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Simple Summary: Atrial natriuretic peptide (ANP) is an important hormone that regulates many
physiological and pathological processes, including electrolyte and body fluid balance, blood volume
and pressure, cardiac channel activity and function, inflammatory response, lipid metabolism, and
vascular remodeling. Corin is a transmembrane serine protease that activates ANP. Variants in the
CORIN gene are associated with cardiovascular disease, including hypertension, cardiac hypertrophy,
atrial fibrillation, heart failure, and preeclampsia. The current data indicate a key role of corin-
mediated ANP production and signaling in the maintenance of cardiovascular homeostasis. In this
review, we discuss the latest findings regarding the molecular and cellular mechanisms underlying
the role of corin in sodium homeostasis, uterine spiral artery remodeling, and heart failure.

Abstract: Atrial natriuretic peptide (ANP) is a crucial element of the cardiac endocrine function
that promotes natriuresis, diuresis, and vasodilation, thereby protecting normal blood pressure and
cardiac function. Corin is a type II transmembrane serine protease that is highly expressed in the
heart, where it converts the ANP precursor to mature ANP. Corin deficiency prevents ANP activation
and causes hypertension and heart disease. In addition to the heart, corin is expressed in other tissues,
including those of the kidney, skin, and uterus, where corin-mediated ANP production and signaling
act locally to promote sodium excretion and vascular remodeling. These results indicate that corin
and ANP function in many tissues via endocrine and autocrine mechanisms. In heart failure patients,
impaired natriuretic peptide processing is a common pathological mechanism that contributes to
sodium and body fluid retention. In this review, we discuss most recent findings regarding the role
of corin in non-cardiac tissues, including the kidney and skin, in regulating sodium homeostasis and
body fluid excretion. Moreover, we describe the molecular mechanisms underlying corin and ANP
function in supporting orderly cellular events in uterine spiral artery remodeling. Finally, we assess
the potential of corin-based approaches to enhance natriuretic peptide production and activity as a
treatment of heart failure.

Keywords: apical membrane trafficking; atrial natriuretic peptide; corin; eccrine sweat glands; heart
failure; protease; renal epithelial cells; sodium homeostasis; spiral artery remodeling

1. Introduction

The cardiac natriuretic peptides function as a hormonal mechanism to regulate body
fluid and electrolyte balance, thereby maintaining normal blood volume and pressure [1–4].
Deficiency in atrial natriuretic peptide (ANP) causes salt-sensitive hypertension in mice [5].
Genetic variants in the human NPPA gene, encoding ANP, have been identified as key
determinants in blood pressure levels in large populations [1,6]. More recent studies
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have implicated the natriuretic peptides in other physiological and pathological processes,
such as cardiac potassium channel activity [7], vascular remodeling [8,9], inflammatory
response [10–13], and lipid metabolism [14–16].

The natriuretic peptides are synthesized as pre-pro-peptides. Post-translational modi-
fications, including proteolytic processing and glycosylation, are important in regulating
natriuretic peptide activities [17–21]. Particularly, cleavage of the pro-fragment is essential
for the activation of these peptides. Corin was cloned from the human heart as a novel
serine protease that includes a transmembrane domain near the N-terminus and multiple
modules in the extracellular region [22] (Figure 1). Such a protein modular arrangement
resembles those in other type II transmembrane serine proteases, a group of trypsin-like
enzymes involved in diverse biological processes [23,24]. Biochemical and genetic studies
have shown that corin is the long-sought protease for ANP activation [20]. Corin also
processes pro-brain or B-type natriuretic peptide (pro-BNP) in vitro [25,26]. Furin, how-
ever, likely plays a more important role in processing pro-BNP and pro-C-type natriuretic
peptides (pro-CNP) [27,28].
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Figure 1. Schematic presentation of corin protein domains. Corin consists of an N-terminal (NH2)
cytoplasmic tail, a single-span transmembrane domain (TM), and an extracellular region (indicated)
that includes two frizzled domains (Fz1 and Fz2), eight low-density lipoprotein receptor-like repeats
(LDLR1-8), a scavenger receptor-like domain (SR), and a trypsin-like serine protease domain at the
C-terminus (COOH).

To date, we have gained extensive knowledge regarding the biology of corin, including
its genetics, biochemistry, enzymology, cell biology, and regulation, as described in previous
reviews [20,29–31]. Variants in the CORIN gene that reduce corin expression and/or
function have been described in hypertensive individuals [32–37]. In this review, we focus
on recent findings of corin function in regulating sodium homeostasis and cardiovascular
pathophysiology, particularly those published in the last three years. We will examine the
function of corin in non-cardiac tissues, including those of the kidney and skin. Moreover,
we will discuss newly uncovered molecular mechanisms underlying corin and ANP activity
in promoting spiral artery remodeling in the pregnant uterus. Finally, we will evaluate the
therapeutic potential of corin in heart failure.

2. Regulation of Sodium Homeostasis in Non-Cardiac Tissues

Sodium and body fluid homeostasis is crucial for normal blood pressure [38]. The
heart is the major organ that produces ANP and BNP [2]. When blood volume and/or
pressure increases, the heart releases the natriuretic peptides to enhance vasodilation in
the peripheral tissue, and natriuresis and diuresis in the kidney. This cardiac endocrine
function serves as a cardiorenal feedback mechanism to maintain normal blood volume
and pressure [1–4].

Consistent with its role in processing cardiac natriuretic peptides, corin expression is
most abundant in the heart [22]. The cardiac CORIN expression involves T-box transcrip-
tion factor 5 (TBX5), GATA binding protein 4 (GATA4), and NK2 homeobox 5 (NKX2-5)
transcription factors [39–41]. In single-cell RNA sequencing analyses, corin has been iden-
tified as an early surface marker that can be used to purify cardiomyocytes from human
embryonic and induced pluripotent stem cells [41,42]. In corin knockout (KO) mice, ANP
activation in the heart was undetectable [43], demonstrating the importance of corin in
ANP generation.
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In non-cardiac tissues, including the kidney and skin, corin expression has been
detected [22,26,44,45]. Unlike secreted proteases, such as trypsin and prothrombin, corin
is a transmembrane protein [22,46]. The single-span transmembrane domain at the N-
terminus anchors corin onto the cell surface at the expression site. Based on this structural
feature, corin is expected to function locally in the kidney and skin, as discussed below.

2.1. Renal Corin
2.1.1. Expression in Renal Epithelial Cells

Kidneys in mice, rats, and humans have been shown to express corin mRNA and
protein [22,26,47,48]. Similar renal expression has been reported for pro-ANP/ANP and
the ANP receptor, natriuretic peptide receptor-A (NPR-A) [49]. Among renal segments,
corin level is highest in the proximal tubules. The collecting ducts in the medulla express
lower levels of corin, pro-ANP, and NPR-A. In contrast, little or no corin expression was
detected in the glomerulus and the distal tubules [49].

The proximal tubules are important in renal reabsorption, a key physiological process
in electrolyte, body fluid, and metabolic homeostasis [50]. The proximal tubule consists
of a single layer of polarized epithelial cells connected by tight junctions. In experiments
with confocal and electron microscopy, corin was found on the apical, but not basolateral,
membrane in the polarized renal epithelial cells, which differs from the entire cell mem-
brane distribution pattern in non-polarized cardiomyocytes [47,49,51]. The specific apical
membrane expression probably indicates a function of corin on the lumen of the proximal
tubules to inhibit sodium reabsorption, thereby promoting natriuresis. These findings
also raise the question regarding the molecular mechanism underlying the apical corin
expression in polarized epithelial cells.

Specific apical distribution is one of the distinct features of polarized epithelial cells.
Impaired protein trafficking to the apical membrane in renal epithelial cells has been associ-
ated with kidney disease [52]. Protein structural elements, including the transmembrane
domain, N- and O-glycans, glycosyl-phosphatidylinositol anchor, and amino acid motifs,
are known sorting signals in apical trafficking [53]. A recent study identified a novel
DSSDE motif in low-density lipoprotein receptor-like repeat 8 (LDLR8) of corin as an apical
sorting signal in polarized renal epithelial cells [51]. Amino acid substitutions in this motif
abolished the specific apical corin trafficking in polarized Madin–Darby canine kidney
(MDCK) cells [51].

LDLR-like repeats are protein modules found in many secreted and cell surface
proteins [54]. The DSSDE motif is also present in other LDLR-containing cell surface
receptors on the apical membrane in renal proximal tubules. CD320, for example, is a
transcobalamin receptor for vitamin B12 uptake [55,56]. The N-terminal extracellular region
of CD320 contains two LDLR domains, the second of which has a DSSDE motif (Figure 2).
In polarized renal and intestinal epithelial cells, the DSSDE motif is required for specific
apical trafficking of CD320 [51,57]. These findings indicate that the DSSDE motif in LDLR
repeats may have a general role in apical trafficking in polarized epithelial cells.

Additional studies have shown that the DSSDE motif-dependent apical trafficking of
corin and CD320 is mediated by Rab11a [51,57], a member of the small GTPase superfamily,
which plays a central role in apical trafficking in polarized epithelial cells [58] (Figure 2).
Inhibition of Rab11a expression by a dominant negative Rab11a mutant or RAB11A gene
knockdown abolished the specific apical targeting of corin and CD320 in MDCK and
colon-derived Caco-2 cells [51,57]. Currently, it is unclear how Rab11a recognizes the
DSSDE motif in corin and CD320 LDLR repeats. Further studies will be important to
define the Rab11a-mediated mechanism, and to examine whether the DSSDE motif in other
LDLR-containing proteins has a similar role in apical trafficking in polarized epithelial cells.
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protein domains are described in the legend of Figure 1. CD320 consists of an N-terminal extracellular
region with two LDLR repeats (LDLR1 and LDLR2) and an epidermal growth factor-like domain
(EGF), a transmembrane domain (TM), and a C-terminal cytoplasmic tail. A DSSDE amino acid motif
(red) is present in the LDLR8 domain in corin and LDLR2 domain in CD320. (B) In non-polarized
cells without the Rab11a-mediated apical sorting mechanism, corin and CD320 (red dots) synthesized
in the endoplasmic reticulum (ER) are distributed to the entire cell surface (left panel). In polarized
epithelial cells with the Rab11a-mediated apical sorting mechanism, the DSSDE motif serves as an
apical sorting signal for corin and CD320 expression on the apical, but not basolateral, membrane
(right panel).

2.1.2. Functional Significance of Renal Corin Expression

Electrolyte homeostasis is imperative for survival in all animals. In primitive ver-
tebrates in salty water, natriuretic peptides act as a key mechanism to excrete excessive
salt [59,60]. Corin is conserved in all vertebrate species, ranging from fish to mammals,
indicating the importance of corin function in physiological homeostasis. In corin-null mice,
urinary sodium excretion was reduced, especially on high-salt diets [61]. Previously, ANP
was shown to function in the inner medullary collecting ducts to inhibit sodium absorp-
tion [62–64]. In the kidney, however, most solutes in the glomerular filtrate are absorbed in
the proximal tubules. The findings of high levels of corin, ANP, and NPR-A expression in
the proximal tubules suggest a corin and ANP-mediated autocrine mechanism in this key
renal segment to inhibit salt and water reabsorption.
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In agreement with a renal corin function in sodium homeostasis, increased renal
corin levels have been observed in rats and humans on high-salt diets, possibly indicating
a compensatory response to increase sodium excretion [65]. Another recent study in
humans identified an association between CORIN variants and salt sensitivity, longitudinal
blood pressure changes, and hypertension incidence [66,67]. In rat models of kidney
injury and severe cardiorenal syndrome, low levels of renal corin were reported [47,68].
Similarly, low levels of renal corin were observed in patients with chronic kidney disease
and sodium retention [48]. These findings indicate that impaired renal corin expression
and/or function may be a pathological mechanism underlying sodium retention in kidney
disease. Interestingly, cardiac and renal Corin gene expression responded differently in
hypertensive rats treated with anti-hypertensive drugs [69]. Additional studies are needed
to define the renal corin function, and to understand how cardiac and renal corin-mediated
mechanisms are coordinated in regulating sodium and body fluid homeostasis. These
studies may provide new insights into the pathogenesis of sodium and body fluid retention
in patients with heart and kidney diseases.

2.2. Skin Corin
2.2.1. Eccrine Sweat Glands

Overheating can be life-threatening. Sweating is a basic skin function to lower body
temperature, which is mediated primarily by eccrine sweat glands. Among mammals, hu-
mans have the highest number of eccrine sweat glands on the skin surface [70]. This anatom-
ical feature provides an evolutionary advantage for humans to survive in hot environments.

The original sweat produced in the eccrine glands is isotonic to plasma, with high
levels of salt. Considerable amounts of salt are reabsorbed before sweat reaches the skin
surface. This reabsorption process prevents salt loss and electrolyte imbalance, especially
when large amounts of sweat is produced, for example, during hard labor or sports. To
date, the molecular mechanisms controlling salt excretion and reabsorption in eccrine sweat
glands are not completely understood [71,72].

Recently, corin, ANP, and NPR-A proteins were detected in the luminal epithelial cells
in human and mouse eccrine sweat glands, indicating a potential function of corin and ANP
in sweating [73]. Indeed, low levels of sweat and salt excretion were found in corin KO
mice on normal- and high-salt diets, compared to those in wild-type (WT) mice [73]. When
corin KO mice were treated with amiloride, an epithelial sodium channel (ENaC) inhibitor,
sweat and salt excretion was normalized. Importantly, reduced sweat and salt excretion
was not found in corin conditional KO mice, i.e., mice lacking only cardiac corin. These
results indicate that corin-mediated ANP production and signaling in the skin promote
sweat and salt excretion by inhibiting ENaC, which mediates sodium reabsorption in the
eccrine sweat ducts [73] (Figure 3).

Aldosterone is known to increase ENaC activity and sodium reabsorption in the
eccrine sweat glands [74]. Corin-mediated ANP production and function counter the aldos-
terone function. In WT mice, aldosterone treatment decreased sweat excretion, whereas
such an effect was not observed in corin KO mice [73]. These results suggest that in WT
mice, aldosterone-promoted salt reabsorption and corin-activated ANP-promoted salt
excretion were in balance, which was tilted, by exogenous aldosterone, in favor of salt
reabsorption. In contrast, corin KO mice lack the anti-aldosterone function. As a result,
endogenous aldosterone has reached the maximal effect, which could not be further en-
hanced by exogenous aldosterone [73]. These results show that corin and ANP act as an
anti-aldosterone mechanism in the skin to promote sodium and sweat excretion (Figure 3).
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Figure 3. A proposed role of corin and ANP in the eccrine sweat gland. The eccrine sweat gland in
the skin consists of the secretory coil, where initial sweat is produced, and the duct, where ENaC-
mediated Na+ reabsorption occurs. Aldosterone promotes ENaC-mediated Na+ reabsorption. In
contrast, corin and ANP inhibit ENaC-mediated Na+ reabsorption, thereby increasing Na+ and
sweat excretion.

2.2.2. Dermal Papilla and Coat Color in Animals

The dermal papilla is another site of corin expression. In mice of the Agouti background,
corin deficiency renders a lighter coat color [45]. Genetic analyses indicate that corin is a
suppressor of the agouti pathway in coat color specification, and that this function requires
the protease activity of corin [45,75]. Consistently, Corin has been identified as one of the
three major pigmentation genes in beach mice in the Gulf and Atlantic Coasts of the United
States [76].

Similarly, a CORIN variant, causing H587Y substitution in the LDLR6 repeat of corin,
was found to be a modifier of the dark coat stripes in tigers [77]. Biochemical studies
indicate that corin suppresses the activity of Agouti signaling protein (ASIP), which in-
hibits melanocortin binding to melanocorin-1 receptor (MC1R) in the production of dark
pigments [77]. Decreased corin activity increases ASIP function, thereby reducing the
darkness of coat stripes in tigers [77]. These results are supported by a recent report, in
which a CORIN variant, causing R795C substitution in the scavenger receptor domain, was
associated with the golden (lighter) coat phenotype in Siberian tabby cats [78]. It will be
interesting to determine whether corin plays a similar role in coat color specification in
other mammalian species.

In humans, corin is expressed in dermal stem and progenitor cells [79–81], and in hair
follicles [73]. The significance of corin expression in human hair follicles remains unclear.
There are no reports of CORIN variants associated with skin or hair color in humans. In
chickens and sheep, CORIN is a genetic factor contributing to evolutionary adaptation in
hot arid environments [82,83], probably reflecting the role of corin in promoting salt and
water excretion [73]. Reduced corin activity is expected to increase salt and water retention,
offering a survival advantage in hot arid environments. Consistently, a CORIN variant with
reduced activity is found in individuals whose ancestry can be traced back to southern
regions of the Sahara Desert [33,84]. In modern times, however, ample supply of water
and dietary salt puts the individuals with the CORIN variant at a higher risk of developing
hypertension and heart disease [33,85].
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3. Mechanisms in Uterine Spiral Artery Remodeling

In pregnancy, the uterus undergoes major phenotypical changes, including endome-
trial decidualization and spiral artery remodeling, which are essential for embryo implan-
tation and fetal growth [86]. As a result, significant transforming events occur in uterine
cells, including endometrial stromal cells, vascular smooth muscle cells (SMCs), and en-
dothelial cells (ECs). Eventually, many SMCs in uterine spiral arteries are lost, and ECs
are substituted by invading placental trophoblasts [86]. The resultant spiral arteries are
larger in diameter and less responsive to maternal hormonal regulation, allowing steadily
increased uteroplacental blood flow with reduced velocity to support the growing fetus [87].
Impaired uterine decidualization and spiral artery remodeling are key contributing factors
in preeclampsia, a major disease in pregnancy [88,89]. To date, the molecular mechanisms
underlying the cellular events in uterine decidualization and spiral artery remodeling are
not well defined.

Corin and ANP play an important role in vascular remodeling. In mice and humans,
corin expression is upregulated in the pregnant uterus, where corin-activated ANP pro-
motes spiral artery remodeling and trophoblast migration [9,90]. Recent comparative
transcriptomic studies in mammalian species show that CORIN is expressed in a subset
of endometrial stromal lineage cells, and may contribute to the evolution of deep pla-
cental invasion and extensive spiral artery remodeling [91]. Consistently, pregnant corin
and ANP KO mice have delayed trophoblast invasion and poorly remodeled spiral arter-
ies [9]. The mice also develop gestational hypertension and proteinuria, a preeclampsia-like
phenotype [5,9].

To date, defective CORIN variants have been found in patients with preeclampsia [9,35,92].
Altered uterine and placental corin expression and shedding have also been reported in
animal models and pregnant women with hypertension [9,93–96]. Moreover, increased
plasma or serum corin levels are found in preeclamptic patients [9,97–103]. Further studies
should help to determine the tissue origin (e.g., heart vs. uterus or placenta) of the detected
circulating corin, and to understand whether the circulating corin levels reflect increased
corin expression and/or shedding in the tissue under disease conditions.

The CORIN transcription in uterine cells differs from that in cardiomyocytes. Recently,
Krüppel-like factor 17 (KLF17) has been identified as a key transcription factor in uterine
CORIN expression [104]. In cultured human uterine endometrial cells, disruption of the
KLF17 gene prevented CORIN expression [104]. In Klf17 KO mice, no Corin expression was
detected in the uterus. Similar to corin KO mice, Klf17 KO mice develop a preeclampsia-like
phenotype in pregnancy [104]. In addition, other transcription factors, including proges-
terone receptor, GATA2, and nuclear receptor subfamily 2 group F member 2 (NR2F2),
also play a crucial role in CORIN expression in human endometrial cells [91]. Consis-
tently, progesterone treatment increased both Corin and Klf17 expression in ovariectomized
mice [104].

More recent studies have provided new insights into the molecular mechanisms un-
derlying the uterine corin and ANP function. In experiments with mouse models and
cultured human uterine cells, corin and ANP were found to promote sequential molecular
and cellular events in uterine decidualization and spiral artery remodeling [105]. Particu-
larly, uterine corin and ANP enhanced endometrial decidualization and the expression of
TNF-related apoptosis-inducing ligand (TRAIL), a pro-apoptotic protein, in endometrial
stromal cells. TRAIL secreted from the decidualized endometrial cells induced apoptosis in
spiral artery SMCs, which in turn released cyclophilin B to upregulate TRAIL receptors
in ECs, thereby causing TRAIL-mediated apoptosis in ECs [105]. The sequential loss of
SMCs and ECs paves the way for placental trophoblast invasion into uterine spiral arteries
(Figure 4).
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Figure 4. A proposed mechanism of corin and ANP in uterine spiral artery remodeling. In preg-
nancy, corin is expressed in the uterus to activate ANP, which promotes decidualization of uterine
stromal cells and TNF-related apoptosis-inducing ligand (TRAIL) expression. TRAIL released from
decidualized stromal cells induces apoptosis (†) in spiral artery smooth muscle cells (SMCs) (1) and
cyclophilin B (CyPB) release (2). CyPB, in turn, upregulates TRAIL receptor (TRAILR) expression in
spiral artery endothelial cells (ECs) (3), thereby causing TRAIL-mediated apoptosis in ECs (4).

In support of this idea, impaired uterine decidualization and TRAIL expression were
found in corin and ANP KO mice [105]. Depletion of TRAIL from endometrial stromal cell-
derived conditional medium prevented apoptosis in cultured human uterine SMCs [105].
Moreover, SMC-derived or recombinant cyclophilin B induced TRAIL receptor expression
in human uterine ECs in culture, leading to TRAIL-induced apoptosis in ECs [105]. These
findings delineate the uterine corin and ANP function in sequential molecular and cellular
events in uterine decidualization and spiral artery remodeling, which are important for
healthy pregnancies. Additional studies are needed to verify these findings, and to test
whether defects in the corin and ANP-induced TRAIL pathway contribute to preeclampsia
in humans.

4. Therapeutic Potential in Heart Failure

In addition to the systemic effect of lowering blood volume and pressure, ANP has a
direct anti-hypertrophic and anti-inflammatory function in the heart [1,13]. Consistently,
cardiac hypertrophy has been observed in ANP and corin KO mice [43,84,106]. In preg-
nant corin KO mice, gestational hypertension is associated with cardiac hypertrophy, a
phenotype resembling peripartum cardiomyopathy in human patients [107]. In cultured
cardiac myocytes, corin overexpression prevented oxidative stress-induced cell death via
a mechanism mediated by PI3K/AKT and NF-κB signaling [108]. To date, many CORIN
variants have been reported in patients with hypertension, atrial fibrillation, coronary artery
disease, and heart failure (HF) [29,109,110]. Further studies should help us to understand
the functional significance of those CORIN variants in specific cardiovascular diseases.

HF is a serious disease, leading to the progressive loss of cardiac output. At late
stages of HF, patients suffer from shortness of breath, orthopnea, and ankle swelling,
which reflects poor circulation, lung congestion, and body fluid retention. In HF patients,
high levels of plasma pro-ANP and pro-BNP are common, indicating an underlying defi-
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ciency in natriuretic peptide activation [111,112], which likely contributes to impaired body
fluid homeostasis. Consistently, reduced corin expression and/or activity are associated
with impaired natriuretic peptide activation and compromised cardiac function in HF pa-
tients [85,113,114]. Moreover, low levels of plasma or serum corin are found in HF patients
with worse clinical outcomes [115–122]. These results suggest that corin deficiency may be
an underlying mechanism in the pathogenesis of HF.

To date, natriuretic peptides are used as therapeutic agents to reduce body fluid
retention and improve cardiac function in HF patients [123–125]. Recombinant ANP is also
used to treat patients with renal failure [126]. In plasma, neprilysin-mediated cleavage is an
important mechanism in natriuretic peptide degradation. High levels of plasma neprilysin
have been reported in HF patients [120,122]. Inhibition of neprilysin increases natriuretic
peptide levels in vivo [127]. This mechanism has been exploited to develop a new class of
combined angiotensin receptor–neprilysin inhibitors (ARNIs) for reducing mobility and
mortality in HF [128,129].

Given the role of corin in activating cardiac natriuretic peptides, therapeutic strategies
may be considered to increase corin activity, and hence natriuretic peptide activation, in
failing hearts. Indeed, corin overexpression in the heart improved cardiac function and pro-
longed survival in mouse models of cardiomyopathy and myocardial infarction [130,131].
Unexpectedly, overexpression of a mutant form of corin that lacked the catalytic activity
enhanced cardiac function in mice with cardiomyopathy, indicating that corin may act
through an alternative mechanism independent of its proteolytic activity [132]. More
studies are required to define the biochemical basis of the potential non-catalytic function
of corin.

Corin is a transmembrane protease. The N-terminal transmembrane domain is dispens-
able regarding ANP activation [133]. Possibly, a soluble form of corin (sCorin), lacking the
cytoplasmic and transmembrane domains, could be used as a biological agent to enhance
natriuretic peptide activity and cardiac function in HF. This hypothesis was tested recently
in mouse models [134]. Injection of sCorin, either intravenously or intraperitoneally, re-
sulted in readily detectable levels of sCorin in plasma, with half-lives of >3 h and >8 h,
respectively [134]. In comparison, plasma half-lives of ANP and BNP in healthy individuals
and HF patients ranged from <10 min to >20 min [135–137]. The short plasma half-life is
one of the limitations of natriuretic peptides in clinical use. In sCorin-treated mice, plasma
ANP and BNP levels were significantly increased. The mice also had higher levels of cyclic
guanosine monophosphate (cGMP) in plasma and heart tissues, and lower levels of plasma
angiotensin II and aldosterone, compared to those in vehicle-treated mice [134]. These
results indicate that sCorin was active in vivo, which enhanced natriuretic peptide activa-
tion and signaling and suppressed the renin–angiotensin–aldosterone system. Importantly,
sCorin treatment improved cardiac morphology and function in mouse models of HF in-
duced by left coronary artery ligation and transverse aortic constriction, respectively [134].
These results are promising, showing the feasibility of recombinant corin as a biological
agent in treating HF.

5. Conclusions and Perspectives

It has been more than two decades since the cloning of corin from the human heart [22].
We now know that corin is a key protease in the natriuretic peptide system that preserves
normal blood pressure and cardiac function. Latest results show that corin acts not only
in the heart, but also in non-cardiac tissues, such as kidney and skin tissues, to regulate
salt excretion and body fluid homeostasis. In the pregnant uterus, corin and ANP mediate
dynamic interactions among endometrial stromal and vascular cells to ensure an orderly
spiral artery remodeling process. Studies using mouse models also indicate that corin-based
biological agents may be developed to treat HF. We anticipate the requirement for more
investigations to uncover additional corin substrates and/or functions, and to understand
how corin functions are regulated in tissue-specific settings. We also expect that additional
genetic studies will be needed to elucidate the impact of CORIN variants on cardiovascular
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homeostasis under physiological and pathological conditions. Finally, we envision that the
knowledge gained regarding the biology of corin will be translated into diagnostic and/or
therapeutic agents in the future to benefit patients with cardiovascular disease.
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