions in jawed vertebrates. Human
and rodent pmp22 consist of alternative untranslated first
exons, 1A and 1B [24], and four coding exons. Mamma-
lian exonl1A, located upstream of exon1B, is specifically
expressed in Schwann cells. The alternative first exons also
exist in ol_pmp22, suggesting that the common ancestor of
teleost fishes and mammals had these exons, and the gene
structure has been conserved in present jawed vertebrates.
The ol_pmp22 1A transcript was upregulated in near hatch-
ing stage fish (Figure 6), which have immature Schwann
cells with radial sorting in correspondence with zebrafish
and rodent development [25,49-51]. Radial sorting is a
step for differentiation from immature Schwann cells into
myelinating Schwann cells. In this step, immature
Schwann cells establish a 1:1 relationship with axons. On
the other hand, as well as the rodent pmp22 1A transcript,
which is elevated during myelination after birth [24,52],
ol_pmp22 1A transcription increased after hatching (Figure
6). These results suggest that there is similar temporal
expression of pmp22 1A transcription among jawed verte-
brates.

Our bioinformatics analyses found that ol_pmp22 has two
known conserved regulatory motifs (Figure 7). The FP330
motif B (CTCTCAGGC) is conserved immediately
upstream of the TSS of pmp22 exon1A [9,24]. This motif is
found in promoters of essential myelin genes in mam-
mals. While in the promoter region of hs_pmp22 exon1A,
a CREB half-site (TGAC) has been identified as the
silencer responding to low cyclic AMP levels [8]. A CREB
half-site and CREB TG variant (TGATGTCA) [27] were
found in the mm_ and ol_pmp22 exon1A promoter region,
respectively. However, it is unclear whether both of these
CREB sites are functional.

In mammalian Schwann cells, pmp22 1A transcription is
activated by the zinc finger transcription factor EGR2,
which is the major positive regulator for essential myelin
genes [53]. The direct target genes of EGR2 are p0, mbp,
mag, prx and dhh, but not pmp22 [54,55]. In the ol_pmp22
region, the EGR2 binding motif was not found in our
analyses. In a transgenic mouse study, over-expression of
POU-domain protein POU3f1 downregulates pmp22 tran-

Page 12 of 18

(page number not for citation purposes)



BMC Neuroscience 2009, 10:60

A

http://www.biomedcentral.com/1471-2202/10/60
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Figure 10

Novel identified conserved sequences of pmp22. (A) Highly conserved sequences of the pmp22 3'UTR. The numbers
indicate the position from each stop codon. (B) The conserved short sequences in the intron| A region of human, mouse, rat
and medaka fish, and in the upstream region of exon | B of chicken, stickleback and zebrafish. The numbers indicate the position
from each translation start codon. Sequence conservation is shown under the lines. Hs: Homo sapiens (human), Mm: Mus mus-
culus (mouse), Rn: Rattus norvegicus (rat), Gg: Gallus gallus (chicken), Xt: Xenopus tropicalis, XI: Xenopus laevis, Tn: Tetraodon
nigroviridis, Tr: Takifugu rubripes, Ga: Gasterosteus aculeatus (stickleback), Ol: Oryzias latipes (medaka fish), Dr: Danio rerio

(zebrafish).

scription [56]. There are many candidate sequences for
POU3fl binding in the promoter region of ol pmp22
(data not shown); however it is unknown which sites are
functional. MicroRNAs miR-9 and miR-29a inhibit pmp22
translation [57,58]. The binding sequences for miR-9 and
miR-29a are conserved among human, rodent and
chicken pmp22, but not among amphibian and jawed fish
pmp22.

Furthermore, in this study, two additional conserved
sequences were found. The pmp22 gene has highly con-
served sequence in the 3'UTR, the length of which is about
70 bp, and includes an mRNA destabilization signal (Fig-
ure 10A). This 3'UTR sequence is unique in the genome.
It is possible that the 3'UTR conservation contributes to
modulating the PMP22 level by transcriptional or post-
transcriptional regulation. By using a motif finding pro-
gram, the novel conserved short sequence was found in

intron1A of human, rodent and medaka fish pmp22 and
in the upstream region of exonlB of the other species
pmp22 (Figure 10B). In our transient expression assay, fish
having the GFP expression construct, lacking the region
downstream of exonlA, had no fluorescence until the
hatching stage. These results suggest that the regulatory
mechanism of 1A transcription in the embryonic stage is
different from that after the hatching stage, and that this
novel motif must be responsible for the embryonic stage
expression of pmp22.

The DNA-binding domains of several transcription factors
and short DNA sequences for transcription factor binding
are usually conserved in animal genomes [59,60]. Com-
parison of the corresponding genome regions between
fishes and mammals is useful for identification of func-
tionally conserved sequences. We have successfully found
novel conserved non-coding motifs (Figure 10), however
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further studies are necessary to fully understand pmp22
expression.

Conclusion

We investigated the relation of pmp22 transcription level
with PNS pathophysiology in medaka fish. Similar to the
mammalian CMT1A phenotype caused by pmp22 over-
expression, reduction in peripheral NCV and aberrant
myelin formation were observed in the pmp22 over-
expression fish, having two fold higher transcription of
ol_pmp22. These results suggest that the contribution of
adequate pmp22 expression in PNS is common among
jawed vertebrates. Moreover, we elucidated the structural
conservation of the gene among human, rodent and
medaka fish, and found novel conserved non-coding
motifs. These results indicate that the common ancestor
for jawed vertebrates had acquired myelin formation with
the associated gene functions including pmp22 and it has
been conserved in present species.

Methods

Medaka fish breeding and selection

All fish lines were maintained at around 26°C under a 14
h light and 10 h dark cycle. Collected eggs were grown
with 0.3% sea salt water. GFP transgenic fish were
screened by fluorescent microscopy observation at embry-
onic and juvenile stages. Genotyping to select pmp22 over-
expression fish was performed by PCR amplification of
tail fin genomic DNA using primers ip166 (5'-CATGGAT-
TACAAAGACGACGA-3') and ip167 (5'-ATGAGTCCGCT-
GATGAGCAC-3'). Manipulation of fish was performed
following both national and institutional guidelines.

DNA, RNA preparation and cDNA synthesis

Fish genomic DNA was prepared by phenol-chloroform
and ethanol precipitation. Plasmids were prepared with
the QIAprep Spin Miniprep Kit (Qiagen, Hilden, Ger-
many). Total RNA was extracted by ISOGEN (Nippon-
gene, Tokyo, Japan). First strand cDNA was synthesized by
using the First-Strand cDNA Synthesis Kit (GE Healthcare,
Tokyo, Japan).

DNA construction

To construct the EGFP basic vector, an Ncol/Xbal digested
EGFP coding fragment was obtained from a pEGFP vector
(Clontech, Palo Alto, CA, USA) and inserted into the
Ncol/Xbal digested pGL3-basic vector (Promega, Madi-
son, WI, USA).

The 11 kbp region upstream of the translation start codon
of ol_pmp22 was amplified by PCR with HdrR genomic
DNA as the template and primers ip097 (5'-ATACGCG-
TATCATTTTCAAGGTCACTGGG-3') and ip098 (5'-
AAGGATCCTTCACGGCCAGTCTAAGAAGAGAGGA-

GACA-3"). To construct the p11-0 EGFP expression vector,

http://www.biomedcentral.com/1471-2202/10/60

the amplified 11 kbp DNA fragment was digested with
Mlul/BamHI, and inserted into the MIul/BglIl digested
EGFP basic vector. The amplified 11 kbp DNA was
digested with BamHI and partially digested with BglII, to
obtain 6.5-0, 3-0 and 6.5-3 fragments. To construct the
p6.5-0 and p3-0 vector, the fragments were inserted into
the BglII digested and BAP treated EGFP basic vector. The
0.5 kbp fragment including the splice accepter sequence
was obtained by PCR amplification of genomic DNA
using primers ip119 (5-TAAGATCTCTTTGCTCTGGGT-
TAAAGTT-3") and ip098, digested with Bglll/BamHI and
inserted into the Bglll digested and BAP treated EGFP
basic vector. To construct the p6.5-3 EGFP expression vec-
tor, the 6.5-3 fragment was inserted into the BglII digested
and BAP treated EGFP vector containing the 0.5 kbp
region upstream of the translation start codon. To con-
struct p11-5, the 6 kbp fragment including ol_pmp22
exonlA and its upstream region was obtained by PCR
amplification of genomic DNA using primer ip097 and
ip134  (5'-TITGGATCCAGTGAGGCTCTACCTGCTCG-
3"), digested with Mlul/BamHI and inserted into Mlul/
BglII digested EGFP basic vector.

The FRT flanked EGFP-BGHp(A) - FLAG-ol_pmp22 vec-
tor was constructed for establishing the pmp22 over-
expression line. The FLAG-ol_pmp22 fragment was
obtained by RT-PCR of medaka 8 dpf whole embryos
using primers ip017 (5'-CCATGGATTACAAAGACGAC-
GACGACAAAATGCTGATCITA-3") and ip018 (5'-TCTA-
GATCATTCTCGCITCCT-3'). The PCR product was
digested with Ncol/Xbal and inserted into the Ncol/Xbal
digested pGL3-basic vector. The fragment of BGHp(A)
was amplified by PCR with phrGFPII-1 (Stratagene, La
Jolla, CA, USA) as template and primers ip041 (5'-
GGTCTAGATTCCCTTTAGTGAG-3') and ip042 (5'-GCG-
GATCCGGCGCCCCAGCATG-3"), digested with Xbal/
BamHI and inserted into the Xbal/BamHI digested EGFP
basic vector. To construct the FRT-flanked EGFP-BGHp(A)
vector, the fragment was obtained by PCR amplification
with the EGFP-BGHp(A) vector as template and primers
ip044 (5'-CGAGATCTGAAGTTCCTATTCCGAAGTTC-
CTATTCTCTA GAAAGTATAGGAACTTCAAGCITGGCAT-
TCCGGTACTG-3') and ip045 (5'-AGAGCGCTCGAGGGC
CCGTCTCCCATGAAGTTCCTATACTTTCTAGAGAA
TAGGAACTTCGGAATAGGAACTITCGAATTCCGACGAT-
AGTCATGCCC-3'), digested with Bglll/Eco471II and
inserted into the BgllI/Eco4 711l digested pGL3-basic vec-
tor. An Ncol/Eco471II digested FLAG-ol_pmp22 fragment
was obtained, and it was inserted into the BsmBI/Eco4 7111
digested FRT-flanked EGFP-BGHp(A) vector. This vector
was digested with Mlul/BglIl and ligated with the Mlul/
BamHI digested 11 kbp PCR product of the region
upstream of the translation start codon (see additional file
2, the plasmid construct was drawn with PlasMapper

[61]).
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Microinjection

Medaka fish fertilized eggs were collected immediately
after spawning and placed into cold Yamamoto's solution
(133 mM NaCl, 2.7 mM KCl, 2.1 mM CaCl,, 0.2 mM
NaHCO;, pH 7.3). The solution (0.1 M K;PO,, 0.05%
phenol red) with either plasmid DNA (30 ng/ul) or
mRNA (400 ng/ul) was injected into the cytoplasm of one
- cell stage eggs through the chorion. For in vitro capped
mRNA synthesis, template DNA including the T7 pro-
moter and FLP recombinase coding sequence were ampli-
fied by PCR with pOG44 as template and primers ip131
(5'-ATTAATACGACTCACTATAGGGCTCTCCACAGGT-
GTCCACTC-3') and ip132 (5'-ACCCGCACATACAGCT-
CACT-3"). Flp mRNA was synthesized by using the
mMESSAGE mMACHINE T7 kit (Ambion, Austin, TX,
USA) and polyadenylated by the Poly (A) Tailing kit
(Ambion). A pressure injector, FemtoJet (Eppendorf,
Hamburg, Germany), was used with borosilicate glass
capillaries GC100F-10 (Harvard Apparatus, Kent, UK).

Immunofluorescence

Adult trunks were removed along with the bones and
fixed in 4% paraformaldehyde in phosphate buffered
saline (PBS) (pH 7.4) at 4°C for several hours. Fixed sam-
ples were decalcificated by 6% sucrose at 4°C overnight.
Infiltration and embedding in glycol methacrylate were
performed with Technovit 8100 (Heraeus Kulzer, Wer-
heim, Germany). Embedded samples were sliced horizon-
tally (10 um) by a rotary microtome, Leica RM2165
(Leica, Nussloch, Germany) equipped with a disposable
microtome blade N35 (Feather, Osaka, Japan), stretched
with distilled water on slide glasses, and dried at room
temperature (RT) overnight. After soaking with PBS, sam-
ples were incubated with 0.1 mg/ml proteinase K at 37°C
for 15 min, rinsed with PBS, incubated with blocking
solution (1% horse serum in PBS with 0.5% Tween 20) at
RT for 1 h, incubated with 1/500 anti-GFP monoclonal
antibody (Nacalai tesque, Kyoto, Japan) in blocking solu-
tion at 4°C overnight, rinsed with PBS with 0.5% Tween
20, incubated with 1/500 Alexa fluor 488 conjugated anti-
mouse IgG antibody (Invitrogen, Eugene, OR, USA) in
blocking solution at RT for 1 h, and rinsed with PBS.
Bright-field and fluorescence images were observed using
a confocal microscope FV1000 (Olympus, Tokyo, Japan)
and data were obtained by Fluoview ver 1.6b software
(Olympus).

5'-RACE

Total RNA was prepared from whole bodies of p6.5-3
injected fish at 14 dpf. The SMART RACE ¢cDNA Amplifi-
cation kit (Clontech) and SuperScript II Reverse Tran-
scriptase (Invitrogen) were used for first strand cDNA
synthesis. RACE PCR was performed by using the Advan-
tage 2 PCR kit (Clontech) with primer ip128 (5'-TAGGT-
CAGGGTGGTCACGAGGGT-3").

http://www.biomedcentral.com/1471-2202/10/60

Quantitative RT-PCR

The target mRNA quantification was performed by using
the Power SYBR Green PCR Master Mix (Applied Biosys-
tems, Foster City, CA, USA). The following primers were
used: ip150 (5'-GCTCTCTGATGATTCITGCITITG-3')
and ip151 (5'-AGGAGCAGAATGTCCAGAATGC-3') for
the 1A transcript, ip152 (5'-CTACTGCAGGTC-
CACTCITITGG-3') and ip153 (5'-GGCCAGTITCAAG-
CAAATCG-3') for the 1B transcript, ipl160 (5'-
TCCTCITCTTCTGTCAGCTCITCA-3') and ipl161 (5'-
GCTCCGCTCATCACAAACAA-3") for total ol_pmp22 tran-
script, ip154 (5'-GCCCCACCAGAGCGTAAATAC-3') and
ip155 (5'-CATCGTACTCCTGCTTGCTGAT-3') for beta-
actin[62]. Relative quantification was calculated according
to the manufacturer's instructions.

Electrophysiology

The electrical excitability of fish nerve was measured
according to Imamura Y., 2008 [63]. Sagittal fish slices
(500 pm) were cut by a vibrating microtome, DTK-1000
(DSK, Kyoto, Japan) in an oxygenated (95% O,/5% CO,)
physiological solution, artificial cerebrospinal fluid
(ACSF) at 4°C, containing: 126 mM NacCl, 2.5 mM KC], 1
mM MgCl,, 26 mM NaHCO;, 1,25 mM NaH,PO,, 2 mM
CaCl, and 10 mM D-glucose. The sample was attached to
a 64 channel-electrode dish perfused with ACSF (3 ml/
min). Peripheral nerve fibers were stimulated with 0.1 Hz,
60 or 100 uA, and population spikes of fish nerve fibers at
300 um, 600 um, and 900 um distance between two chan-
nels were recorded in the perfusion of ACSF. The record-
ing was stored in Windows XP hardware and data analysis
was performed with Mobius software of the MED64 sys-
tem (Alpha MED Sciences, Osaka, Japan). Statistical anal-
ysis was performed by Student's t-test.

Swimming ability test

The medaka fish swimming ability test was performed in
running water (0.25 m/s) in a straight horizontal water-
course (depth 30 mm, width 70 mm, length 1 m) atroom
temperature. Adult male fish were used. The volume of
water flow from a 15 mm diameter hose was 188 ml per
second. Medaka fish were put into a decelerated water cur-
rent in a net for 30 seconds and gently released into the
rapid water current. The movie of a top view of fish swim-
ming was acquired by a digital video camera, NV-GS250-
S (Matsushita, Osaka, Japan). A picture of each time point
was obtained by MotionDV STUDIO 5.3] LE for DV soft-
ware (Matsushita), and analyzed by the scion image soft-
ware (Scion, Frederick, MD, USA). Statistical analysis was
performed by Student's t-test.

Electron microscopy

Adult trunks were removed along with the bones and cut
into 1-2 mm pieces. Samples were fixed in 2% glutaralde-
hyde in 0.1 M phosphate buffer (pH 7.4) for 2 h, washed
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in 0.1 M phosphate buffer (pH 7.4) for 20 min 5 times
and postfixed in 1% OsO, in phosphate buffer (pH 7.4)
for 2 h. Then samples were dehydrated: 50% ethanol for
10 min, 60% ethanol for 10 min, 70% ethanol for 10 min,
80% ethanol for 10 min, 90% ethanol for 10 min, 99%
ethanol for 10 min and 100% ethanol for 20 min twice.
Dehydrated samples were transferred to propylene-oxide
for 20 min twice, 1:1 propylene-oxide:epoxyresin for 1 h,
1:3 propylene-oxide:epoxyresin for 1 h and epoxyresin
overnight. For embedding, samples were left at 60°C with
fresh epoxyresin three overnight. Ultra thin sections (80
nm) were obtained on an Ultra microtome EM UC6
(Leica, Vienna, Austria), counterstained by Reynolds
method and examined on an H-7650 (Hitachi, Tokyo,
Japan). Medaka fish motor nerve fibers were determined
on the locations according to the studies for zebrafish
motor nerve fibers [64,65].

Bioinformatics analysis

Sequences of the EMP/PMP22 family were obtained by
BLAST and BLAT, using human amino acid sequences of
the family as the queries. For phylogenic analysis, mRNA
sequences were translated into amino acid sequences. The
analyses for conserved motifs were performed by the scan
for matches [28], Weeder [29] and jasper [66]. Multiple
alignment of pmp22 was performed by LAGAN [67] and
presented by VISTA [68].

List of abbreviations

pmp22: peripheral myelin protein 22; CMT1A: Charcot-
Marie-Tooth disease typelA; NCV: nerve conduction
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group; FRT: FLP recognition target; EGFP: enhanced green
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spinal fluid; PCR: polymerase chain reaction.
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Additional material

Additional file 1

Endogenous expression of ol_pmp22 in adult fish. Total RNA prepared
form several tissues of adult fish was used as template for RT-PCR (30
cycles of 94°C for 15 sec, 60°C for 30 sec and 68°C for 30 sec). The
primers were ip008 (5'-GGAATCATCCTGCTGCACAT-3') and ip009
(5'-GGGTTGCAGTTAAGGTTACCG-3"). ey: eye, br: brain, li: liver, in:
intestine, pa: pancreas, ga: gallbladder, ki: kidney, he: heart, fi: fin, ov:
ovary, te: testis, M: 100 bp marker.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2202-10-60-S1.pdf]

Additional file 2

The construct for establishing the pmp22 fish. Amplified FRT flanked
EGFP with a BGH polyadenylation site was digested with BglIl/Eco4 7111
and inserted into the Bglll/Eco4 7111 digested pGL3-basic vector (pFRT-
EGFP-BGHp(A)-FRT). The 11 kbp region upstream of ol_pmp22 trans-
lation start codon was inserted into the plasmid digested with Mlul/BglII.
The FLAG tagged ol_pmp22 coding sequence with an SV40 polyadenyla-
tion site was inserted into the plasmid digested with BsmBI/Eco47IIL.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2202-10-60-S2.pdf]

Additional file 3

GFP fluorescence of GFP fish. The pictures show fluorescent microscopy
observations, A-O, and light microscopy, A'-O', of GFP fish. Embryonic
stages, 0 dpf (A, A'), 1 dpf (B, B'), 2 dpf (C, C'), 3 dpf (D, D'), 4 dpf
(E L] E,I,]'),5dpf (F K F, K", 6 dpf (G, G') and 7 dpf (H, H'),
are shown. Distinct fluorescence was observed from 3 dpf. In embryonic
stages, strong GFP fluorescence was observed in nervous system, branchial
arches (I; white arrow) and olfactory epithelium (J, K; white arrow). Dor-
sal view of the anterior (L, L'), left side view of the middle, (M, M"), left
side view of the tail (N, N'), and ventral view of the anterior (O, O') of
10 dpf are shown. ey: eye, mb: midbrain, hb: hindbrain, sp: spinal cord,
Isc: longitudinal fissure of cerebrum, li: liver, ki: kidney, in: intestine, yo:
yolk, fi: fin fibroblast, ba: bulbous arteriosus, gi: gill, ph: pharynx. Bars:
200 pm.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2202-10-60-S3.pdf]

Additional file 4

Values of mRNA quantification of the total, 1A and 1B transcription
levels. Total RNA was prepared from mixed extract of some fish at 4, 6,
8, 14 and 30 dpf. The upper table shows the threshold cycles of the beta-
actin, internal control, and ol_pmp22 mRNA. The lower table shows the
relative quantification of total, 1A and 1B transcript defining the average
of each 4 dpf transcription level as 1.0. The graph is shown in Figure 6.
The minimum and maximum were estimated according to the manufac-
turer's instructions (P < 0.05).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2202-10-60-84.pdf]
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