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As an autosomal dominant disorder, familial hypercholesterolemia (FH) is mainly caused by
pathogenic mutations in lipid metabolism-related genes. The aim of this study is to
investigate the genetic mutations in FH patients and verify their pathogenicity. First of
all, a pedigree investigation was conducted in one family diagnosed with FH using the
Dutch Lipid Clinic Network criteria. The high-throughput sequencing was performed on
three family members to explore genetic mutations. The effects of low-density lipoprotein
receptor (LDLR) variants on their expression levels and activity were further validated by
silico analysis and functional studies. The results revealed that LDLC levels of the proband
and his daughter were abnormally elevated. The whole-exome sequencing and Sanger
sequencing were used to confirm that there were two LDLR missense mutations (LDLR
c.226 G > C, c.1003 G > T) in this family. Bioinformatic analysis (Mutationtaster) indicated
that these two mutations might be disease-causing variants. In vitro experiments
suggested that LDLR c.226 G > C and c.1003 G > T could attenuate the uptake of
Dil-LDL by LDLR. In conclusion, the LDLR c.226 G >C and c.1003 G > T variants might be
pathogenic for FH by causing uptake dysfunction of the LDLR.
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INTRODUCTION

Familial hypercholesterolemia (FH) is a common autosomal genetic disorder mainly caused by
pathogenic mutations in genes encoding low-density lipoprotein receptor (LDLR), apolipoprotein B
(ApoB) and proprotein convertase subtilisin kexin 9 (PCSK9) (Benn et al., 2016). A meta-analysis of
11 million subjects illustrated that the prevalence of FH in the general population is 0.32%, while the
prevalence of FH in ischemic heart disease and premature ischemic heart disease patients is 3.2 and
6.7%, respectively (Beheshti et al., 2020). Due to lifelong exposure to extremely high levels of low-
density lipoprotein cholesterol (LDLC), FH is characterized by xanthomas, corneal arcus, and early-
onset cardiovascular disease (Peterson et al., 2021). European and American guidelines suggest that
FH patients should be identified as early as possible so that LDLC lowering treatment can be started
early in life in order to improve the patient’s prognosis (Piepoli et al., 2016; Grundy et al., 2019).

As a membrane protein on the surface of liver cells, LDLR is the key point of LDLC metabolism.
LDLR could combine with LDLC and transport it to the lysosome for metabolism. The LDLR
subsequently returns to the surface of liver cells for recycling (van de Sluis et al., 2017; Chemello et al.,
2021). Therefore, the pathogenic variants in LDLR could directly lead to protein dysfunction and
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LDLC metabolic disorders. Previous studies suggested that the
disease-causing variants in LDLRmight account for about 90% of
FH (Gidding et al., 2015; Iacocca and Hegele, 2017). Reeskamp
et al. performed targeted next-generation sequencing on 1,528
patients with LDLC greater than 5 mmol/L. The results illustrated
that 227 cases (14.9%) were heterozygous carriers of pathogenic
variants in LDLR (80.2%), APOB (14.5%), and PCSK9 (5.3%)
(Reeskamp et al., 2021b). Furthermore, a retrospective study
pointed out that LDLC gradually increased from patients with
no pathogenic variants to patients with a defective variant,
patients with a null variant, and patients with two variants (Di
Taranto et al., 2021). Therefore, it is imperative to perform
genetic diagnoses of FH patients to distinguish between
different genetic states or variant types.

According to the UCL LDLR gene variant database,
3779 LDLR mutations have been reported so far; of which
77% are substitutions, 16% are deletions, and 5% are
duplicates (Leigh et al., 2017). Regrettably, the pathogenicity of
several LDLR variants has not been authenticated. It is crucial to
research the functional verification of mutations to better clarify
the molecular mechanism of FH.

In this study, a FH family was included, and high-throughput
sequencing was used to explore pathogenic mutations. The effects
of LDLR variants on the expression level and function of LDLR
were verified in cellular experiments.

MATERIALS AND METHODS

Patients
The study enrolled one FH family consisting of three members in
Ningbo First Hospital. The Dutch Lipid Clinic Network criteria
(DLCN) was used to diagnose FH patients (Wang et al., 2019). A
detailed information collection form was designed based on the
characteristics of FH patients. The content mainly included the
patient’s general information, family history, personal history,
past history, treatments, the results of the auxiliary
examination, etc.

Whole-Exome Sequencing and in Silico
Analysis
Whole blood samples of the three participants were collected in
EDTA tubes (Gongdong Company, China) and stored in a
refrigerator at -80 °C (ThermoFisher Scientific, United States).
Omega Blood DNA Kit (D3392-02, Omega bio-tek,
United States) was used to extract genomic DNA. High-
throughput whole-exome sequencing for DNA samples was
completed on the BGISEQ-500 platform (Huada Gene
Technology Co. Ltd., China). First, the genomic DNA was
randomly broken into fragments of about 200–300 bp, and a
complete fragment library was established after PCR
amplification. The quality of DNA was then inspected before
sequencing, and the number of original bases (raw data) obtained
by sequencing each sample should meet the standard. Clean data
was subsequently obtained by removing low-quality reads from
raw data. Finally, we compared the sequencing data with the

human reference genome hg19 to obtain high-confidence
mutations.

As one of the standard bioinformatic tools, Mutationtaster
(http://www.mutationtaster.org) was applied to evaluate the
disease-causing potential of DNA variants (Schwarz et al.,
2014). The transcript ID of the LDLR was ENST00000558518
(NCBI Reference Sequence: NM_000,527.5) in the manuscript.

Sanger Sequencing
The PCR amplification method was utilized to amplify the
participants’ DNA. PCR primers were designed based on the
exon fragment where the mutation was located. The sequences of
primers were shown as follows: LDLR (exon 3): 5′-TGACAGTTC
AATCCTGTCTCTTCTG (upstream), 5′-ATAGCAAAGGCA
GGGCCACACTTAC (downstream); LDLR (exon 7): 5′- AGT
CTGCATCCCTGGCCCTGCGCAG (upstream), AGGGCT
CAGTCCACCGGGGAATCAC (downstream) (Du and
Huang, 2007). Sanger sequencing was conducted to verify the
variants in each participant by the Biosystems® 3730 DNA
analyzer. The sequencing results were analyzed by the
Chromas software.

Cell Culture and Plasmid Transfection
HEK293 cells were derived from the cell bank of the Shanghai
Chinese Academy of Sciences and were cultured in a DMEM
medium (Hyclone, United States) with 10% fetal bovine serum
(ThermoFisher Scientific, United States). The DMEM used in the
current study included 4.00 mmol/L L-glutamine, 4500 mg/L
glucose, and sodium pyruvate. After the cells were grown to
about 80–90% in a 37 °C incubator containing 5% CO2, they were
subcultured at a ratio of 1:3.

For plasmid transfection, HEK293 cells in good growth
condition were plated in a six-well plate. In this study, wild-
type (WT) and mutant plasmids were constructed by chemical
synthesis. Lipofectamine 2000 reagent (ThermoFisher Scientific,
United States), Opti-MEM medium (Gibco, United States), and
plasmid DNA were mixed and incubated at room temperature
and then added to the cells. The cells were cultured in 5% CO2 at
37 °C for 6–8 h.

We divided the cells into the mutant group (HEK293 cells
transfected with LDLR mutant plasmids), the WT group
(HEK293 cells transfected with LDLR wild-type plasmids), and
the NC group (HEK293 cells transfected with empty plasmids).

Expression of LDLR Variants
The expression level of LDLR variants was detected by
Western Blot 48 h after plasmid transfection as previously
described (Hu et al., 2021). The samples were lysed in RIPA
buffer (Solarbio, China) containing protease and phosphatase
inhibitors. Protein levels were quantified by the BCA protein
assay kit (Cwbio, China). The samples containing equal
amounts of protein were separated by 5x SDS-PAGE gel
and transferred onto the PVDF membrane. After blocking
with 5% milk, the samples were incubated with the primary
antibodies: LDLR [Mouse monoclonal to LDL Receptor
(Abcam, United States)] and β-actin [β-actin Rabbit mAb
(Abclonal, China)] overnight at 4 °C, and secondary
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antibodies [peroxidase-conjugated anti-mouse IgG (Jackson
Immuno Research, United States) and peroxidase-conjugated
anti-rabbit IgG (Jackson Immuno Research, United States)]
for 1 h at room temperature. Lastly, the signals were analyzed
using the ImageJ Software.

Uptake of Dil-LDL
After treatment with a serum-free medium of 0.3% bovine
albumin (Solarbio, China) for 12 h, the transfected cells were
incubated with 5 μg/ml Dil-LDL (Thermo Scientific,
United States) for 4 h. The labeled LDL was used to study
LDL uptake through endocytosis and its trafficking throughout
the cell, which can be detected via fluorescence microscopy. After
washing the cells with PBS, they were fixed with 4%
paraformaldehyde for 10–20 min and then stained with DAPI.
The fluorescence intensity of the cells was observed using a
confocal laser scanning microscope (LEICA TCS SP8,
Germany). The ImageJ software was used to quantitatively
analyze the fluorescence intensity.

Statistical Analysis
All statistical analyses were performed by the SPSS 24.0 software
(SPSS Inc., Chicago, IL, United States). GraphPad Prism 8
(GraphPad Software, La Jolla, CA) was used for plots. p < 0.05
was considered statistically significant.

RESULTS

The Clinical Information of the Proband and
Pedigree Investigation
A 52 year-old man was diagnosed with coronary heart disease at
Ningbo First Hospital. His LDLC level was abnormally elevated at
5.62 mmol/L under the treatment of atorvastatin 20 mg. Corneal
arcus and xanthomas on the skin of the elbowwere observed since
adolescence. The results of coronary angiography illustrated 95%
localized stenosis of the proximal segment of the left anterior

descending branch, 90% localized stenosis of the proximal
segment of the diagonal branch, and subtotal occlusion of the
proximal segment of the right coronary artery. Echocardiography
displayed hypertrophy of the ventricular septum, aortic valve
calcification, and mild mitral regurgitation. Carotid ultrasound
showed multiple plaque formation in bilateral carotid arteries.

We tracked three members in two generations of this family,
including the proband’s wife and the proband’s daughter. As
shown in Table 1, the blood lipid level of the proband’s wife (I-2)
was normal. However, the proband’s daughter (II-1) had an
increased level of LDLC (5.50 mmol/L) without corneal arcus
or xanthomas. Before performing DNA analysis, the proband and
his daughter were diagnosed as FH, according to the DLCN
criteria.

Mutational Analysis, in Silico Analysis, and
Sanger Sequencing
High-throughput sequencing was performed on all members of
this FH family, and the mutations of four FH-related genes
(LDLR, APOB, PCSK9, LDLRAP1) were analyzed (Tada et al.,
2019). There were five LDLR variants (LDLR c.226 G > C,
c.1003 G > T, c.1413A > G, c.1617 C > T, and c.2232A > G)
in the proband, five LDLR variants (LDLR c.1413A > G, c.1617 C
> T, c.1773 C > T, c.1959T > C, and c.2232A > G) in the
proband’s wife and five LDLR variants (LDLR c.1003 G > T,
c.1413A > G, c.1773 C > T, c.1959T > C, and c.2232A > G) in the
proband’s daughter (Figure 1). However, no suspicious disease-
causing variant was identified in the other three genes.

The impact of LDLR variants on the receptor function was
investigated by the bioinformatic tool Mutationtaster. The results
revealed that LDLR c.1413A > G, c.1617 C > T, c.1773 C > T,
c.1959T > C, and c.2232A > G were synonymous mutations,
while LDLR c.226 G > C and c.1003 G > T were missense
mutations. The amino acid sequences of these two sites were
highly conserved in various species (Supplementary Figure S1).

In addition, both variants could cause changes in amino acid
sequence. LDLR c.226 G > C (exon 3) caused the 76th amino acid
to change from glycine to arginine, namely p. Gly76Arg.
Meanwhile, LDLR c.1003 G > T (exon 7) caused the 335th
amino acid to change from glycine to cysteine, namely p.
Gly335Cys.

Subsequently, Sanger sequencing was performed to verify the
existence of the two variants in the corresponding family
members (Figure 2). The proband had two variants (LDLR
c.226 G > C and c.1003 G > T), and his daughter had one
variant (LDLR c.1003 G > T). Therefore, we speculate that the
FH family in this studymay be caused by pathogenic mutations in
the LDLR.

The Expression of LDLR Variants and
Uptake of Dil-LDL
The expression level of LDLR in the mutant group, WT group,
and NC group was detected byWestern Blot in HEK293 cells. The
two bands detected in the gel map corresponded to the mature
type and the precursor type LDLR, respectively. The results

TABLE 1 | Clinical data of FH patients and family members.

Characteristics I-1 I-2 II-1

Gender Male Female Female
Age (year) 52 53 27
Triglycerides (mmol/L) 1.42 1.43 0.46
Total cholesterol (mmol/L) 7.64 3.78 7.36
High-density lipoprotein cholesterol (mmol/L) 0.91 1.49 1.95
Low-density lipoprotein cholesterol (mmol/L) 5.62* 2.25 5.50
ApoA1 (g/L) 0.97 1.68 1.50
ApoB (g/L) 1.64 0.64 1.42
Lipoprotein a (mg/dl) 36.90 42.40 15.50
Carotid plaque Yes No No
Carotid stenosis No No No
Aortic valve Calcification Yes No No
Left ventricular ejection fraction (%) 68 70 70
Corneal arcus Yes No No
Xanthoma Yes No No
Coronary artery disease Yes No No

The asterisk indicates that the patient is taking a lipid-lowering drug (atorvastatin 20 mg).
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demonstrated that there was no significant difference between the
mutant group (LDLR c.226 G > C) and the WT group (Figure 3).
Compared with the WT group, less mature LDLR was detected in
the LDLR c.1003 G > T group.

The HEK293 cells carrying the LDLR c.226 G > C and
c.1003 G > T variants and the WT LDLR were incubated in
Dil-LDL medium for 4 h. The ability of mutant LDLR (LDLR
c.226 G > C, c.1003 G > T) to take up LDL was significantly lower
than that of WT LDLR (LDLR WT: 100%, LDLR c.226 G > C:
63.04%, LDLR c.1003 G > T: 42.54%, p < 0.01, Figure 4,
Figure 5).

The Correlation Between the Phenotype
and the LDLR Mutation
Judging from the FH patients’ clinical phenotype, the proband’s
blood lipid level, corneal arcus, xanthoma, and atherosclerosis
were severe. According to the sequencing results, the proband was
a compound heterozygote (LDLR c.226 G > C and c.1003 G > T),
and his daughter was a heterozygote (LDLR c.1003 G > T). This
finding partly explained that the clinical phenotype of compound
heterozygous patients was more severe than that of heterozygous.

DISCUSSION

As a typical disease of abnormal cholesterol metabolism, FH is a
significant risk factor in the occurrence and development of
cardiovascular disease (Hu et al., 2020). With the advancement
of molecular technology, some FH patients have undergone
genetic testing to elucidate the pathogenic mechanism.
However, the current diagnostic rate of FH in most countries
is extremely low, at < 1% even. Hence, it is crucial to carry out

screening of high-risk populations in order to improve the
diagnostic rate. Herein, a detailed pedigree investigation and
the genogram of the proband and his family members were
conducted. Two LDLR variants (LDLR c.226 G > C and
c.1003 G > T) were discovered in this family by whole-exome
sequencing. Functional prediction through the bioinformatic
software showed that both variants might impact the
expression or function of LDLR. The in vitro analysis
confirmed that LDLR c.226 G > C and c.1003 G > T could
diminish the ability of LDLR to uptake LDL.

By consulting the literature and the UCL database on LDLR
mutations (http://www.lovd.nl/LDLR), we confirmed that both
variants (LDLR c.226 G > C and c.1003 G > T) were not
previously identified. The LDLR c.226 G > C variant (exon 3)
is located in the coding region of the LDLR ligand-binding
domain, which consists of 292 amino acids, including seven
repeats (Strom et al., 2020). In the process of LDL
metabolism, the variants including LDLR c.226 G > C in the
LDLR ligand-binding domain might result in the LDLR being
unable to reach the cell surface or in its inability to bind to LDL.
This can eventually lead to hyperlipemia (Pamplona-Cunha et al.,
2020). Our functional studies corroborated that LDLR c.226 G >
C did not affect its expression. Instead, it caused the ability of
LDLR to uptake LDL to decrease. In addition, another mutation,
LDLR c.226 G > T (p. Gly76Trp), was also found at the exact
location (Bourbon et al., 2008; Usifo et al., 2012). However, the
expression and LDL internalization by LDLR c.226 G > T were
similar to the WT, which was defined as likely benign (Benito-
Vicente et al., 2015). It implies that different variants in the same
position may function differently.

The LDLR c.1003 G > T variant (exon 7) is located in the
homology domain of the EGF precursor, which consists of 406
amino acids, contains three EGF-like repeat units, and one
β-propeller domain (Springer, 1998). It might result in the
synthesized LDLR protein not being released from the
endoplasmic reticulum to the cell surface, in that the
receptors that reach the cell surface cannot bind to LDL, or
in that the receptor cannot be recycled (Austin et al., 2004).
Jeenduan et al. identified that LDLR p. D151Y and M391T
located in the homology domain of EGF precursor significantly
reduced the expression level of LDLR on the cell surface to 18
and 38%, respectively. Additionally, the amount of LDL uptake
by LDLR was reduced to 15 and 71%, respectively (Jeenduang
et al., 2010).

Our study showed that the other variant LDLR c.1003 G > T
might affect the expression of the LDLR protein and impair its
ability to uptake LDL (reduced to 42.54%). Previous studies
have also reported the variant LDLR c.1003 G > A (p.
Gly335Ser), and bioinformatics predicted that this variant
was likely pathogenic (Wang et al., 2001; Laurie et al., 2004;
Bertolini et al., 2013; Narang et al., 2020). Interestingly, two
different variants in the translation initiation codon of LDLR
(LDLR c.1A > T and c.1A > C) encoded the same amino acid
(LDLR p.Met1Leu), but they cause different degrees of damage
to its expression and activity (Graca et al., 2021). Therefore,
functional experiments are paramount to clarify whether the
mutation is pathogenic or not.

FIGURE 1 | The family tree of the proband. * signified that the patient
was taking the lipid-lowering drug (atorvastatin 20 mg); → represented the
proband. In the current study, the background of the FH patients’ (I-1, II-1)
picture was blackened. The disease-causing variants in LDLR were
bolded.
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FIGURE 2 | Target sequences on LDLR by Sanger sequencing. Two disease-causing LDLR variants (LDLR c.226 G >C, c.1003 G > T) were found in the proband
(I-1). The LDLR c.1003 G > T variant was found in the proband’s daughter (II-1).
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Ana Catarina Alves et al. found that a missense mutation
(LDLR p. Asp601Val) might cause the loss of LDLR mature form
and a complete impairment of its activity (Alves et al., 2021). The

variant LDLR c. 2389 G >Amight cause the erroneous cleavage of
messenger RNA to retain the mutant LDLR in the Golgi
apparatus (Shu et al., 2021). Existing evidence indicates that
missense mutations in LDLR could affect its expression and
cause dysfunction of LDLR protein through a variety of
mechanisms. Regrettably, our research cannot identify the
mechanism of the diminished ability of LDLR by two variants.
Therefore, future research should focus on exploring the
mechanism of FH caused by its variants.

Generally, the clinical phenotype of homozygous FH patients
is more severe than that of heterozygous patients, whereby some
patients might eventually suffer from cardiovascular events in
adolescence or even childhood (Sanchez-Hernandez et al., 2016).
Moreover, the double heterozygous carriers of autosomal

FIGURE 3 | The effect of LDLR variants on LDLR expression.

FIGURE 4 | The representative confocal microscopy images. Blue fluorescence represented DAPI, while red fluorescence represented Dil-LDL.
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dominant hypercholesterolemia gene mutations have an
intermediate phenotype compared with heterozygous and
homozygous/compound heterozygous carriers (Sjouke et al.,
2016). In this study, the proband was a compound
heterozygous FH, and his daughter was a heterozygous FH.
Due to being exposed to high levels of LDLC at birth, FH
patients often exhibit severe atherosclerosis with the time
response and dose effect of LDLC (Ference et al., 2017).
The LDLC level of the proband was exceptionally high,
even after drug therapy, and there were severe
manifestations such as corneal arcus, xanthomas, carotid
artery stenosis, coronary artery stenosis, and aortic valve
calcification. Comparatively, the daughter of the proband
only had hypercholesterolemia without any other clinical
phenotypes. The lipids*age was proposed as an indicator to
predict the risk of arteriosclerotic cardiovascular disease
(Ference et al., 2018). The influence of age should be
considered on the FH patient’s phenotype. Furthermore,
early introduction of lipid-lowering treatment and long-
term medical management could reduce the occurrence of
cardiovascular events for the proband’s daughter.

There are some limitations in the current study. On the one
hand, only three members of one family participated in the
study. On the other hand, we only detected the expression of
LDLR in the whole cell lysate but did not detect the number of
LDLR on the cell surface. In the future, attention should be paid
to the effect of LDLR mutation on the remaining activity of
LDLR to unravel the damage of LDLR mutation to its function.
Finally, we mainly focused on the variants in the exon regions of
LDLR in our study. It has been shown that the mutations in the
intron regions of LDLR may affect the splicing of mRNA

precursors and lead to the occurrence of FH (Reeskamp
et al., 2021a). Further studies should be performed to explore
the mechanism of LDLR intron region variation in the
occurrence and development of FH.

In conclusion, two novel variants, LDLR c.226 G > C and
c.1003 G > T, might be pathogenic for FH by causing LDLR
uptake dysfunction.
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