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Abstract
A recent outbreak of coronavirus disease 2019 (COVID-19) caused by the single-stranded enveloped RNA virus severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) has developed into a global pandemic, after it was first reported in Wuhan in
December 2019. SARS-CoV-2 is an emerging virus, and little is known about the basic characteristics of this pathogen, the
underlying mechanism of infection, and the potential treatments. The immune system has been known to be actively involved in viral
infections. To facilitate the development of COVID-19 treatments, the understanding of immune regulation by this viral infection is
urgently needed. This review describes themechanisms of immune system involvement in viral infections and provides an overview of
the dysregulation of immune responses in COVID-19 patients in recent studies. Furthermore, we emphasize the role of gutmicrobiota
in regulating immunity and summarized the impact of SARS-CoV-2 infection on the composition of the microbiome. Overall, this
review provides insights for understanding and developing preventive and therapeutic strategies by regulating the immune system
and microbiota.
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Introduction

Coronaviruses are RNA viruses that cause respiratory and
intestinal infections in animals and humans. Severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), a new group
of animal RNA viruses, is the pathogen responsible for the
ongoing coronavirus disease 2019 (COVID-19) pandemic. On
December 31, 2019, Chinese local hospitals and the Center for
Disease Control and Prevention in China reported several cases of
pneumonia with unknown etiology, and later found a seafood
market in China’s Wuhan, Hubei Province as the primary
location of the infection.1,2 The infecting pathogen was named
2019-novel coronavirus, which was later changed into SARS-
CoV-2, and cases have been reported in 47 countries (Figure 1).
On January 30, 2020, the World Health Organization declared
the novel coronavirus outbreak as an “Emergency of Interna-
tional Concern” and announced it as pandemic on March 11,
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2020.3 Up to the end of July 15, 2020, SARS-CoV-2 caused over
15 million confirmed cases and 0.6 million confirmed deaths over
the 216 countries,4 which led to huge public health concerns as
well as economic burdens worldwide.
It has been suggested that immune responses may contribute to

disease severity and progression. However, the mechanism of
SARS-CoV-2 virus infection and the process of immune
responses against SARS-CoV-2 are still unclear. Other factors
that may interfere with immune responses, such as the micro-
biome, also require more attention. This article aimed to provide
a review of current knowledge regarding SARS-CoV-2 on the
immune system and how dysregulation of the immune response
may contribute to the pathogenesis of COVID-19. Furthermore,
we discussed the dysbiosis caused by the virus-related immune
system disruption and provide insights into the therapeutic
potentials of regulating the immune system andmicrobiota on the
prevention, care management, and treatment of COVID-19.
SARS-CoV-2

According to the phylogenetic classification,5,6 SARS-CoV-2
belongs to the betacoronaviruses out of the four genera of
coronaviruses, which includes the alphacoronaviruses, betacor-
onaviruses, gammacoronaviruses, and deltacoronaviruses.7

Coronaviruses are common pathogens of humans and animals.
The word “corona” was named by a similar shape of the outside
of the virus as the solar corona of the sun.8 Coronavirus is about
120 nanometers in diameter and is highly diverse. Common cold
coronaviruses can cause upper respiratory tract infections in
adults as well as diarrhea in infants and children.9

The known hosts for the former two genera are mammals
whereas for the latter two are mostly avian.10 The genome
structure of the coronavirus has been shown by the Zhang Lab.11

The genome of the coronavirus consists of (1) structural proteins,
including envelope glycoproteins spike (S), envelope (E),
membrane (M) and nucleocapsid (N), and (2) non-structure
proteins (nsps), which are responsible for viral replication and
host invasion.12
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Figure 1. A timeline of COVID-19 development in 2020. Based on information provided by the American Journal of Managed Care (AJMC) website105 and the
World Health Organization (WHO).106
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SARS-CoV-2 shares 88% identity with two bat-derived SARS-
like coronaviruses, and about 76% identity with SARS-CoV,10

which was responsible for the outbreak of atypical pneumonia in
2003.13 Homology modeling demonstrated that SARS-CoV-2
and SARS-CoV share a similar receptor-binding domain,
indicating that they may share the same receptor.14 Indeed,
several groups have identified that the SARS-CoV receptor
angiotensin-converting enzyme 2 (ACE2) serves as the receptor
for SARS-CoV-2.15 ACE2 is a transmembrane protein and shows
high expression on various human tissues, including the small
intestine, testis, heart, and lung.16 Blocking the virus entry is one
of the common strategies for developing therapeutics against
viral infections. According to this strategy, angiotensin-convert-
ing enzyme inhibitors/angiotensin receptor blockers are consid-
ered as potential therapeutics to prevent infection, accompanied
with concerns raised due to the possibility to attenuate the tissue
protective function of ACE2.17,18

Apart from the receptor, the serine protease TMPRSS2 has
been shown to play an essential role in the S protein cleavage,
which primes the S protein and facilitates the entry of SARS-CoV-
2 into host cells.19,20 Additionally, another protease, furin, has
also been reported to play a role in cleaving between the S1/S2
subunits and priming the S protein.21

Like most of the coronaviruses, SARS-CoV-2 infection causes
inflammation within the respiratory track as well as the intestines
in humans.7 Common clinical features of SARS-CoV-2 include
fever, cough, myalgia, and/or fatigue.22 Lymphopenia is also
commonly observed inCOVID-19patients.22Among severe cases,
a high level of proinflammatory cytokines can be found in patient
serum,23,24 indicating dysregulated immune responses in severe
COVID-19 patients. Up to now, there is no specific therapeutics
against SARS-CoV-2, and vaccines are not commercially available
yet. Considering the imbalanced immune responses in patients and
the essential role of the immune system in fighting against viral
infections, it is reasonable to believe that regulating the immune
system can potentially contribute to the control and elimination of
the viral infection. Therefore, understanding the innate and
adaptive immune response in COVID-19 will be important in
patient-care management and treatment.
The immune response against viral infections

An effective immune response can be defined as a biological
reaction of the host’s body to the invasion of foreign substances
(eg, viral antigens). The immune responses include innate
15
immune responses and adaptive immune responses. The response
time, target antigens, and the mechanism of viral antigen
recognition vary between innate and adaptive immune response,
and provide a dynamic and broad protection of the host
(Figure 2).
The activation of innate immune responses involves the

pattern-recognition receptors (PRRs), including toll-like recep-
tors (TLRs), and nucleotide-binding receptors.25,26 PRRs can
recognize the pathogen-associated molecular patterns (PAMPs)
such as viral RNA and oxidized phospholipids.27 Once PPRs
detect PAMPSs, the intracellular signaling cascades will be
activated, which leads to the secretion of proinflammatory
effector molecules, including type I interferon (IFN), that play a
crucial role in orchestrating antiviral infection immune responses
and elimination of the virus.28 Type I IFN then activates the Janus
kinase-signal transducer and activator of transcription pathway
and promotes the transcription of interferon-stimulated genes,
which are involved in host defense, inflammation, and immune
modulation.28

Apart from the production of proinflammatory molecules and
IFN signaling, the cellular compartments of the innate immune
system, including dendritic cells (DCs) and macrophages (Mf),
also play a vital important role in combating the virus. As the
most potent professional antigen presenting cells, DCs can
present processed antigen to and prime naive T cells, which are
crucial for the initiation of the adaptive immune system.29 Mf
can also present viral antigens to T cells, beside its function in
phagocytosis, releasing cytokines to modulate immune responses
as well as tissue repairing.30 However, the functions of Mf could
be utilized for viral replication. By being engulfed into Mf,
infected Mf becomes a reservoir and help viruses disseminate
throughout the body during cellular circulation.29 In addition,
chronic and systemic inflammation induced by Mf is likely to
contribute to fatality as well.29

The adaptive immune system kicks in after the activation of the
innate immune system. One of the major players, T cells, is
activated after encountering antigen presenting cells bearing virus
antigens, and naive and memory T cells undergo a series of events
including activation, proliferation, and differentiation. They
eventually become effector T cells, which mediate the cellular
immune response against viruses.31 The antiviral effects of T cells
are mainly in two forms: (1) direct killing of the virus-infected
cells and (2) release of regulatory and proinflammatory
mediators. The humoral immune response mediated by B cells
makes up the other part of the adaptive immune responses. The
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Figure 2. The immune response against viral infections. This figure shows how the immune system response to viral infections. The PRRs fromMf recognize
PAMPs from the virus and release IFN and other cytokines. Mf can potentially get infected and become Trojan horses. PPRs fromMf and DC present viral antigens
to T cells and B cells. Activated T cells produces pro-inflammatory and regulatory mediators, which kill infected cells. Activated B cells produce neutralizing virus
particles to prevent the virus from cellular entry. DC: dendritic cell; IFN: interferon; Mf: macrophage; PAMP: pathogen-associated molecular patterns; PPRs:
pattern-recognition receptors.

Wang et al., Infectious Microbes & Diseases (2021) 3:1 Infectious Microbes & Diseases
neutralizing antibodies (NAbs) produced by B cells play a crucial
role in restricting the virus life cycle. NAbs can function by
binding to the virus particles and preventing its entry into the
target cells or binding to the viral glycoprotein on the host cells to
inhibit virus budding.32 On the other hand, the virus-specific
antibody may facilitate the virus entering the host cells expressing
Fc or complementary receptors by interacting with them and
getting internalized, which is referred to as antibody-dependent
enhancement (ADE). In short, because of the specificity and the
immunological memory provided by the adaptive immune
system, it is of vital importance that we understand the role it
plays in SARS-CoV-2 infection in order to develop vaccines as
well as treatments.

The impact of SARS-CoV-2 on the innate immune
system

It is common to observe a dysregulation of the innate immune
responses in COVID-19 patients. Upregulated IL-6, potentially
produced by Mf or monocytes, has been reported in COVID-19
patients in multiple studies.22 IL-6 is known to recruit immune
mediators and can drive the cytokine release syndromes (CRS),
which can cause local tissue damage and systemic non-protective
inflammation.33 As CRS has been detected in SARS-CoV-2-
infected patients, and it has been previously known to contribute
to the morbidity in patients with SARS-CoV or MERS-CoV,
16
clinical trials have been proposed and conducted on the blockade
of IL-6 or its upstream activators, such as the blockade of GM-
CSF, which activates myeloid cells and promotes the production
as IL-6.33 Additionally, inflammatory cytokines and chemokines
including IFNg, MCP1, IP-10, TNF-a, and IL-10 are reported to
be evaluated in COVID-19 patients.22 The pyroptosis marker
lactate dehydrogenase is also reported to be evaluated in COVID-
19 patients, and is thought to be an indicator for disease severity
and mortality.34

Although an activated innate immune response was observed
in SARS-CoV-2-infected patients, their immune system failed to
launch robust type I and type III IFN responses. The lack of IFN
responses could potentially lead to deficiency in restricting the
establishment of viral infection at early stages33 and contribute to
the pathogenicity of COVID-19. An in vitro study indeed
revealed that insufficient IFN responses result in higher virus
loads in host cells and vice versa supplying exogenous type I IFN
results in decreased virus titers in Vero cells infected with SARS-
CoV-2.35,36 Interestingly, the virus receptor ACE2 has been
reported as an interferon-stimulated gene that upregulates upon
IFN I and II stimulation in the human airway epithelial cells,37

which adds complexity to the host-virus interaction. There are
limited reports regarding the mechanisms underlying the
inhibition of IFN responses by SARS-CoV-2. A few studies
suggested that ORF6, ORF8, and nucleocapsid proteins
potentially suppress the IFN production.38 Considering that



Wang et al., Infectious Microbes & Diseases (2021) 3:1 https://journals.lww.com/imd
SARS-CoV, which shares 76% similarity with SARS-CoV-239

encodes various IFN antagonists, including the structural
proteins membrane and nucleocapsid, nonstructural proteins,
Papain-Like Proteases, and accessory proteins,40 the potential
antagonism of SARS-CoV-2 needs to be further investigated.
Despite its role in anti-viral immune responses, Mf has

been reported as susceptible to SARS-CoV-2 infection. The
expression of the SARS-CoV-2 receptor ACE2 on the surface of
Mf may contribute to the pathogenicity of COVID-19.41,42

Indeed, SARS-CoV-2 structural proteins are detectable in
macrophages isolated from the spleen, lymph nodes, and lung
tissue samples of COVID-19 patients43 and SARS-CoV-2 spike
proteins can interact with macrophages.44 The susceptibility of
Mf to SARS-CoV-2 infection indicates that Mf may serve as a
potential viral reservoir and CD68+CD169+ Mf have been
detected to contain SARS-CoV-2 antigens during SARS-CoV-2
infection.45

The impact of SARS-CoV-2 on the adaptive immune
system

Humoral immunity plays a vital role in the host immune
response against viruses. Particularly, the NAbs can potentially
block the interaction between the SARS-CoV-2 spike protein and
ACE2 on the cell membrane and thus prevent the entry of the
virus. Antibody responses can be detected as early as the first-
week post symptom onset, and most patients show antibody
responses within 2weeks after symptom onset.46 Reports showed
that immunoglobulin G (IgG) and immunoglobulin M (IgM)
against SARS-CoV-2 nucleocapsid (NP) protein and membrane
protein (M) have been detected in patients.47 Seroconversion for
IgG and IgM are observed simultaneously or sequentially within
20days post symptom onset, 6days after which both IgG and
IgM titers reach their plateau.46 IgG is found to persist longer
compared to IgM and it is also widely observed in discharged
patients.47 NAbs have been detected in patients within their third
week after disease onset,48,49 and most of the discharged patients
show persistent NAb titers.47 Of note, the titer of NAbs is found
to be positively correlated with disease severity,50 and the
correlation between NAb levels and the number of viral-specific
T cell counts is significant.47 However, there are various levels of
antibody responses between different patients, indicating the
individual difference in immune responses to viral infection.
Considering the similarity of SARS-CoV to SARS-CoV-2, cross-
reactive NAbs have been reported by several groups.14 This is
highly instructive for vaccine development.
While NAbs provide antiviral immunity, non-NAbs could

enhance SARS-CoV-2 infection through ADE, which can induce
sustained inflammation, lymphopenia, and CRS.51 Research on
SARS-CoV showed that ADE contributes to the severity of the
disease.51 Although ADE has not been well-studied in COVID-19
patients, there is a possibility that ADE could contribute to the
disease progression.
Another aim of adaptive immunity is cellular immunity against

viral infections, with CD4+ T cells releasing cytokines, which help
B cells and cytotoxic T cells. After being activated, the CD8+ T
cells eliminate the infected cells. T cell reactivity against SARS-
CoV-2 can be detected about 1-week post symptom onset.21

Specific T cell reactions were detected against the S,M,NP as well
as non-structural proteins.47,52 Similar to the antibody response,
specific T cell reactivity against SARS-CoV-2 was detected in
some unexposed healthy donors, indicating a potential cross-
reactivity in some individuals.52
17
Peripheral CD4+ and CD8+ T cell depletion has been observed
in COVID-19 patients and especially in severe cases. For instance,
IFNg produced by CD4+ T cells is decreased in severe
patients.53,54 The decrease of peripheral CD4+ and CD8+

T cells has also been reported in SARS-CoV infections and
was related to the onset of disease.55 However, whether T cell
depletion correlates with severity of COVID-19 needs to be
further addressed. In addition, functional exhaustion of T cells
has been reported in COVID-19 patients, indicated by the
upregulation of exhaustion markers, including PD-1, CTLA-4,
TIGIT, and TIM-3 and downregulation of IFN-g, TNF-a,
granzyme B, and IL-2.56 Of note, PD-1 is upregulated in both
CD4+ and CD8+ T cell subsets in severe patients.56 A potential
cause of the T cell exhaustion could be the inflammatory
cytokines, such as IL-6, which is known to induce T cell
exhaustion and has been shown to be elevated in COVID-19
patients.56 Taking together, targeting T cell depletion and
exhaustion may help to provide appropriate immunity and bring
therapeutic benefits in terms of fighting SARS-CoV-2 infection.
Role of microbiota in innate and adaptive immunity
and SARS-CoV-2 infection

Microbiota consists of various microorganisms, including
bacteria, viruses, fungi, and protozoa.57–59 They have been found
in high density in the intestine and closely regulate homeostasis
of the innate and adaptive immune system.60 Gut microbiota
provides signals to adjust the immune cells for inducing or
repressing an immune response.60 Such signals are essential for
functional activation of the immune system under certain
circumstances. For example, germ-free mice showed impaired
development of lymphocytes61 and failed to sustain production
of proinflammatory cytokines after repeated TLR stimulation.62

Therefore, attention has been drawn on how the microbiome is
interacting with the immune system, and how we can modulate
such interactions.
A functional antiviral immune response requires the participa-

tion of microbiota. Antibiotics-treated mice are unable to
generate robust antibody response against influenza infec-
tion.63,64 Also, the absence of TLR5 recognizing flagellin from
bacteria leads to reduced antibody production post viral
infection.65 Such findings imply that, for B cells to produce
healthy antibodies against viral infections, the microbiome is
required. The underlining mechanism of such relationship might
be explained by a recent study that showed that selection and
diversity of the B cell repertoire is regulated by microbiota,66,67

and this regulation might be species-specific, as indicated by
another multi-omics study.68 On the other hand, an important
cause of COVID-19 related deaths is secondary respiratory
bacterial infections,22 and there are evidences that microbiome
immune interactions are regulating such secondary infec-
tions.69,70 Therefore, we believe that the microbiota is an
essential component that not only regulates the antiviral immune
response, but also closely affects the disease outcome.

Role of microbiota in functions of innate immunity

Gut commensal microorganisms are normally colonizing the
mucous layer of the small and large intestines, which are
formatted by specialized epithelial cells and create a physical
barrier for the microbiota.71 A change of the components or
injuries of the layer would let the microbiota enter the intestinal
lamina propria through an opening of the barrier or by uptake by
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Mf, DCs, or M cells. DCs or Mf patrolling epithelia of barrier
organs would recognize the microbe- or pathogen-associated
molecular patterns (MAMPs or PAMPs) from bacteria by their
surface PRRs and then the phagocytosis process begins.26

There are different MAMPs or PAMPs from bacteria that have
been identified affecting the differentiation and function of
lymphoid lineage innate cells in various mechanisms.62 One type
of MAMPs is from the microbial components, which act as
ligands that can initiate PRR signaling. For example, bacterial
flagellin can induce nucleotide-binding receptor signaling
through recognition of TLR-5 signaling.72,73 Another type of
MAMPs are the microbiota-derived products/metabolites, such
as short chain fatty acids (SCFAs),74 and interestingly certain
bacteria appear to be major producers of SCFAs. For example,
Faecalibacterium prausnitzii, is responsible for the majority of
butyrate production.75 These SCFAs affect the activation of
innate cells and signaling by inhibiting histone deacetylation.76

Despite the important role of microbiota in regulating innate
immunity, several studies have provided evidences that the
microbiota tunes the functions of the adaptive immune response.
One of the underlying mechanism is through activated Mf and
DCs carrying engulfed bacteria or epithelium-adhering bacteria
to draining lymph nodes, where they initiate the differentiation of
naive CD4+ T cells into specialized T cells such as IL-17+CD4+

(Th17) cells.77 Th17 cells are dominated in the lamina propria of
the small intestine (30%–40% of differentiated memory CD4+ T
cells78), but were absent in germ-free mice or mice treated with
antibiotics. Certain species of bacteria were reported to induce
differentiation to Th17 cells, including segmented filamentous
bacteria (SFB)79 and Bifidobacterium adolescentis.80 Regulatory
T cells are mucosal related T cells in the intestine and are known
to maintain commensal tolerance.81,82 The development and IL-
10 secretion of regulatory T cells is influenced by commensal
bacteria Bacteroides fragilis, via microbial product polysaccha-
ride A.83 Therefore, the composition of the intestinal microbiota
regulates the balance between Th17 and Treg cells, and influences
mucosal immunity and the susceptibility to mucosal related
diseases such as bowel diseases.79

Microbiota also talks to the host through unconventional T
cells, invariant natural killer T cells, and mucosal-associated
invariant T cells. They are less common compared to
conventional T cells, but highly abundant in the gut mucosa.
These unconventional T cells encode different T cell receptors and
recognize antigens that may not be recognized by conventional T
cells. Invariant natural killer T cells respond to glycolipid antigen
and phospholipids,84 whereas mucosal-associated invariant T
cells recognize riboflavin (vitamin B2) metabolic derivatives.85

These unconventional T cells add another layer of complexity to
the relationship between microbiota and host immunity.
Humoral mucosal immunity is also affected by microbiota as

germ-free mice showed a reduced IgA response, which could be
restored rapidly by microbial colonization.78 Gut microbiota are
required for a functional B cells in marginal zone86 and can
directly regulate B cell activation and differentiation.87 In
addition, the process of class switch recombination can also be
affected by microbiota.88

Changes in the microbiota during SARS-CoV-2
infection

There are evidences suggesting that the gut microbiota affects
pulmonary health through gut-lung cross talk.89 Such crosstalk is
bidirectional, which means microbial products/metabolites can
18
influence the homeostasis of the lung, and the pathology of the
lung would also affect the gut microbiota.90 Several studies
identified the presence of lung microbiota and revealed a distinct
microbiome that was relevant to the chronic progression of lung
diseases.91 Understanding such crosstalk will provide important
knowledge on the role of microbiota regarding viral infection and
host defenses.
Although it is widely known that viral infection could affect the

gut microbiome,92 the number of current studies on determina-
tion of the changes in composition of microbiota in COVID-19
patients is limited. COVID-19 infection is associated with acute
respiratory distress syndrome,93 for which microbiota is surely
involved in disease progression.94 Also, it has been confirmed that
SARS-CoV-2 could infect gut tissue,95 and viral RNA was
detected in COVID-19 patient fecal samples.96 More direct
measurements of gut microbiota composition showed that gut
microbial communities were significantly changed in COVID-19
patients compared to healthy controls.97 One study pointed out
that the abundance of the Ruminococcaceae family and several
genera from the Lachnospiraceae family were dramatically
reduced in COVID-19 patients. Also, compared to H1N1
patients, COVID-19 patients had a unique gut microbiota
signature, suggesting potential biomarkers for COVID-19
infection and potential targets for future therapy. Another study
linked the anti-inflammatory bacteria F. prausnitzii to be
negatively correlated with disease severity. Several studies
pointed out the increase of opportunistic pathogens in gut
microbiota post SARS-CoV-2 infections,98 which are proposed
to be the cause or complications for gut related disorders, such as
inflammatory bowel disease.99 Several insights already pointed
out the potential mechanisms underlying this gut-lung axis signal
cross-talking in COVID-19 patients,100 including the modulation
of the immune system through SCFA,101 or mitochondrial
oxidative stress related dysbiosis.102 Of note, one review pointed
out the age-related dysbiosis might worsen the disease outcome of
COVID-19 patients.103 In summary, understanding the role of
microbiota will not only help understanding the SARS-CoV-2
infection process, but also provide guidance on disease treatment,
such as the use of probiotics.104
Conclusions

SARS-CoV-2 has become a global threat to health and
economics. The immune response in SARS-CoV-2 infection plays
an important role and significant dysregulation of innate and
adaptive immune responses may contribute to disease severity
and progression. However, the mechanism of interaction
between virus infection and immune response regulation and
the relationship of immune response to other medical compli-
cations (eg, health and lung failure) are still unclear. In addition,
other factors that may regulate immune response and disease
onset such as microbiome need further investigation. In this
review, we focus on the current knowledge regarding how the
immune system reacts after SARS-CoV-2 infection, and empha-
size the importance of understanding the role of microbiota in
this infection process. We hope this review will provide
information and guidance for future research related to the
understanding and treatment of COVID-19 patients.
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