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Summary
Tick-borne diseases (TBD) remain prevalent worldwide, and risk assessment of tick habitat suitability is crucial to
prevent or reduce their burden. This scoping review provides a comprehensive survey of models and data used
to predict I. scapularis distribution and abundance in North America. We identified 4661 relevant primary research
articles published in English between January 1st, 2012, and July 18th, 2022, and selected 41 articles following full-text
review. Models used data-driven and mechanistic modelling frameworks informed by diverse tick, hydroclimatic, and
ecological variables. Predictions captured tick abundance (n = 14, 34.1%), distribution (n = 22, 53.6%) and both (n = 5,
12.1%). All studies used tick data, and many incorporated both hydroclimatic and ecological variables. Minimal host-
and human-specific data were utilized. Biases related to data collection, protocols, and tick data quality affect
completeness and representativeness of prediction models. Further research and collaboration are needed to improve
prediction accuracy and develop effective strategies to reduce TBD.

Copyright © 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC
license (http://creativecommons.org/licenses/by-nc/4.0/).
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Introduction
Tick-borne diseases (TBDs) like Lyme disease (Borrelia
burgdorferi) pose a significant public health threat in
North America due to their increasing incidence. TBDs
account for over half of all vector-borne illnesses in this
region, and their non-specific and overlapping clinical
manifestations make early diagnosis challenging.1–3

Therefore, understanding tick population dynamics and
associated supportive factors is crucial.1,2 In North
America, the ticks responsible for Lyme disease are Ixo-
des scapularis and Ixodes pacificus, with I. scapularis
(blacklegged or deer tick) being the predominant and
among the most medically important tick vectors3 as it
can transmit multiple pathogens simultaneously to
humans in one bite.4 I. scapularis has a 3-host life cycle
involving transitioning from larva to nymph to adult
stages and may last from 2 to 3 years.5 Tick survival and
reproduction requires available, life-stage-appropriate
hosts,6 such as white-tailed deer (Odocoileus virginianus)
for adult ticks, and small mammals like white-footed
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mice (Peromyscus leucopus) for larvae and nymphs.7

Most pathogens are transmitted by bites of tick
nymphs. Their small size makes them difficult to detect
compared to larger adult ticks, while the larval stage ex-
periences low incidence of infection.5,6 Humans are
incidental hosts as they are not typically part of the tick
life cycle.5 TBD risk is highly correlated with infected tick
abundance (absolute or relative number of ticks in a
given location) and distribution (spatial extent of the
species),8 and both are influenced by intricate interplay
between abiotic and biotic factors.4,8

Researchers use two modelling frameworks to study
tick propagation: mechanistic and data-driven. Mecha-
nistic models depend on assumptions about species
characteristics and behaviours associated with various
environmental drivers; however, incorporating multiple
variables and dynamics lead to complex model behav-
iours which impacts interpretability.8,9 Conversely, data-
driven models use patterns and information from data
to make predictions through computational algorithms
and can easily handle complex variables; however, their
predictive accuracy depends on data quality and
quantity.9

We identified two scoping reviews: one focused on
species distribution modelling (SDM) of Amblyomma tick
1

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
http://creativecommons.org/licenses/by-nc/4.0/
mailto:bouchra.nasri@umontreal.ca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.lana.2024.100706&domain=pdf
https://doi.org/10.1016/j.lana.2024.100706
https://doi.org/10.1016/j.lana.2024.100706
https://doi.org/10.1016/j.lana.2024.100706
http://www.thelancet.com


Review

2

species globally (studies published between 1994 and
2019)10 and the other review prioritised SDM of several
medically important tick species worldwide, including
I. scapularis (studies published between 1998 and 2012).11

Kopsco and colleagues11 focus only on SDM and habitat
suitability modelling in their search criteria, which may
have resulted in the exclusion of tick abundance model-
ling from their scoping review.11 While climatic factors
are the main contributors to tick distribution, tick abun-
dance is directly influenced by host density, both of
which lead to an increase in TBDs.12 Therefore, to better
assess the risks of tick establishment and TBDs, distri-
bution and habitat suitability along with tick abundance
must be considered. Thus, our scoping review comple-
ments the work of Kopsco and collaborators11 by
providing an overview of the data and modelling ap-
proaches used for predicting I. scapularis distribution and
abundance in North America.

This scoping review aims to answer the following
research questions: (1) What are the current modelling
frameworks and data used to predict I. scapularis pop-
ulation distribution, abundance, and factors contrib-
uting to its spread in North America? (2) What are the
limitations and suitability of these approaches and data
sources, and how do they impact model predictive
accuracy?
Methodology
This scoping review followed the Preferred Reporting
Items for Systematic Review and Meta-Analysis Exten-
sion for Scoping Reviews (PRISMA-ScR) guidelines.13

Literature searches were conducted in Web of Science
and PubMed online databases selected for their open
access policy, range of health-related publications, and
article update frequency.11,14 Keywords related to
I. scapularis modelling were identified for the search
(Appendix A).

YS performed the literature search, and YS and EL
performed the first round of title and abstract screening in
Covidence (Covidence systematic review software, Veritas
Health Innovation, Melbourne, Australia; available at
www.covidence.org). To examine temporal publication
trends for this topic, date ranges were not restricted. The
initial screening included peer-reviewed primary research
articles with full-text available and published in English,
focusing on predictive models for I. scapularis distribution,
abundance, and Lyme disease risk. Exclusion criteria
omitted review articles, experimental studies, short com-
munications, articles published in languages other than
English, and studies focusing on non-I. scapularis tick
species.

After initial screening, article eligibility disagree-
ments were resolved (BN). Notably, most relevant liter-
ature was published between January 1, 2012 and July
18, 2022, which was set as the study inclusion time-
frame. A data extraction spreadsheet was developed to
collect information about study objectives, model types,
data sources, and predictor variables, among others
(Appendix A). The full-text screening of all retained ar-
ticles underwent two phases. First, articles that did not
meet the above inclusion criteria were excluded (YS,
EL). Relevant data were independently extracted from
the retained articles (YS, EL) and results were further
discussed (YS, EL, BN) with disagreements resolved by
BN. As many articles focused on Lyme disease risk or
regions other than North America, the inclusion criteria
were further refined (Fig. 1).

The second full-text screening phase included
studies focusing on I. scapularis distribution and abun-
dance modelling in North America and excluded studies
prioritizing Lyme disease risk modelling or focusing on
other geographic areas. BN supervised and approved the
entire extraction process. Extracted data was then
further categorized.

Models were identified as data-driven or mecha-
nistic. Tick data were grouped by collection method:
active, passive, and proxy. In active surveillance, re-
searchers or health officials directly sample field areas,
by dragging or trapping hosts (deer, birds, rodents) to
inspect them for ticks. In passive surveillance, civilians
report ticks to health officials after finding ticks on
themselves or their pets.15 Proxy data includes citizen
science (public participation in scientific research and
data collection activities)16 or historical data (tick sur-
veillance data from previous studies). Other variables
used in model development were categorised as hydro-
climatic, ecological, human behavioural, or TBD cases
data (Table 1). Model response variables were catego-
rized as tick abundance (including tick density and
population counts) and tick distribution (including
habitat suitability, tick occurrence, presence/absence,
invasion, or expansion risk).8
Results
A total of 4661 articles (PubMed: 1890, Web of Science:
2771) were identified. Based on the initial inclusion and
exclusion criteria, 4074 articles were excluded after title
and abstract screening and duplicate removal. The
remaining 587 articles also underwent full-text
screening, and 431 additional articles were excluded.
Additionally, articles that did not focus on North
America (n = 54) or were primarily focused on Lyme
disease risk assessment (n = 61) were also excluded
(n = 115). No additional studies beyond this search were
included. The final data extraction included 41 articles
(Figs. 1 and 2, Table 2, Appendix B). Appendix C pro-
vides summaries of the parameter, variable, and model
selection methods and model validation approaches
used in each study, if reported.

Studies were geographically focused on the US
(n = 18, 44%), Canada (n = 20, 49%), Mexico and the US
(n = 2, 5%) and the US and Canada (n = 1, 2%), and
www.thelancet.com Vol 32 April, 2024
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Fig 1: PRISMA Flowchart Illustrating the Scoping Review screening and selection process. The figure was generated by the PRISMA flow chart
online tool (https://estech.shinyapps.io/prisma_flowdiagram/).

Review
consistent research interest in I. scapularis over time is
evident (Fig. 3). Data-driven (n = 33, 80%) and mecha-
nistic (n = 8, 20%) models were identified (Fig. 4 and 5).
Overall, model predictions focused on tick abundance
(n = 14, 34.1%), tick distribution (n = 22, 53.7%) and
both tick abundance and distribution (n = 5, 12.2%)
(Figs. 4 and 5A).

For tick abundance, data-driven (n = 13, 92.8%) and
mechanistic models (n = 1, 7.2%) were implemented.
Data-driven studies focusing on tick abundance (n = 13,
100%) employed count data regression models (Fig. 6),
comprising simple Poisson and negative binomial (NB)
(n = 1, 7.7%),17 multivariable NB (n = 1, 7.7%),18 simple
and multivariable NB (n = 1, 7.7%),19 simple NB models
(n = 1, 7.7%),20 multivariable zero-inflated Poisson
(n = 1, 7.7%) and multivariable zero-inflated NB
(n = 1,7.7%) in cases of excess zeros.21,22 NB was
preferred over Poisson regression when handling count
data demonstrating overdispersion.17 Additionally,
Generalized Estimating Equation (GEE) NB and Poisson
regression models (n = 1, 7.7%) were employed to
accommodate potential clustering arising from repeated
measures.51 Other approaches included simple and
multivariable linear regression (n = 5, 38.4%)23–27 and
www.thelancet.com Vol 32 April, 2024
count generalized linear models (GLM) (n = 1, 7.7%).28

For mechanistic modelling, tick abundance was
addressed using temperature-driven ordinary differen-
tial equations (ODEs) model to simulate population
dynamics of I. scapularis (n = 1, 100%) (Appendix D,
Figure D1).29

For tick distribution, both data-driven (n = 16, 72.7%)
and mechanistic models (n = 6, 27.3%) were employed.
Among the data-driven tick distribution studies (n = 16,
100%), logistic regression (LgR) models (n = 7,
43.7%)7,30–33,35,36 were used to predict binary outcomes
(i.e., tick presence or absence), while MaxEnt was used
to model I. scapularis habitat suitability (n = 6, 37.5%).
Two studies included survival regression (n = 2, 12.5%)
with one also utilizing simple LgR.1,34 These approaches
integrated environmental and dispersal factors and
provide a comprehensive analysis and temporal pro-
jections of I. scapularis establishment.1,34 A model was
also identified (n = 1, 6.3%) employing multivariable
regression and machine learning techniques like boos-
ted regression tree, generalized linear model (GLM)
multivariate adaptive regression spline, MaxEnt, and
random forest models.37 Overall, LgR was most utilised,
including simple and multivariable logistic (n = 1,
3
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Hydroclimatic variables Ecological variables Human components

Temperature Temperature during warmest month Location Latitude Human behaviour

Temperature during coldest month Longitude TBD cases

Temperature during warmest quarter Geographic location

Temperature during coldest quarter Vegetation Forest cover

Annual maximum temperature Vegetation index

Daily mean temperature Canopy cover

Minimum temperature during coldest month Soil type

Maximum temperature during warmest month Soil moisture

Monthly mean temperature Landcover (e.g., shrub coverage,
grassland, agricultural area)

Litter depth

Annual cumulative degree days (DD > 0 ◦C) Landscape Presence of river

Mean diurnal temperature Landscape fragmentation

Isothermality Elevation

Annual mean temperature Host density Host density

Precipitation Total annual rainfall

Precipitation during driest quarter

Precipitation during wettest quarter

Precipitation during warmest quarter

Precipitation during coldest quarter

Annual mean precipitation

Humidity Relative humidity

Index of atmospheric moisture

Vapour pressure

Table 1: Description of the three main classes of predictor variables used in the models.

Fig 2: Alluvial Diagram depicting relationships among studies, modelling methods, tick data, hydroclimatic variables, and ecological variables.
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Response variable focus: tick abundance (n = 14)

Studies Location & time
frame

Model framework
(Type) & specific
models

Predictor
variable
categories

Study objective(s) Significant predictor(s) Limitations Statistical methods
to assess outcomes,
validation
approaches & model
predictive accuracya

(if provided)

Nelder et al.,
202117

Ontario (Canada)
2011–2017

Data-driven
(Regression):
Simple Negative
binomial
regression
Simple Poisson
regression

Tick data
(Passive)

Examine whether there is a spatial and
temporal relationship between submission
rates of I. scapularis ticks found on humans
compared to those identified on pets at the
public health unit (PHU) geographic level in
Ontario.

None reported Data reflects the prioritization of tick
submissions from humans over pets in
PHUs, as well as the absence of tick
collection in some PHUs.
Lack of veterinary awareness of pet-
associated tick submission options
potentially underestimates pet-tick
encounters.
Absence of pet populations required
estimation by proxy using human
population data.
Model may underestimate tick exposure
risk because: 1) tick establishment in
Ontario is recent; and 2) passive tick
surveillance data have some predictive
limitations.

Statistical Methods
Incidence Rate Ratio
(IRR)
Validation Methods
None reported
Predictive Accuracy
None reported

Porter et al.,
201918

Connecticut,
Maine,
Massachusetts,
Vermont, New
York, New
Hampshire, New
Jersey, New York,
Rhode Island,
Pennsylvania
(USA)
January 2016 and
August 2017

Data-driven
(Regression):
Multivariable
Negative
binomial
regression

Tick data
(Proxy)
Human data

Assess the influence of seasonality and
human behaviour on tick encounters in
the northeastern United States and the
association with Lyme disease risk through
the use of citizen science (CS) tick
submission data

Human behaviours (yard work, outdoor
activities, recreation in forests)

CS data collection processes often lack
systematic structure and can be
influenced by location biases and
participant representation.
Nymph detection is more difficult thus CS
tick data may be skewed towards adult
ticks resulting in possible
underestimation of nymph exposure.

Statistical Methods
Spearman Rank
Correlation
Validation Methods
Mean Absolute Error
(MAE)
Root Mean Square
Error (RMSE)
Normalized Root
Mean Square Error
(NRMSE)
Predictive Accuracy
MAE (Model 3): 60.7
RMSE (Model 3):
101.7

Finch et al.,
201419

Block Island,
Rhode Island
(USA)
May–August, 2012

Data-driven
(Regression):
Simple Negative
binomial
regression
Multivariable
Negative
binomial
regression

Tick data
(Active)
Ecological
data

Examine the relationship between landscape
measures, nymph density, and risk of
human–tick interaction and Lyme disease on
Block Island, Rhode Island.

Positive association: Shrub metrics (Class
Area, Largest Patch Index, Total Edge, Edge
Density, Landscape Shape Index)
Negative association: Lawn metrics (Largest
Patch Index, Edge Density)

Exact location of exposure was difficult to
identify, and details regarding the varying
use of preventive measures were not
collected.

Statistical Methods
Difference in means
(estimates, p-values)
Validation Methods
Not reported.
Predictive Accuracy
Land cover
classification (errors
of omission and
commission): 83.6%

Zolnik et al.,
201520

Northeastern USA
June and July 2013

Data-driven
(Regression):
Simple
Negative
binomial
regression

Tick data
(Active)
Ecological
data

Use landscape fragmentation characteristics
to represent host biodiversity and examine
the “dilution effect hypothesis” on the
prevalence and density of infected nymphs
in tick-endemic areas of the northeastern
United States.

None reported Detached forest patches were absent in
the majority of the sample sites so forest
patch size was excluded from the models,
preventing the assessment of their
association on disease risk.

Statistical Methods
Difference in means
(estimates, p-values)
Validation Methods
Not reported
Predictive Accuracy
None reported

(Table 2 continues on next page)
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Response variable focus: tick abundance (n = 14)

Studies Location & time
frame

Model framework
(Type) & specific
models

Predictor
variable
categories

Study objective(s) Significant predictor(s) Limitations Statistical methods
to assess outcomes,
validation
approaches & model
predictive accuracya

(if provided)

(Continued from previous page)

Khatchikian
et al., 201221

Hudson River
Valley,
New York State
(USA)
2004–2010

Data-driven
(Regression):
Multivariable
linear regression
Multivariable
Poisson
regression
Multivariable
Zero-inflated
Poisson
regression

Tick data
(Active)
Hydroclimatic
data
Ecological
data

Report empirically detailed ten-year data
for I. scapularis population growth and
identify associated environmental factors
in Hudson River Valley, New York State.

Nymph model: location, year, sampling
week (season), precipitation (summer),
temperature in winter (minimum), amount
of forest coverage
Adult model: location, year, sampling week
of sampling (season), precipitation (winter),
temperature in winter (minimum), amount
of forest coverage urbanization, and
interaction between forest coverage and
urbanization)

Annual visits did not cover all collection
sites, potentially leading to overestimates
of tick density.

Statistical Methods
Differences in means
(estimates, p-values)
Validation Methods
Data
Predictive Accuracy
R2 (nymphal tick
density): 0.642
R2 (adult tick
density): 0.622

Diuk-Wasser
et al., 201222

37 states east of
100th meridian
(USA)
2004–2007

Data-driven
(Regression):
Multivariable
Zero-inflated
negative
binomial
regression

Tick data
(Active)
Hydroclimatic
data
Ecological
data

Create a continuous predictive map for
human risk of Lyme disease by analyzing the
influence of environmental factors on
nymphal tick infections.

For infected nymph absence: elevation,
vapour pressure deficit (mean), yearly
temperature cycle phase (minimum)
For infected nymph occurrence: largest
mixed forest cover patch (+ spatial
autocovariate)

Density of infected nymphs are
underestimated in specific areas (e.g.,
Parker Dam state Park) due to their
separation from areas with high density,
low autocovariate values, and the impact
of high elevation.
The sampling strategy covered only
natural regions which were used for
continent-wide standardization, thus the
predictions are regionally limited due to
the small sample size.

Statistical Methods
Differences in means
(estimates, p-value)
Validation Methods
Not reported
Predictive Accuracy
Accuracy: 0.91
Sensitivity: 0.93
Specitivity: 0.90
Positive predictive
value (PPV): 0.63
Negative predictive
value (NPV): 0.99

Ripoche
et al.,
2018a23

Quebec (Canada)
2009–2014

Data-driven
(Regression):
Multivariable
Generalized
Estimating
Equation (GEE)
negative
binomial
regression
Multivariable
Generalized
Estimating
Equation (GEE)
Poisson
regression

Tick data
(Active,
Passive)
Human data

Develop new Lyme disease risk indicators
by analysing the connections between tick
and human surveillance data and assessing
their capability to differentiate between
defined risk levels implemented in Quebec.

# ticks provided through passive surveillance
approaches during the previous 2 years,
adjusted according to the population size
(humans)

Predictive accuracy may have been
reduced due to the exclusion of tick
submissions from pets and
environmental variables from the model.
Nymph density may be underestimated
due to single site samples and few
nymphs obtained by passive surveillance.
Human-tick encounters associated with
passive surveillance data do not always
signify well-established tick populations
(i.e., adventitious ticks).

Statistical Methods
Difference in means
(estimates, p-values)
Validation Methods
Pearson correlation
Predictive Accuracy
(Based on Criterion
3):
AUC: 0.961
Sensitivity: 0.889
Specificity: 0.908
NPV: 99%
PPV: 13%

Berger et al.,
201423

Rhode Island
(USA)
1997–2010

Data-driven
(Regression):
Simple linear
regression
Multivariable
linear regression

Tick data
(Active)
Ecological
data
Hydroclimatic
data

Estimate “tick adverse moisture events
(TAMEs)” using atmospheric moisture,
relative humidity, and leaf litter, and
evaluate their effect on I. scapularis survival
and the risk of human–tick interactions.

# TAMEs occurring in June every year lasting
over 8 h

Host density and temperature were not
considered in this study but may be
responsible for impacting nymph
occurrence when collecting samples and
nymph questing activities, respectively.

Statistical Methods
Difference in means
(estimates, p-value)
Validation Methods
Not reported
Predictive Accuracy
Not reported

(Table 2 continues on next page)
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Response variable focus: tick abundance (n = 14)

Studies Location & time
frame

Model framework
(Type) & specific
models

Predictor
variable
categories

Study objective(s) Significant predictor(s) Limitations Statistical methods
to assess outcomes,
validation
approaches & model
predictive accuracya

(if provided)

(Continued from previous page)

Brinkerhoff
et al., 201424

Virginia (USA)
2008–2011

Data-driven
(Regression):
Weighted
multivariable
linear regression

Tick data
(Active)
Ecological
data
Human data

To investigate, under the assumption of a
positive correlation, the link between
infected tick density and the county risk
level for Lyme disease in Virginia.

Longitude Tick data is spatially and temporally
incomplete which makes it difficult to
accurately establish relationships between
county-level Lyme disease and tick
density variation.
Timing of tick collection (daytime) may
have excluded ticks with other questing
behaviour.

Statistical Methods
Difference in means
(p-values)
Validation Methods
Field observations
Predictive Accuracy
Not reported

Tran et al.,
202125

New York State
(USA)
2016–2017

Data-driven
(Regression):
Simple linear
regression
Multivariable
linear regression

Tick data
(Active, Proxy)
Ecological
data
Human data

Examine whether citizen science (CS)
datasets can be used to precisely describe
Ixodes scapularis populations when
compared with traditional tick surveillance
data over a broad range of locations and
time periods.

CS submitted ticks (+ all collector associated
variables)

CS data can be impacted by underlying
issues associated with its collection, as
well as participation bias limitations
resulting in inaccurate tick abundance
predictions.

Statistical Methods
NA
Validation Methods
10-fold cross-
validation
Root Mean Square
Error (RMSE)
Field observations
Predictive Accuracy
Full model without
Lyme disease:
RMSE: 0.45
R2: 0.63

Berger et al.,
201326

Southeastern New
England (USA)
2009–2010

Data-driven
(Regression):
Simple linear
regression

Tick data
(Proxy)
Hydroclimatic
data
Ecological
data

Evaluate the use of remotely sensed surface
moisture conditions and the Temperature
Vegetation Dryness Index (TVDI) to describe
the factors impacting tick habitats and
potential risk of Lyme disease in New
England.

Surface moisture
Temperature
Forest cover

Limitation not given. Statistical Methods
Differences in means
(estimates, p-value)
Validation Methods
Field observations
Predictive Accuracy
Accuracy of model
with dry/wet–edge
parameters (May–
Aug 2009):
Adjusted R2 range:
0.67–0.78
(p < 0.001)
Accuracy of model
with dry/wet–edge
parameters (May–
Aug 2010):
Adjusted R2 range:
0.57–0.76
(p < 0.001)

(Table 2 continues on next page)
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Response variable focus: tick abundance (n = 14)

Studies Location & time
frame

Model framework
(Type) & specific
models

Predictor
variable
categories

Study objective(s) Significant predictor(s) Limitations Statistical methods
to assess outcomes,
validation
approaches & model
predictive accuracya

(if provided)

(Continued from previous page)

Werden
et al., 201427

Ontario (Canada)
2009–2010

Data-driven
(Regression):
Multivariable
linear regression
Multivariable
logistic regression

Tick data
(Active)
Hydroclimatic
data
Ecological
data

Explore the effects of climatic,
environmental, spatial location, and host
biodiversity factors on the risk of Lyme
disease in the Thousand Islands area of
Ontario.

Avg. Daily minimal temperature (Jul–Sept),
avg. # deer pellet groups/hectare, relative
mice abundance, small mammal species
diversity, % canopy cover, distance away
from US mainland, interaction between
mice and richness

Focusing on small animal host
populations only rather than all possible
hosts may hinder the development of a
more holistic understanding of the
impact of biodiversity on Lyme disease
risk.

Statistical Methods
Difference in means
(estimates, p-values)
Validation Methods
None reported.
Predictive Accuracy
R2 (Model 1–Number
of nymphs (NON)):
0.51
R2 (Model 1–Number
of infected nymphs
(NIN)): 0.45

Ferrell &
Brinkerhoff.,
201828

Central Virginia
(USA)
2014

Data-driven
(Regression):
Multivariable
Count GLM with
combined
forward and
backward
stepwise
selection

Tick data
(Active)
Ecological
data
Human data

Identify land cover features linked with
I. scapularis abundance and the utilization of
the habitat by hosts.

Model 1: Total linear forest edge (5 km),
Shannon’s diversity index (10 km), Elevation
Model 2: total linear forest edge (5 km),
Shannon’s diversity index (10 km), distance
to nearest forest patch

Association between landscape and host
density is likely contingent on contextual
conditions and structures.

Statistical Methods
Difference in means
(estimates, p-values)
Validation Methods
Not reported.
Predictive Accuracy
Not reported

Wallace et al.,
201929

Hanover, New
Hampshire (USA)
1990–2015

Mechanistic
(Compartmental):
Ordinary
differential
equations (ODEs)

Tick data
(Proxy)
Hydroclimatic
data
Ecological
data

Develop a model to predict the effect of
host densities and rising mean annual
temperature on I. scapularis abundance and
Lyme disease risk in Hanover, New
Hampshire.

Mean annual/seasonal temperature (based
on daily max/min temperature data)

Model assumptions for host-tick
encounter probabilities are based on
relative host density assumptions which
may be inaccurate.
Human behavior data associated with
possible tick exposure was not included.

Statistical Methods
NA
Validation Methods
Data
Field observations
Predictive Accuracy
Not reported

Response variable focus: tick distribution (n = 22)

Studies Location &
time frame

Model framework
(Type) & specific
models

Predictor
variable
categories

Study objective(s) Significant predictor(s) Limitations Statistical methods to
assess outcomes,
validation approaches &
model predictive
accuracya (if provided)

Gardner
et al., 20201

Midwestern
USA
1962–2011
1992–2007

Data-driven
(Regression):
Multivariable
Survival analysis
(Cox regression)
Simple logistic
regression

Tick data
(Proxy)
Ecological
data
Human data

Examine the impact of landscape characteristics on
the spatiotemporal trends of I. scapularis
propagation and Lyme disease prevalence in the
Midwestern United States from 1967 to 2018 and
forecast regions that have risk of tick invasion.

Forest coverage, river proximity,
adjacency to regions with historical
tick establishment (prior 5–10
years)

Some ecological variables corresponding with
tick presence (e.g., forest category, altitude,
soil class) and climate variables are not
included.
Possible bias in the model due to the use of
historical data and inconsistencies in
surveillance activities.

Statistical Methods
Risk (Hazard) ratio
Validation Methods
Data
AUC
Predictive Accuracy
AUC: 0.95
Sensitivity: 90.6%
Specificity: 98.5%

(Table 2 continues on next page)
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Response variable focus: tick distribution (n = 22)

Studies Location &
time frame

Model framework
(Type) & specific
models

Predictor
variable
categories

Study objective(s) Significant predictor(s) Limitations Statistical methods to
assess outcomes,
validation approaches &
model predictive
accuracya (if provided)

(Continued from previous page)

Clow et al.,
2017a7

Ontario
(Canada)
May–October
(2014, 2015)

Data-driven
(Regression):
Mixed-effect
Multivariable
logistic regression

Tick data
(Active)
Hydroclimatic
data
Ecological
data

Identify key ecological and hydroclimatic factors
responsible for the spread of I. scapularis in Ontario.

Density of understory, relative
shrub abundance (and interaction),
longitude, cumulative Degree-Days
Above 0 ◦C (DD > 0 ◦C), tick
presence at location

Temporal tick density and life stage
variability impacts sensitivity and specificity.
Tick density cannot be normalized, limiting
the model type selection.
Rudimentary measurement approaches of
ecological variables may impact precision.
Missing data and singular observations
resulted in small sampling sizes.

Statistical Methods
Odds ratio
Validation Methods
Not reported
Predictive Accuracy
Not reported

Soucy et al.,
201815

Ottawa,
Ontario
(Canada)
2013–2016

Data-driven
(MaxEnt)

Tick data
(Active,
Passive)
Ecological
data

Create an ecological niche model for the spread of
Ixodes scapularis in the Ottawa region using
environmental (land cover, elevation) and passive
tick data and develop a habitat suitability map.

Proximity to agricultural land,
proximity to land with trees and
hedges

Model predictions may not fully match true
tick presence due to unconsidered factors like
host movement impediments, seasonal
fluctuations, and human utilization of and
changes to habitats.

Statistical Methods
NA
Validation Methods
AUC
Predictive Accuracy
AUC: 0.878 ± 0.019
Classification accuracy:
0.835 ± 0.020
Sensitivity:
0.956 ± 0.026
Specificity:
0.769 ± 0.028
NPV: 0.972 ± 0.015
PPV: 0.705 ± 0.026

Koffi et al.,
201230

Southern
Quebec
(Canada)
1.2007–2008
2. June–
October, 2010

Data-driven
(Regression):
Multivariable
logistic regression

Tick data
(Active,
Passive)
Hydroclimatic
data
Ecological
data

Determine I. scapularis emergence risk in Quebec
using an environmental suitability index and
passive tick data.

Passive tick data, invasion risk
index (i.e., considering cumulative
annual degree days >0 ◦C and
adventitious tick counts from
migratory birds)

The specificity of passive tick surveillance
may be impacted by the presence of
adventitious ticks (false positive results).

Statistical Methods
Odds ratio
Validation Methods
ROC/AUC
Field data
Predictive Accuracy
AUC: 0.816
PPV: 60.42%

Gabriele-
Rivet et al.,
201531

New Brunswick
(Canada)
May–
September
2014

Data-driven
(Regression):
Multivariable
logistic regression

Tick data
(Active)
Hydroclimatic
data
Ecological
data

Assess the spread of the established tick
populations andstudy the environmental factors
affecting their habitat in New Brunswick.

Active tick data,
# years in 2009–2014 where
degree-days above 0 ◦C
(DD > 0 ◦C) was >2800

Temperatures in many sites were at or near
the I. scapularis survival range.
Provincial deer density estimates found to be
lower than required to support the survival of
I. scapularis.

Statistical Methods
Odds ratio
Validation Methods
Hosmer–Lemeshow
statistic test
Predictive Accuracy
ROC/AUC: 0.78 (95% CI
0.74–0.82)
Sensitivity: 97.84%
Specificity: 17.65%
PPV: 33.8
NPV: 95

(Table 2 continues on next page)
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Response variable focus: tick distribution (n = 22)

Studies Location &
time frame

Model framework
(Type) & specific
models

Predictor
variable
categories

Study objective(s) Significant predictor(s) Limitations Statistical methods to
assess outcomes,
validation approaches &
model predictive
accuracya (if provided)

(Continued from previous page)

Gabriele-
Rivet et al.,
201732

Alberta,
Saskatchewan,
Manitoba
(Canada)
2005–2015

Data-driven
(Regression):
Multivariable
logistic regression

Tick data
(Active, Proxy)
Hydroclimatic
data
Ecological
data

Create spatial I. scapularis establishment risk maps
in the Canadian prairies using appropriate
temperature, precipitation and land cover variables.

Landcover (forested and non-
forested), mean annual cumulative
degree days DD > 0 ◦C
(2009–2014), rainfall.

Surveillance data inconsistencies between
sampling sites hinder effective calibration of
the model.
Detection of adventitious ticks might lead to
misclassification and erroneously low
sensitivity results.

Statistical Methods
Odds ratio
Validation Methods
AUC/ROC
Predictive Accuracy
AUC (all 6 Risk Map
algorithms): 0.71–0.74
AUC (Risk Map
algorithm 5): 0.74
Sensitivity (risk level >0):
83.1%
Specificity (risk level >0):
50.9%
NPV (risk level >0):
94.5%
PPV (risk level >0): 22%

Clow et al.,
2017b33

Ontario
(Canada)
May–October
2015

Data-driven
(Regression):
Simple logistic
regression
Multivariable
Multinomial
regression

Tick data
(Active, Proxy)
Hydroclimatic
data
Ecological
data

Assess I. scapularis distribution, shifts in risk
parameters, and if the expansion rate of ticks in
Ontario aligns with the previously estimated rate
(∼46 km/year)34

Number of years to tick population
establishment (based on speed of
expansion.34)

Small sample size and a short sampling
period decrease statistical power and impact
ability to demonstrate temporal invasion
patterns.
In low-density emergence areas, tick
dragging is less sensitive and can lead to
inaccurate results.

Statistical Methods
Relative risk ratio
Validation Methods
Fagerland, Hosmer and
Bofin goodness of fit
test
Predictive Accuracy
Not reported

Sharareh
et al.,
201935

Northeastern
USA
2014

Data-driven
(Regression):
Multivariable
Multinomial
regression

Tick data
(Active)
Ecological
data
Human data

Examine the relationship between tick encounter
risk and factors such as vegetation, pathways, tick
and rodent host data, and human behaviours at a
New York state university

Understory (%)
Human risk
Rodents (#)

The data collection time frame (summer), the
absence of nymph tick collection during this
period, and the limited sample size likely
affected model outcomes.

Statistical Methods
Difference in means
(estimates, p-values)
Validation Methods
Pseudo R-square
(Negelkerke method)
Pseudo R-square
(McFadden method)
Predictive Accuracy
90.9% (method not
stated)

(Table 2 continues on next page)
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Response variable focus: tick distribution (n = 22)

Studies Location &
time frame

Model framework
(Type) & specific
models

Predictor
variable
categories

Study objective(s) Significant predictor(s) Limitations Statistical methods to
assess outcomes,
validation approaches &
model predictive
accuracya (if provided)

(Continued from previous page)

Kotchi et al.,
202136

Manitoba
Ontario
Quebec
New Brunswick
Nova Scotia
(Canada)
2007–2013
2014–2018

Data-driven
(Regression):
Simple logistic
regression
Multivariable
logistic regression

Tick data
(Active)
Hydroclimatic
data
Ecological
data

Use remote sensing data to examine spatial and
temporal trends related to tick habitat suitability
and create a map of I. scapularis risk for eastern and
central regions of Canada.

Cumulative annual surface degree
days >0 ◦C of forest covers
Percent broadleaf forest
Geographical region (Province)

Low specificity of risk maps likely due to
absence of identified tick populations in
habitable regions.
Some tick data may represent adventitious
ticks rather than established populations in
particular locations.

Statistical Methods
Odds ratio
Validation Methods
Field data
ROC/AUC
Predictive Accuracy
All provinces (summary):
ROC AUC (SE): 0.604
(0.016)
Sensitivity (%): 99.3
Specificity (%): 5.31
Individual provinces
(range):
ROC AUC: 0.401–0.700
Sensitivity (%):
94.4–100
Specificity (%):
0.34–9.80

Leighton
et al.,
201234

Southern
Quebec
Ontario
Maritime
provinces
(Canada)
1990–2008

Data-driven
(Regression):
Multivariable
Survival analysis
(Parametric)

Tick data
(Passive)
Hydroclimatic
data
Ecological
data

Examine I. scapularis northward range expansion
and its implications for Lyme disease by analyzing
two decades of Canadian tick data, identifying
factors contributing to tick spread, and projecting
future distribution.

Temperature (Degree-Days Above
0 ◦C (DD > 0 ◦C)
Annual Precipitation (positive)
Elevation (negative)

Passive tick surveillance data may not
represent actual tick burden thus the
accuracy of expansion rate forecasts may be
impacted.

Statistical Methods
Risk (Hazard) ratio
Validation Methods
AUC/ROC
Predictive Accuracy
AUC: 0.897

Hahn et al.,
201637

Midwestern
and Eastern
USA
1950–2000
1980–2000

Data-driven
(Hybrid):
Multivariable
Boosted
regression tree
Multivariable
Generalized linear
model (GLM)
Multivariable
adaptive spline
regression
MaxEnt
Random forest

Tick data
(Proxy)
Hydroclimatic
data
Ecological
data

Forecast I. scapularis geographic spread in the
United States by implementing an ensemble
modeling approach that incorporates climatic and
ecological data along with tick data captured at the
local county level.

Maximum Temperature of the
Warmest Month (Bio 5)
Precipitation in the Warmest
Quarter (Bio 18)
Percent Forest Cover in a County
Elevation

Use of multiple models with differing
variables, lack of structured, consistent, and
complete tick surveillance data along with
the use of convenience data decreases model
sensitivity.
Host-related variables were not incorporated
in the model, and ecological and
environmental averages were used which
may inaccurately represent regions with
highly varied environments.
Utilization of historical climate data, can
impact model accuracy

Statistical Methods
NA
Validation Methods
10-fold cross-validation
AUC
Predictive Accuracy
Testing datasets–ranges
for all models:
AUC: 0.85–0.86
Sensitivity: 75–77%
Specificity: 77–78%

Chen et al.,
201538

Eastern
Ontario
(Canada)
2006–2012

Mechanistic
(Simulation):
Multi-criteria
decision-making
model

Tick data
(Passive)
Hydroclimatic
data
Ecological
data

Evaluate the effectiveness of using a habitat
suitability model for predicting the distribution of
I. scapularis in eastern Ontario.

Host distribution Data and variable limitations (sampling bias,
temporal discrepancies, spatial granularity)
could potentially undermine predictive
accuracy.
Limitations of deer harvest data may result in
an inaccurate reflection of host abundance in
these regions.

Statistical Methods
Weight sum analysis
using Rank sum method
Validation Methods
Not reported
Predictive Accuracy
Not reported

(Table 2 continues on next page)
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Response variable focus: tick distribution (n = 22)

Studies Location &
time frame

Model framework
(Type) & specific
models

Predictor
variable
categories

Study objective(s) Significant predictor(s) Limitations Statistical methods to
assess outcomes,
validation approaches &
model predictive
accuracya (if provided)

(Continued from previous page)

McPherson
et al.,
201739

Northern
Ontario
Southern
Ontario
Nova Scotia
(Canada)
1991–2008

Mechanistic
(Simulation):
General
circulation model

Tick data
(Proxy)
Hydroclimatic
data
Ecological
data

Investigate the uncertainties in predicted estimates
of the basic reproduction number (R0) for
I. scapularis by evaluating the impacts of various
scenarios from the Representative Concentration
Pathway (RCP) and climate model outputs.

Degree-Days Above 0 ◦C
(DD > 0 ◦C)

Parameter variations and assumptions may
lead to model prediction uncertainties.
Insufficient resolution at the local scale is a
limitation of the Global Climate Models
(GCMs).

Statistical Methods
Kolmogorov–Smirnov
test
Validation Methods
Not reported
Predictive Accuracy
Not reported

Ogden
et al.,
201440

Ontario,
Quebec
(Canada)
Northeast and
upper Midwest
USA
1971–2010

Mechanistic
(Compartmental):
Ordinary
differential
equations (ODEs)

Tick data
(Proxy)
Hydroclimatic
data
Ecological
data

Evaluate how the basic reproduction number (R0)
of I. scapularis may be impacted by climate change.

Temperature Limitation not given. Statistical Methods
NA
Validation Methods
Observed data
Predictive Accuracy
Not reported

Wu et al.,
201341

Ontario,
Quebec
(Canada)
1971–2000

Mechanistic
(Compartmental):
Periodic ordinary
differential
equations (ODEs)

Tick data
(Proxy)
Hydroclimatic
data
Ecological
data

Determine the basic reproduction number (R0) by
integrating climatic variability into a deterministic
mathematical model for I. scapularis population
distribution.

Temperature Excludes random effects, owing to
insufficient information for proper
parameterization.

Statistical Methods
NA
Validation Methods
Literature (Previous
model)
Predictive Accuracy
Not reported

Cheng et al.,
201742

Eastern
Ontario
(Canada)
2000–2013

Mechanistic
(Compartmental):
Periodic ordinary
differential
equations (ODEs)

Tick data
(Passive)
Hydroclimatic
data

Employ the basic reproduction number (R0) as a
metric to investigate the impact of climate change
on the dynamics of I. scapularis populations in the
eastern region of Ontario.

Temperature Model neglects host movement, and
assumes that host density remains steady
which may not reflect real-world dynamics.
Tick data collected by health professionals
may be impacted by reporting biases.
Challenges in directly measuring the habitat
range of I. scapularis prompt the use of
proxies like sustainable climates.

Statistical Methods
NA
Validation Methods
Field data
Predictive Accuracy
Not reported

Ogden
et al.,
201343

Eastern and
Central Canada
1991–2010

Mechanistic
(Compartmental):
(Susceptible-
Infected)
Ordinary
differential
equations (ODE)

Tick data
(Passive)
Hydroclimatic
data
Ecological
data

Examine the dynamics and rate of Borrelia
burgdorferi invasion subsequent to the
establishmentof Ixodes scapularis ticks, investigate
the associated time gap, analyze surveillance data
for clusters with low prevalence of infection, and
conduct simulations to identify influencing factors.

Host (Deer and P. leucopus)
abundance

Model struggles with accurately simulating
the establishment of tick populations,
focusing on a singular scenario, that may not
capture variability observed in the actual
mergence zone.

Statistical Methods
NA
Validation Methods
Observed data
Predictive Accuracy
Not reported

Illoldi-
Rangel
et al.,
201244

Mexico,
Texas (USA)
2011

Data-driven
(MaxEnt)

Tick data
(Proxy)
Hydroclimatic
data
Ecological
data

Develop species distribution models for tick species
(including I. scapularis) in Texas and Mexico using
MaxEnt.

Low temperature
High altitude
Pine and oak forest

No limitation reported. Statistical Methods
NA
Validation Methods
AUC/ROC
Predictive Accuracy
AUC: 0.93

Slatculescu
et al.,
202045

Ontario
(Canada)
2015–2018

Data-driven
(MaxEnt)

Tick data
(Active,
Passive)
Ecological
data
Hydroclimatic
data

Utilize Maxent to project I. scapularis and Borrelia
burgdorferi distribution in the south-east region of
Ontario and discern the underlying influential
factors on Lyme disease risk.

Distance to coniferous or
deciduous forest
Elevation
Annual cumulative degree days
>0 ◦C

Absence of essential ecological variables from
the model and sampling biases and
limitations related to tick collection activities
may have impacted results.

Statistical Methods
NA
Validation Methods
4-fold cross-validation
AUC
Predictive Accuracy
AUC: 0.898 (Tick
dragging)
AUC: 0.727 (Public
sources ticks)

(Table 2 continues on next page)
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Response variable focus: tick distribution (n = 22)

Studies Location &
time frame

Model framework
(Type) & specific
models

Predictor
variable
categories

Study objective(s) Significant predictor(s) Limitations Statistical methods to
assess outcomes,
validation approaches &
model predictive
accuracya (if provided)

(Continued from previous page)

Johnson
et al.,
201646

Minnesota
(USA)
2005–2014

Data-driven
(MaxEnt):

Tick data
(Active)
Hydroclimatic
data
Ecological
data

Construct a detailed subcounty-level distribution
model for I. scapularis in Minnesota to determine
the areas conducive to tick establishment, thus
enhancing awareness of the geographic expansion
of tick populations in the region.

Land cover
Maximum temperature during the
warmest month
Precipitation of the wettest quarter
Annual temperature range.

No limitation reported. Statistical Methods
NA
Validation Methods
10-fold cross-validation
AUC/ROC
Predictive Accuracy
AUC: 0.863

Feria-
Arroyo
et al.,
201447

Texas (USA)
Tamaulipas,
Nuevo León,
and Coahuila
(Mexico)
2011–2012

Data-driven
(MaxEnt)

Tick data
(Passive)
Hydroclimatic
data

Develop a robust distribution model using MaxEnt
for I. scapularis in the non-endemic area of the U.S.-
Mexico border, incorporating climate and habitat
factors.

Isothermality
Precipitation of the wettest quarter
Maximum temp. of the warmest
month
Precipitation observed in the
wettest month

The absence of fine spatial and geographical
coordinates or accurate species identification
in tick data is a challenge.

Statistical Methods
NA
Validation Methods
AUC/ROC
Predictive Accuracy
AUC: 0.831

Zhang et al.,
202248

USA
June 2021

Data-driven
(MaxEnt)

Tick data
(Proxy)
Hydroclimatic
data
Ecological
data

Forecast the possible global distribution of
I. scapularis and identify key environmental factors
in relation to potential climate change
circumstances by using a MaxEnt model that
incorporates existing distribution sites and
environmental variables.

Precipitation in May (Prec 05)
Precipitation in September (Prec
09)
Precipitation of the driest month
(Bio 14)
Temperature seasonality (Bio 4)
and
Mean diurnal range (Bio 2)

The model does not incorporate soil
characteristics, vegetation, nor the
distribution of primary hosts.

Statistical Methods
NA
Validation Methods
AUC/ROC
Predictive Accuracy
AUC: 0.950

Response variable focus: tick distribution and tick abundance (n = 5)

Studies Location &
time frame

Model framework
(Type) & specific
models

Predictor
variable
categories
used

Study objective(s) Significant
predictor(s)

Limitations & model accuracy (if applicable) Statistical methods to
assess outcomes,
validation approaches &
model predictive
accuracya (if provided)

Dhingra
et al.,
201349

Eastern
region, USA
2001–2004

Mechanistic
(Compartmental):
Ordinary differential
equations (ODEs)
Dynamic population
features modelling.

Tick data
(Proxy)
Hydroclimatic
data
Human data

Examine the dynamics of each I. scapularis life stage
under present and future climate scenarios in the eastern
region of the United States.

Temperature Model did not incorporate host dynamics or key
environmental variables (i.e., humidity).
The response dynamics of I. scapularis populations
vary spatially and across tick life stages.

Statistical Methods
NA
Validation Methods
Spearman correlation
coefficients
AUC
Predictive Accuracy
AUC for Questing Adults
(QA): 0.53–0.71
AUC for Questing Nymphs
(QN): 0.54–0.69.
AUC for Questing Larvae
(QL): 0.52–0.69.
AUC for QL (Wave angle
and presence of ticks):
0.66–0.70

(Table 2 continues on next page)
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Response variable focus: tick distribution and tick abundance (n = 5)

Studies Location &
time frame

Model framework
(Type) & specific
models

Predictor
variable
categories
used

Study objective(s) Significant
predictor(s)

Limitations & model accuracy (if applicable) Statistical methods to
assess outcomes,
validation approaches &
model predictive
accuracya (if provided)

(Continued from previous page)

Johnson
et al.,
201850

Minnesota
(USA)
May 31–
June 30,
2015

Data-driven
(Hybrid):
Multivariable Zero-
inflated negative
binomial regression
MaxEnt

Tick data
(Active)
Hydroclimatic
data
Ecological
data

Predict I. scapularis nymph density in Minnesota using a
model for acarological risk and assess tick habitat
suitability in the region.

Mean diurnal
temperature range.
Elevation
Annual temperature
range
Summer
precipitation
Agricultural land

The absence of tick data in far northern counties
hampers predictive model accuracy.
Use of a single year of tick sampling data neglects to
account for multi-year tick population dynamics and
may impact predictions.

Statistical Methods
Difference in means
(estimates, p-values)
Validation Methods
Scaled Pearson’s residuals
5-fold cross-validation
Mean absolute prediction
error (MAPE)
Predictive Accuracy
Model forecasted nymph
presence with 79%
accuracy.

Ripoche
et al.,
2018b51

Montérégie,
Southern
Quebec
(Canada)
May–
September
2013
May–
September
2014

Data-driven
(Regression):
Multivariable
Poisson/Negative
binomial regression
Multivariable Mixed-
effect Poisson
Regression

Tick data
(Active)
Hydroclimatic
data
Ecological
data

Study the dispersal of I. scapularis nymphs in regions of
southern Quebec that may be at risk for Lyme disease
emergence by examining and comparing tick densities in
wooded locations and diverse outdoor path proximities at
various spatial scales.

Regional scale: Litter
depth (abundance
increases), Elevation
(abundance
decreases)
Local scale: Relative
humidity, proximity
to trails

Depending solely on active surveillance with limited
sampling may result in an incomplete understanding
of tick distribution.
Study did not consider host variables.
Generalizing results to larger areas must be done
carefully due to the small sample size.

Statistical Methods
Difference in means
(estimates, p-values)
Validation Methods
McFadden’s Pseudo R-
squared
Mean absolute error
(MAE)
Predictive Accuracy
MAE (Site scale): 11.26
MAE (Plot/Transect scale):
0.95

Simon
et al.,
201452

Southern
Québec
(Canada)
May–
October
2011

Data-driven
(Regression):
Multivariable logistic
regression
Multivariable
Generalized linear
model (GLM) with
negative binomial
regression

Tick data
(Active)
Hydroclimatic
data
Ecological
data

Model present and forecast future I. scapularis and rodent
host distributions in southern Quebec to inform Lyme
disease risk predictions through the use of climate and
landscape models.

Landscape variables
(including measures
of patch area,
connectivity, and
land use)
Temperature

Factors such as humidity, rainfall, and elevation, are
not included in the climate model for ticks.
Solely using temperature may lead to overestimation
of tick habitat suitability ranges.
Hosts aside from the white-footed mouse may also be
important factors, and other ecological and
behavioural factors may also impact tick and rodent
distribution, but these are not incorporated in the
model.

Statistical Methods
Spearman’s rank
correlation
Difference in means
(estimates, p-values)
Validation Methods
Spearman’s rank
correlation
Predictive Accuracy
R2 (Principal Component
Analysis–first axis): 0.24

Burrows
et al.,
202253

Kingston,
Ontario.
Ottawa,
Ontario.
Southern
Ontario
(Canada)
May, June
2019

Data-driven
(Hybrid):
Simple Mixed-effect
Negative binomial
regression
MaxEnt

Tick data
(Active)
Ecological
data

Examine MaxEnt model capability in estimating present
and future patterns of tick abundance and risk of Lyme
disease in three Ontario districts.

Forest land cover Using tick data from one year may limit the
comprehensive understanding of long-term tick
density patterns. The small sample size must be
considered when interpreting results.

Statistical Methods
Incidence Rate Ratio
Validation Methods
Spearman’s correlation
coefficient
Predictive Accuracy
Not reported.

Note that not all statistical methods reported and utilized in each study are included in this table. Here we include only those associated with tick density and distribution model validation and prediction (if reported). aPredictive accuracy values are
associated with the model that best optimizes the validation methods reported.

Table 2: Summary of key characteristics of included studies (n = 41) reported by authors associated with I. scapularis density and distribution.
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Fig 3: Timeline of included studies from the literature in North America.

Review
14.3%),36 multivariable logistic (n = 3, 42.8%),30–32 mixed-
effect multivariable logistic (n = 1, 14.3%)7 and multi-
variable multinomial regression (n = 1,14.3%)35

exploring diverse outcome categories (higher and
lower risk exposure to infected ticks). Multivariable
multinomial and simple LgR were utilized (n = 1,
14.3%), examining factors influencing outcomes and
Fig 4: Tree diagram representing the hierarchical structure of the modelling
according to modelling output/response variable.

www.thelancet.com Vol 32 April, 2024
assessing the impact of individual ecological factors on
the speed of I. scapularis spread (Fig. 6).33

Mechanistic models focusing on tick distribution
(n = 6, 100%) utilized various approaches. A multi-criteria
decision-making model (n = 1, 16.7%) explored the rela-
tionship between deer habitat and tick populations, iden-
tifying seven different factors that could affect deer
frameworks and general model types used in the 41 included studies
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Fig 5: (a) Total number of included studies of all model types according to the resulting model output; (b) Total number of included studies of
all model types according to the overarching model framework and associated model output.
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habitat. An optimization technique, weighted sum anal-
ysis, was applied to combine these factors into a final
habitat suitability mapping (Appendix D, Figure D2).38 A
General Circulation Model (GCM) estimated tick basic
reproduction numbers (R0) under historical (1850–2005)
and future (2006–2100) climate scenario simulations
(n = 1, 16.7%).39 Periodic ODEs were used to model tick
population dynamics (e.g., development, questing activity)
with the integration of climate factors and calculate R0
(n = 3, 50%) (Appendix D, Figures D3).40–42 An ODE
population model structure (n = 1, 16.6%) incorporated
two susceptible-infected host sub-models for the white-
footed mouse (P. leucopus) and an alternative mammal
host (Appendix D, Figure D4).43

For both tick distribution and abundance, data-
driven (n = 4, 80%) and mechanistic approaches
(n = 1, 20%) were used. Among the data-driven models,
studies utilized MaxEnt with multivariable zero-inflated
and simple mixed-effect NB regression (n = 2, 50%).50,53

One study employed multivariable mixed-effect Poisson
and NB models (n = 1, 25%)54 while another utilized
multivariable LgR and multivariable GLM with a NB
model, addressing distribution and abundance aspects
(n = 1, 25%).52 Furthermore, a dynamic temperature
forced population modelling approach assessed tem-
perature impacts of climate change on I. scapularis life
cycle and population abundance across diverse regions
(n = 1, 100%).49
All studies (n = 41) used tick data collected across a
wide range of sampling areas, sources, and methods:
active (n = 17, 41.4%), passive (n = 6, 14.6%), active and
passive (n = 4, 9.7%), active and proxy (n = 3, 7.3%), and
proxy (n = 11, 26.8%). The temporal scale ranged from
months to several years or decades (Table 2). Hydro-
climatic and ecological factors were included as predic-
tor variables in many studies (Table 3, Appendix B,
Fig. 7). Studies that used both hydroclimatic and
ecological factors (n = 26, 63.4%) recognised their
interconnected influence on tick dynamics. Surpris-
ingly, only nine studies (21.9%) included host (deer)
density (Fig. 7).

Additionally, 29 hydroclimatic and ecological data-
bases were identified. WorldClim (n = 6, 20.7%) and the
National Land Cover Database (n = 4, 13.8%) were
commonly used for hydroclimatic and ecological data,
respectively. Among these sources, the spatial resolution
ranged from 1.82 m to 32 km, while the temporal scale
varied from daily, weekly, and monthly values to long-
term mean values (Appendix F).

Model accuracy was reported by nearly two-thirds of
all included studies (n = 26, 63.4%) (Appendix E). Of
these, accuracy was most frequently reported from
studies incorporating both hydroclimatic and ecological
predictor categories (n = 17, 65.4%) compared to studies
using either predictor category alone (n = 3, 11.5%) or
with human variables (n = 4; 15.4%). Comparison of
www.thelancet.com Vol 32 April, 2024
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Fig 6: Types of regression models employed in the included studies according to the model output/response variable. Abbreviations: Simple
logistic regression (LgR); Simple linear regression (LR); Simple mixed-effect NB regression (Mixed-effect NB); Mixed-effect multivariable logistic
regression (Mmv LgR); Multivariable boosted regression tree (Mv BRT); Multivariable Count Generalized Linear Model with forward and
backward stepwise selection (Mv Count GLM + F & B); Multivariable Generalized Estimating Equation negative binomial regression (Mv GEE NB);
Multivariable Generalized Estimating Equation (GEE) Poisson regression (Mv GEE PR); Multivariable Generalized Linear Model (Mv GLM);
Multivariable GLM with NB (Mv GLM + NB); Multivariable logistic regression (Mv LgR); Multivariable linear regression (Mv LR); Mixed-effect
Multivariable Poisson regression (Mixed-effect Mv PR); Multivariable multinomial regression (Mv Mn R); Multivariable multivariate adaptive
spline regression (Mv Mv ASR); Multivariable NB regression (Mv NB); Multivariable Poisson regression (Mv PR); Multivariable zero-inflated
negative binomial regression (Mv ZI NB); Multivariable zero-inflated Poisson regression (Mv ZI PR); Simple negative binomial regression
(NB); Simple Poisson regression (PR); Weighted multivariable linear regression (Weighted Mv LR); Multivariable survival analysis (Mv Survival
Analysis*). *includes parametric (n = 1) and Cox regression (n = 1) methods.

Review
these measures across studies is challenging, as results
depend on data and models used, along with sample
size limitations. It is also difficult to identify clear dif-
ferences between variables used across model outputs
(Fig. 7, Table 3).
Discussion
Our study represents a comprehensive assessment of
the methodological approaches, variables, and data
sources employed for I. scapularis population modelling
in North America. While the scoping review by Kopsco
and colleagues11 examined species distribution models
for medically significant ticks globally, our review ex-
tends and enriches the scope by prioritizing predictive
modelling approaches for I. scapularis abundance and
distribution in North America resulting in 41 included
studies that utilize data-driven and mechanistic models.
A summary of the features of identified model types is
provided in Table 4.

Data-driven models identified key predictors associ-
ated with I. scapularis population dynamics (Tables 2
www.thelancet.com Vol 32 April, 2024
and 3), though complex relationships and contextual
variations between these predictors are evident. For
example, suitable tick habitats were predicted at higher
altitudes and cooler temperatures in regions with
consistently high temperatures (e.g., Mexico)44 and at
lower altitudes and warming temperatures in cool re-
gions (e.g., Ontario).45 Notably, one study found no
significant association when a geographic area had
suboptimal conditions (e.g., low temperature and host
abundance),31 while another showed no positive corre-
lation between forest fragmentation and I. scapularis
abundance despite high tick availability.28 Absence of
positive correlations between tick data and predictor
variables may also be due to small sample sizes.28,31

Factors such as forest cover, habitat fragmentation,
temperature and precipitation affect tick survival and
host abundance.5,60 Interestingly, despite the important
role of white-tailed deer in the tick life cycle, host density
was not included in many tick distribution studies. Lack
of tick-host interaction data in models may inaccurately
predict tick distribution by underestimating tick life
stages.10
17
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Significant
predictor
variables

Model output

Tick abundance Tick distribution Tick abundance & distribution

Ecological Landscape (Finch et al., 201419; Khatchikian et al., 201221;
Diuk-Wasser et al., 201222; Werden et al., 201427; Ferrell &
Brinkerhoff, 201828)
Vegetation (Finch et al., 201419; Khatchikian et al., 201221;
Diuk-Wasser et al., 201222; Berger et al., 201326; Werden et al.,
201427; Ferrell & Brinkerhoff, 201828)
Location (Khatchikian et al., 201221; Brinkerhoff et al., 201424)
Host density (Werden et al., 201427)

Landscape (Gardner et al., 20201; Soucy et al., 201815; Leighton et al.,
201234; Hahn et al. 201637; Illoldi-Rangel et al., 201244; Slatculescu et al.,
202045)
Vegetation (Gardner et al., 20201; Clow et al., 2017a7; Soucy et al.,
201815; Gabriele-Rivet et al., 201732; Sharareh et al., 201935; Kotchi et al.,
202136; Hahn et al. 201637; Illoldi-Rangel et al., 201244; Slatculescu et al.,
202045; Johnson et al., 201646)
Location (Gardner et al., 20201; Clow et al., 2017a7; Kotchi et al.,
202136)
Host density (Sharareh et al., 201935; Chen et al., 201538; Ogden et al.,
201343)

Landscape (Johnson et al.,
201850; Ripoche et al., 2018b51;
Simon et al., 201452)
Vegetation (Johnson et al.,
201850; Ripoche et al., 2018b51;
Burrow et al., 202252)

Hydroclimatic Temperature (Khatchikian et al., 201221; Diuk-Wasser et al.,
201222; Berger et al., 201326; Werden et al., 201427; Wallace
et al., 201929)
Precipitation (Khatchikian et al., 201221)
Humidity (Diuk-Wasser et al., 201222; Berger et al., 201423)

Temperature (Clow et al., 2017a7; Koffi et al., 201230; Gabriele-Rivet
et al., 201531; Gabriele-Rivet et al., 201732; Kotchi et al., 202136; Leighton
et al., 201234; Hahn et al. 201637; McPherson et al., 201739; Ogden et al.,
201440; Wu et al., 201341; Cheng et al., 201742; Illoldi-Rangel et al.,
201244; Slatculescu et al., 202045; Johnson et al., 201646; Feria-Arroyo
et al., 201447; Zhang et al., 202248)
Precipitation (Gabriele-Rivet et al., 201732; Leighton et al., 201234; Hahn
et al. 201637; Johnson et al., 201646; Feria-Arroyo et al., 201447; Zhang
et al., 202248)

Temperature (Dhingra et al.,
201349; Johnson et al., 201850;
Simon et al., 201452)
Precipitation (Johnson et al.,
201850)
Humidity (Ripoche et al.,
2018b51)

Tick data Tick data (Diuk-Wasser et al., 201222; Ripoche et al., 2018a54;
Tran et al., 202125)

Tick Data (Clow et al., 2017a7; Koffi et al., 201230; Gabriele-Rivet et al.,
201531; Clow et al., 2017b33)

Human data Human behaviour (Porter et al., 201918; Tran et al., 202125) Human behaviour (Sharareh et al., 201935; Leighton et al., 201236)

Note that these are dependent on the full set of predictor variables and model type used in each study. See Appendix B for specific details captured for each study.

Table 3: General summary of significant predictor variable categories identified in each study.

Fig 7: Hydroclimatic and ecological predictor variable categories used across all studies to model tick distribution, tick abundance, and both tick
distribution and abundance. Specific predictor variables used in each study are found in Appendix B.
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Model
framework

Model framework
description

Model type Model type description Strengths Limitations

Data-driven Use patterns and
information from data to
make predictions through
computational
algorithms.8

Regression Statistical approach to
model the relationship
among variables.33

Simple and easy to interpret, providing a clear
understanding of the impact of predictors on
the outcome.9

Offers statistical inference, allowing the testing
of hypotheses and assessing the significance of
predictors.55

Model accuracy may be compromised due to
violation of assumptions.56

Need sufficient sample size for reliable inference and
prediction.28,33,35,53

Maximum
entropy
(MaxEnt)

Machine learning
technique that
maximizes entropy.8

Flexible and can handle various types of data,
including presence-only data, which is often the
case in ecological studies.44,48

Can incorporate multiple variables to predict
species distributions, allowing for a more
comprehensive understanding of the factors
influencing the presence of a species.8

Sensitive to sample size and sampling bias.15,45

Lack of mechanistic understanding by the model
may lead to inaccurate representation of complex
ecological processes and interactions.8,57

Using presence-only data can introduce bias and
affect predictive accuracy because of the model
assumption that absence data is missing at random,
which may not always be the case.15

Mechanistic Based on underlying
principles and mechanisms
governing a system.9

Compartmental Partitions a system into
distinct compartments
and monitors the flow
between entities.9

Based on established theories and principles,
providing a deeper understanding of the
underlying mechanisms.8,9

More robust to changes in underlying patterns,
as these models are based on fundamental
principles rather than specific data patterns58

Adaptability of model to various tick species
globally.41

Accuracy heavily depends on the correctness of
underlying assumptions and known principles.8,9,42

Adequate parameterization demands extensive,
accurate data availability.57

Challenges arise in interpreting complex models
with numerous variables and interactions.9

Simulation Modelling a real-world
system to examine and
understand its
behavior.58

Provide decision support by offering valuable
insights into the potential consequences of
various actions or interventions within a given
system.38

Cost-effective approach for evaluating
strategies and scenarios within a controlled
environment prior to real-world
implementation.38

Developing and running simulations can be time-
consuming and demand significant computational
resources.59

Model calibration can be challenging when dealing
with complex systems.57

Adequate parameterization demands extensive,
accurate data availability.39

Table 4: Summary of strengths and limitations of modelling techniques.

Review
MaxEnt models encounter challenges when pre-
dicting I. scapularis distribution in areas where they
are not well established (e.g., northeastern and mid-
western US, Canada)46,50 or have low tick risk (e.g.,
Mexico).44,47 Scarce occurrence data hinder accurate
model training, and may result in unreliable pre-
dictions due to insufficient species distribution in-
formation.47 Using presence-only data and entropy
maximization may overestimate species occurrence
probability in environmentally suitable areas, indi-
cating upper bounds on abundance rather than actual
densities. To assess the model effectively, spatial
context should be considered and applied to regions
anticipating tick presence.61

Alternatively, mechanistic models simulate in-
teractions between factors impacting tick distribution
and abundance and provide broader insights than data-
driven models.42,62 Their accuracy requires well-founded
assumptions about species distribution drivers.43 Using
ordinary differential equations (ODEs), some mecha-
nistic models calculate R0 to estimate questing activity,
habitat suitability under climate variability, and vector
population simulations29,39,41–43,49 (Appendix D).

The highest R0 values in Canada were found in
Lyme disease endemic areas.41 R0 can demonstrate po-
tential impacts of climate change on TBD transmission
www.thelancet.com Vol 32 April, 2024
as increased temperature can expand suitable tick
habitat ranges northward,39 driving I. scapularis spread
and establishment.40,42 Tick development and reproduc-
tion are viable between 5 and 32 ◦C, however the
optimal temperature range for I. scapularis is suggested
to be 15–20 ◦C.37,62,63 Some TBD risk measures show
varying degrees of sensitivity to temperature changes29

suggesting other influences. For example, infected tick
abundance increases significantly with warming, while
overall tick or host disease incidence increases relatively
slowly, even during peak transmission.29 Interestingly,
some mechanistic and regression models suggest a time
gap between tick invasion and TBD increase.34,43

While all studies included tick data, collection
methods varied between active or passive surveillance
and proxy data. Active tick surveillance data provides
high geographical precision and rich information.
Nonetheless, the cost and labour-intensive nature of this
approach is restrictive, with data accuracy, complete-
ness, and availability challenges. Data collection occurs
over narrow time frames, limiting the ability to capture
the complete 2–3-year tick life cycle, thus under-
estimating tick population abundance.64 Conversely,
passive surveillance requires fewer resources and pro-
vides rich data through continuous monitoring.16,65

However, feasibility depends on large human
19
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populations willing to search for and submit ticks.
Additionally, tick introduction by migratory birds (i.e.,
“adventitious” ticks)66 yields low sensitivity for detecting
emerging tick populations and low specificity for
detecting areas with established tick populations,
potentially leading to false positives.60 Therefore, models
must include both active18 and passive tick surveillance
to validate model predictions, leading to greater model
robustness and accuracy; however they must control
sampling bias especially for large scale data.50 We sug-
gest model repeatability will be improved.

Citizen science tick monitoring is gaining popularity
due to its cost-effectiveness and community engage-
ment.18 However, this approach may underestimate
human exposure to tick larvae and nymphs which are
more difficult to detect than adult ticks. Training tick
collectors to gather data correctly can enhance estimates
of tick populations.18

Tick data availability and quality are critical for ac-
curate predictive model development. Traditional
regression models require large and balanced presence-
absence datasets, while MaxEnt models can aptly handle
sparse or incomplete data (e.g., presence-only data).67–69

Both MaxEnt and LgR models provide habitat suit-
ability probabilities rather than direct estimates of tick
abundance, underscoring the importance of accurate
and available tick data on model performance.61–63

Mechanistic models capture the complex interplay be-
tween biotic and abiotic factors on tick population, thus
highlighting population abundance trends and
variability.

The WorldClim database21,37,47 was used by many
studies to inform tick habitat suitability assessments,
but data accuracy varies by source, collection, and pro-
cessing methods. The spatial resolution (1 km × 1 km)
may be inferior to other finer resolution remote sensing
data (e.g., temperature data <1 km) that can improve
predictions and understand local factors impacting
I. scapularis distribution.42 Uncertainties in environ-
mental data can hinder risk map accuracy,36 so to avoid
modelling bias, all relevant variables must be
incorporated.

We identified some similar results to those of Kopsco
and collaborators.11 Both studies showed MaxEnt as a
common approach for tick distribution models, and the
WorldClim database as a common source for ecological
and hydroclimatic data. However, while Kopsco and
colleagues11 focused only on studies using active or
passive surveillance data, our scoping review included
studies using citizen science tick data. Additionally,
their models were purely data-driven,11 whereas ours
included both data-driven and mechanistic models. Our
findings also reveal that host density data is rarely
incorporated in predictive models, highlighting a
unique and important contribution to the existing
literature.
We believe our comprehensive review enhances the
knowledge of I. scapularis population modelling in
North America. However, we acknowledge some
methodological caveats and limitations. Relevant ana-
lyses may have been omitted due to our exclusion of
review articles, non-English publications, and studies
focusing primarily on Lyme disease risk. In fact, while
assessing the scoping review,11 we identified an unin-
tentional exclusion that occurred during abstract
screening.70 We believe this occurred because the study
focused on Lyme disease risk using canine seropreva-
lence rather than tick distribution or abundance and
human Lyme disease risk; however, an I. scapularis
habitat suitability model was also developed. Addi-
tionally, as our review includes studies published be-
tween January 2012 and July 2022, any research
published after the database search is excluded. For a
wider perspective, future investigations should assess
predictive methods and variables associated with other
prevalent tick species and compare their consistency or
variability with our results. Limitations identified in the
included studies also provide opportunities for action.
The frequency and coverage of I. scapularis and TBD
surveillance activities must be expanded and stan-
dardized data collection protocols must be imple-
mented to enhance the comprehensiveness, quality,
and credibility of the data required for predictive model
refinement and development. Furthermore, the use of
appropriate and advanced modelling technologies and
the inclusion of hydroclimatic and ecological data with
finer scale resolution can contribute to robust model-
ling approaches.36

A clear gap is the absence of host population char-
acteristics (e.g., deer density, small mammal abun-
dance) and human factors30,36 in model development.
Additionally, climate change impacts on tick habitats
and I. scapularis distribution patterns require compre-
hensive investigation. Incorporating fine-scale ecological
variables can significantly enhance model predictive
accuracy amid climate change, prioritizing tick–host
relationships within their ecological contexts.

Future research efforts focusing on I. scapularis risk
assessment and predictive modelling must adopt
comprehensive One Health approaches that integrate
acarological risk factors, biotic (host) and human factors,
alongside climatic and ecological variables into dynamic
models for meaningful and accurate public health
responses.31,36

This review highlights the current complex rela-
tionship between abiotic and biotic factors affecting
I. scapularis abundance and distribution in North
America, highlighting significant predictor variables
and tick population modelling methods. However, these
results should be extrapolated cautiously to other tick
species with consideration of ecological specificity.
Overall, our results provide a first step in variable and
www.thelancet.com Vol 32 April, 2024
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method selection to inform future development of tick
abundance and distribution prediction models.
Conclusion
Advances in modelling and data sources have signifi-
cantly improved predictive capabilities. However, data
quality and availability challenges continue to persist
and impact model development. Furthermore, as data
dimensions continue to grow, the delicate balance be-
tween predictive power and explainability adds
complexity for both modelers and practitioners. Stan-
dardized protocols for running and validating predictive
models are critical given the diverse approaches to
estimating tick distributions and abundance.

To better understand the distribution and abundance
of ticks and tick-borne pathogens, data challenges must
be overcome, and standardized methodologies should
be implemented. The integration of passive and active
surveillance, hydroclimatic and ecological factors—
especially host abundance–must occur to improve
model reliability and predictive accuracy given TBD risk
complexity. Overall, this scoping review highlights the
urgency for proactive and timely action to protect pop-
ulation health and mitigate future climate-associated
risk.
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