
RESEARCH ARTICLE

The direct correlation between oxidative

stress and LDL-C levels in adults is maintained

by the Friedewald and Martin equations, but

the methylation levels in the MTHFR and

ADRB3 genes differ
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Abstract

Low-density lipoprotein (LDL-C) concentrations are a standard of care in the prevention of

cardiovascular disease and are influenced by different factors. This study compared the

LDL-C concentrations estimated by two different equations and determined their associa-

tions with inflammatory status, oxidative stress, anthropometric variables, food intake and

DNA methylation levels in the LPL, ADRB3 and MTHFR genes. A cross-sectional popula-

tion-based study was conducted with 236 adults (median age 37.5 years) of both sexes

from the municipality of João Pessoa, Paraı́ba, Brazil. The LDL-C concentrations were esti-

mated according to the Friedewald and Martin equations. LPL, ADRB3 and MTHFR gene

methylation levels; malondialdehyde levels; total antioxidant capacity; ultra-sensitive C-

reactive protein, alpha-1-acid glycoprotein, homocysteine, cobalamin, and folic acid levels;

usual dietary intake; and epidemiological variables were also determined. For each unit

increase in malondialdehyde concentration there was an increase in the LDL-C concentra-

tion from 6.25 to 10.29 mg/dL (p <0.000). Based on the Martin equation (�70 mg/dL), there

was a decrease in the DNA methylation levels in the ADRB3 gene and an increase in the

DNA methylation levels in the MTHFR gene (p <0.05). There was a positive relation of

homocysteine and cholesterol intake on LDL-C concentrations estimated according to the

Friedewald equation and of waist circumference and age based on the two estimates. It is

concluded the LDL-C concentrations estimated by the Friedewald and Martin equations
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were different, and the Friedewald equation values were significantly lower than those

obtained by the Martin equation. MDA was the variable that was most positively associated

with the estimated LDL-C levels in all multivariate models. Significant relationships were

observed based on the two estimates and occurred for most variables. The methylation lev-

els of the ADRB3 and MTHFR genes were different according to the Martin equation at low

LDL-C concentrations (70 mg/dL).

Introduction

Worldwide guidelines focus on low-density lipoprotein cholesterol (LDL-C) cut-off values as

evidence-based standards for the prevention and treatment of cardiovascular disease (CVD).

Many of these guidelines attribute the highest level of evidence (class 1) to LDL-C treatment

goals [1–5].

In this context, the usefulness of treatment goals depends on the accuracy of the estimation

used to assess LDL-C values. In this sense, a novel more accurate calculation–developed by

researchers at Johns Hopkins University in Baltimore–may allow changes in management and

improvement in the accuracy of LDL-C values [6].

According to the results of recent research, LDL-C continues to be routinely estimated by

the Friedewald equation [1–12], which for more than 40 years has been used to support guide-

lines and CVD treatment management; however, it has been demonstrated that this equation

tends to underestimate the LDL-C values in patients with elevated triglyceride levels (>200

mg/dL) and LDL-C below 70 mg/dL [13].

Due to the high cost of directly measuring LDL-C [13], estimating LDL-C using the Friede-

wald equation is still the most commonly used calculation method in clinical practice and in

population-based studies. In turn, the Martin equation was applied in a study with an adult

population, and its efficiency compared to the direct method (enzymatic homogeneous assay)

[14] was observed. The Martin equation has also been applied in studies with individuals

undergoing treatment due to high cardiovascular risk, having as a therapeutic goal the reduc-

tion in LDL-C to<70 mg/dL [6, 15, 16].

In metabolic disorders, such as vascular disease, inflammation, hypercholesterolemia and

increased amounts of native LDL, changes occur in the generation of reactive oxygen species

(ROS), which are responsible for causing changes in the endothelium, imbalances in oxidative

metabolism and L-arginine uncoupling, causing an increase in nitric oxide release and ROS

generation, in addition to endothelial dysfunction and atherogenesis [10].

MDA is the main degradation product of lipid peroxidation, and its level indirectly reflects

the severity of free radical attack [17, 18]. In several studies, the influence of MDA on LDL-C

was also observed in different morbidities [19–22]. The total antioxidant capacity (TAC),

homocysteinemia, C-reactive protein (CRP), alpha-1-acid glycoprotein (AGP), waist circum-

ference (WC) and cholesterol intake, based on methodological protocols for different morbidi-

ties, LDL-C levels were correlated with these variables [11, 23–27].

The relationship between LDL-C values and methylation levels, changes in the methylation

profile can lead to changes in enzyme expression and fat metabolism dysregulation [28]. Addi-

tionally, external factors can regulate gene transcription and directly alter the epigenetic code,

causing permanent activation of key inflammatory mediators with sustained production of

pro-inflammatory mediators [29].
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The DNA methylation in specific genes involved in dyslipidaemia, i.e., in the increase or

decrease in LDL-C values [12, 30, 31], the following are notable: the LPL gene, which encodes

lipoprotein lipase (LpL), involved in the reduced conversion of very low-density lipoprotein

(VLDL) into LDL-C in plasma [32]; the beta-adrenergic receptor 3 gene (ADRB3), which is

involved in the regulation of lipolysis and thermogenesis in white and brown adipose tissue

[33]; and the gene that encodes methylenetetrahydrofolate reductase (MTHFR), which is

involved in the conversion of homocysteine (Hcy) into methionine [34] and may be involved

in lipid metabolism, as observed in a study of MTHFR polymorphism and dyslipidemia [35].

To the best of our knowledge, there are no studies comparing LDL-C values estimated

using one or two methods as dependent variables and LPL, ADRB3 and MTHFR gene methyla-

tion levels, MDA, TAC and CRP, among other independent variables, in linear regression

models.

Accordingly, considering that LDL-C values and their therapeutic changes are associated

with CVD prevention and treatment to a greater extent than the levels of other types of lipids

[26] and that the accuracy of the estimation may help better guide the management of CVD,

the present study compared the estimated LDL-C concentrations based on the equations pro-

posed by Friedewald et al. [36] and by the new method described by Martin et al. [13] and eval-

uated the occurrence of an association with inflammatory status, oxidative stress,

anthropometric variables, food intake and DNA methylation levels in the LPL, ADRB3 and

MTHFR genes in adults of both sexes.

Materials and methods

Study design

This was a cross-sectional epidemiological study associated with the project titled "Cycle II of

Diagnosis and Intervention of the Food, Nutritional and Non-Communicable Diseases Sta-

tuses of the Population of the Municipality of João Pessoa/Paraı́ba (II Ciclo de Diagnóstico e

Intervenção da Situação Alimentar, Nutricional e das Doenças não Transmissı́veis mais Preva-

lentes da População do Municı́pio de João Pessoa/PB—II DISANDNT/Paraı́ba)" [37], for

which data were collected between May 2015 and May 2016.

As for the inclusion criteria, individuals of both sexes were included in the sample; between

20 and 59 years of age; from different socioeconomic statuses and using medication or not. As

for the exclusion criteria, the following were excluded from the original II DISANDNT / PB

database: Individuals with neuro-psychiatric disorders; users of multivitamin supplements,

minerals, anorectic or anabolic agents; pregnant women and infants; for the present study,

individuals with a calorie intake below 700Kcal [38] and individuals with triglyceride levels

above 400mg/dL were also excluded.

After the selection of the eligibility criteria, 236 individuals were selected and duly

instructed as to the objectives of the study according to the ethical guidelines; the subjects

agreed to participate by signing an informed consent. The research protocol of the above men-

tioned project, to which the present study is linked, was approved by the Research Ethics Com-

mittee of the Health Sciences Center of the Federal University of Paraı́ba (Universidade

Federal da Paraı́ba, UFPB), under the protocol number 0559/2013. This study was conducted

in accordance with the Declaration of Helsinki.

This information and other information about the sampling are further detailed in recently

published studies [39, 40], with the exception of the levels of methylation of the LPL and

MTHFR gene, the calculated values of LDL-C in accordance with Martin [13] and the stratifi-

cation of the sample according to the LDL-C values.
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To improve the characterization of the studied population, sex, lipid profile and gene meth-

ylation levels, distributed according to estimated LDL-C values–based on the Friedewald and

Martin equations–were classified according to the Third Report of the National Cholesterol

Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High

Cholesterol in Adults (ATP III), using the following cut-off values as a goal for LDL-C values:

<130 mg/dL, corresponding to values close to the optimal value, used for individuals with low

cardiovascular risk; and the treatment goal of<70 mg/dL, recommended for individuals with

high cardiovascular risk [41].

Data collection

The home visits and the application of the questionnaires were carried out by undergraduate

students of the Nutrition Program and master’s and PhD students of the Graduate’s Program

in Nutrition Sciences (PPGCN) of the UFPB. All were trained before the start of data collection

and also participated in the pilot study. The questionnaires were applied to characterize epide-

miological, demographic and socioeconomic, lifestyle, nutritional assessment, dietary intake

and biochemical data.

Nutritional and food intake assessment

Weight and height measurements were carried out in triplicate and the mean of the three val-

ues was used. Body Mass Index (BMI) was calculated using the weight (kg) divided by the

square of the height (meters), and the cut-off points recommended for adults aged between 20

and 59 years old by the World Health Organization (WHO) [42] were used. The waist circum-

ference (WC) was used to determine abdominal obesity, according to the American Heart

Association (AHA), with the cut-off point being� 88 cm for women and�102 cm for men

[43].

To assess the regular food intake of the individuals, three 24-hour dietary recalls (24HR)

were carried out, contemplating one at the weekend, with an interval of 15 days since the

beginning of data collection, according to a previously-published study [40].

To fill the 24HR, a photo album with homemade measures of food was used based on the

real weight of the average intake of foods validated for this population, minimizing possible

biases of this method [44, 45]. The food items were evaluated and converted into calorie and

nutrient quantities with the Dietwin nutrition software and the multiple sources method

(MSM) was used to estimate the regular intake of individuals of repeated measurements in a

given period; the variation in intake was not affected by the method [46].

Biochemical analyses

Blood samples were collected by an experienced nurse in the individuals’ homes, after a fasting

period of 12 hours. The blood collection followed the standards for the use of piercing/cutting

instruments. For the evaluation of the lipid profile, we used kits for the determination of total

cholesterol and triglycerides of the Labtest1 do Brazil brand following the Trinder enzymatic

method, and for HDL cholesterol we used the Labtest1 do Brazil brand following the precipi-

tation method. PCR-us and AGP were quantified by immunoturbidimetry in serum samples;

the concentrations were determined with specific commercial kits (Labtest, Minas, Brazil)

according to the manufacturer’s instructions. We used a previously described protocol for the

analysis of antioxidant activity through plasma MDA and TAC in serum [47]. Homocysteine

levels were quantified using high performance liquid chromatography (HPLC) [48]. The

serum concentrations of folic acid and vitamin B12 were measured by chemiluminescence and

a electrochemiluminescence immunoassay, respectively [39].
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LDL-C estimation using the Friedewald and Martin equations

The LDL-C values estimated with the Friedewald equation were calculated using the following

formula: (total cholesterol)—(high-density lipoprotein cholesterol [HDL-C])—(triglycerides/

5), in mg/dL [36]. The calculation of the values estimated with the Martin equation was per-

formed using a smartphone application (LDL Cholesterol Calculator. Available at: https://

www.hopkinsmedicine.org/apps/all-apps/ldl-cholesterol-calculator. Accessed on: August

2018) [6]. This new approach integrates an individualized factor in the denominator to capture

the performance of triglycerides in explaining the variance in VLDL-C, where the individual

factor is chosen among 180 different possible factors according to the concentrations of tri-

glycerides and non-HDL-C [13].

Cardiovascular risk

For the total sample, the Framingham risk score was estimated using an online calculator

(Available at: (https://www.framinghamheartstudy.org/fhs-riskfunctions/cardiovascular-

disease-10-year-risk/). Accessed on: May 2018), which estimates the risk of an individual to

develop coronary artery disease over the next 10 years. The evaluation of this score is based on

the following classification: <10% low risk; 10–20% moderate risk; and> 20% high risk.

The diagnosis of arterial hypertension and medication use were self-reported, based on a

medical consultation. For non-hypertensive patients, the normal systolic pressure value (120

mmHg) was used, and for hypertensive patients, the value referring to mild (140 mmHg) and

moderate (160 mmHg) systolic hypertension were used [49], respecting the heterogeneity of

the population regarding the studied variables [39, 40].

The Framingham risk score was estimated to assist in the characterization of the sample

regarding cardiovascular risk, but due to the lack of blood pressure values, it was not included

in the regression models.

Analysis of the methylation levels of the MTHFR, ADRB3 and LPL genes

For the analysis, blood samples were collected at 8:30 a.m. ± 10 min from all individuals to

avoid a potential sampling effect. To isolate DNA, TRIzol-LS was used according to the proto-

col described and adapted by Miller and Dykes [50]. For the DNA standards and participant

samples, whole DNA was quantified on a NanoDrop ND-2000 UV-Vis spectrometer (Thermo

Scientific, USA). Genomic DNA was modified by bisulfite using a Cells-to-CpG™ conversion

kit (Applied Biosystems, Life Technologies, California) according to the manufacturer’s

instructions. PCR amplification and high-resolution melting (HRM) analysis were performed

using an Applied Biosystems 7500 Fast System and the accompanying software. The primer

sequences for each gene were obtained using MethPrimer Software (https://www.urogene.org/

methprimer/) according to the promoter region sequence entered into the Genome Browser

(https://genome.ucsc.edu/).

The final volume of the solution used for PCR was 20 μl, containing: AmpliTaq™ Gold 360

Buffer, 10x, 25mM Mg Chloride, MeltDoctor™ HRM Dye (20x), 25nM of each initiator con-

taining the primer sequences for the genes, according to Fig 1 and 1 μl of bisulfite-converted

genomic DNA. The qPCR consisted of an initial enzyme activation at 95˚C which lasted for 10

minutes, followed by 40 cycles, each consisting of 15 s at 95˚C, 60 s at 60˚C, 10 s at 95˚C, 60 s

at 60˚C, 15 s at 95˚C, and 15 s at 60˚C the design of the studied genes are described in Box 1.

To calculate the levels of methylation, DNA standards converted to commercially available

bisulfite were acquired as positive (100% Methylated) and negative control (0% Methylated)

CpGenome (Chemicon, Milipore, Billerica, MA, USA) and we performed the appropriate

dilutions to obtain the following ratios: 0, 25, 50, 75 and 100%; all samples were performed at
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least in triplicate to acquire the standard curves and compare with the fusion profile of the

samples.

Statistical analysis

All statistical analyses were performed with the software R, 3.3.2 [51]. Initially, the sample was

characterized using measures such as simple frequency, percentage, measures of central ten-

dency and dispersion. Next, a proportions test was used to determine whether there was a dif-

ference between the proportion of individuals with LDL-C values lower, higher and equal to

130 mg/dL and lower, higher and equal to 70 mg/dL for patients of each sex.

The data were tested for the presence of normality using the Lilliefors test, which is a deriva-

tion of the Kolmogorov-Smirnov test [52]. In addition, to determine whether there was a dif-

ference, on average, in the variables total cholesterol (TC), HDL, triglycerides, LPL gene

methylation level, ADRB3 gene methylation level and MTHRF gene methylation level accord-

ing to the classes "LDL up to 130 mg/dL", "LDL equal to or greater than 130 mg/dL", "LDL up

Fig 1. LDL-C concentration density curves according to the estimation methods.

https://doi.org/10.1371/journal.pone.0239989.g001

BOX 1. Primer design.

Gene Primers (F/R) TA

(˚C)
Product

(bp)
CpG
sites

Genomic Location

MTHFR F 5’–GGTCAGAAGCATATCAGTCATGAG– 3’ 58˚ 213 bp 6 Chr1: 11,785,723–
11,805,413)R 5’–CTGGGAAGAACTCAGCGAACTCA– 3’

LPL F 5’–GATGTTGAATATTGAATTATTTTAGTAATA– 3’ 63˚ 235 bp 4 Chr8: 19,939,253–
19,967,259)R 5’–AAAAATCACCATACCCAACTAATTTT– 3’

ADRB3 F 5’–TAGGTGATTTGGGAGATTTTTTTT– 3’ 60˚ 238 bp 4 Chr8: 37,962,990–
37,966,599R 5’- CCCCTAACA ACCCACTAATATTAAC– 3’

F–forward; R–reverse; Ta−annealing temperature.

https://doi.org/10.1371/journal.pone.0239989.t001
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to 70 mg/dL", and "LDL equal to or greater than 70 mg/dL", estimated by the Friedewald and

Martin equations, the t-test, for comparisons of means, and the Mann-Whitney test, for com-

parison of medians, when the size of the subsample was small, were used.

To determine if there were significant relationships among the LDL-C values estimated by

the Friedewald and Martin equations and the methylation levels of the LPL, MTHFR and
ADRB3 genes and the other study variables, the linear regression models described below were

proposed:

Model 1: μ(LDL Friedewald) = β0 + β1
�LPL gene methylation levels + β2

�MDA + β3
�TAC +

β4
�PCR + β5

�alpha-1-glyco + β6
�Hcy + β7

�B12 + β8
�folate;

Model 3: μ(LDL Friedewald) = β0 + β1
� LPL gene methylation levels + β2

�CHO + β3
�PTN +

β4
�LIP + β5

�vitamin A + β6
�mono + β7

�B12 + β8
�oleic acid + β9

�omega 3 + β10
�omega 6 +

β11
�saturated fat + β12

�cholesterol + β13
�polyunsaturated fats + β14

�trans fats + β15
�vitamin

C + β16
�vitamin E + β17

�betacarotene + β18
�selenium + β19

�folate;

Model 5: μ(LDL Friedewald) = β0 + β1
�LPL gene methylation levels + β2

�sex + β3
�age +

β4
�income + β5

�physical activity + β6
�smoking + β7

�alcohol consumption + β8
�WC +

β9
�hypolipidaemic drugs + β10

�omega 6 + β11
�morbidities related to CVDs.

The same models proposed for the Friedewald equation were also proposed for the Martin

equation (models 2,4,6) and for the ADRB3 and MTHRF genes. For all analyses described

above, the level of significance adopted was 5%.

Results

The study consisted of 236 adult individuals, of which 158 (67%) were female and 78 were

male (33%), with a median age of 37.5 years.

There was a significant difference (p = 0.003) between mean LDL-C concentrations in the

total sample estimated by the Friedewald and Martin equations, with LDL-C concentrations of

107.24 mg/dL and 117.81 mg/dL, respectively.

Of the 236 individuals included in the present study, 83% and 92% presented LDL-C� 70

mg/dL, and 25% and 33% showed LDL-C� 130 mg/dL according to Friedewald and Martin

equations, respectively.

Fig 1 shows that the LDL-C density curve calculated by the Friedewald equation is slightly

more dispersed than that calculated by the Martin method, which can also be observed by the

estimated standard deviation, which was 39.31 for LDL-C (Friedewald) and 36.49 for LDL-C

(Martin). According to the non-parametric Mann-Whitney test, there was a significant differ-

ence between LDL-C values according to the estimation method, at the 1% significance level

(W = 23062, p-value = 0.001).

Table 1 shows that there was a difference according to sex in the values estimated between

the intervals less than 130 mg/dL and above 130 mg/dL; more women had LDL-C levels lower

than 130 mg/dL. There was also a difference between the intervals presented above for the

mean TC and triglyceride values.

As for the WC values (male and female) distributed according to the LDL-C values calcu-

lated according to Friedewald, there was a difference between the values< and� 130 mg/dL

in relation to the values < and� 70. It was observed that individuals who had a higher WC,

also presented higher values of LDL-C.

As for the WC values for the male sex distributed according to the LDL-C values calculated

according to Martin, there also was a difference between the values < and� 130 mg/dL in

relation to the values< and� 70.
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In the total sample, 14% of individuals were hypertensive, and after calculating the Fra-

mingham score–using a hypothetical value of 160 mmHg (moderate hypertension)– 82% pre-

sented mild risk, 13% presented moderate risk, and 5% presented high risk. However, when

the Framingham score was calculated using 140 mmHg (mild hypertension), 89% presented

mild risk, 8% presented moderate risk, and 3% presented high risk. When the corresponding

normal blood pressure value of 120 mmHg was applied, excluding the self-reported hyperten-

sive patients from the total sample, 93% of the individuals presented mild risk, 6% presented

moderate risk, and 0.5% presented high risk.

There were differences in the distribution between the methylation levels of the ADRB3 gene

(p = 0.010) and between the methylation levels of the MTHFR gene (p = 0.031) according to the

Mann-Whitney test for values classified according to the cut-off value of 70 mg/dL (Table 1).

As described in Table 2, using the methylation levels of the LPL and ADRB3 genes as inde-

pendent variables, the variables MDA and Hcy positively influenced the LDL-C value esti-

mated with the Friedewald equation. The LDL-C Friedewald increased, on average, 10.06 mg/

dL for each nmol/L MDA; and the LDL-C Friedewald increased, on average, 0.55 mg/dL for

each μmol/L Hcy. Regarding the Martin equation with these same two genes, the MDA vari-

able also positively influenced the variable LDL-C, and for each nmol/L MDA and μmol/L

Table 1. Characteristics of the sample regarding sex, waist circumference, lipid profile and methylation levels of the LPL, ADRB3 and MTHFR genes according to

different LDL-C estimates and cut-off values.

Lipid profile Mean SD LDL-C F (mg/dL)

<130 <70

LDL-C F (mg/dL)

�130�70

P-value LDL-C M (mg/dL)

<130 <70

LDL-C M (mg/dL)

�130�70

P-value

Female - - 117 (50%) 41 (17%) <0.000�a 105 (45%) 53 (22%) 0.000�a

24 (10%) 134 (56.8) <0.000�a 13 (5%) 145 (61%) 0.000�a

Male - - 61 (26%) 17 (7%) <0.000�a 55 (23%) 23 (10%) <0.000�a

17 (7%) 61 (25.8%) <0.000�a 6 (2%) 72 (30%) <0.000�b

Female waist size (cm) 84.44 14.8 82.84 ± 14.94 88.61 ± 13.81 0.019�c 82.48 ± 15.56 88.22 ± 12.58 0.010�c

81.08 ± 16.08 84.99 ± 14.59 0.250c 74.79 ± 12.87 85.31 ± 14.72 0.008�c

Male waist size (cm) 87.18 14.6 86.39 ± 15.52 90.03 ± 10.25 0.259b 85.13 ± 14.65 92.08 ± 13.40 0.048�b

83.80 ± 14.13 88.05 ± 14.65 0.298b 79.17 ± 13.25 87.85 ± 14.54 0.177b

Total cholesterol (mg/dL) 186.4 42.1 169.98 ± 28.32 236.60 ± 37.30 <0.000�b 164.39 ± 24.69 232.60 ± 32.40 <0.000�b

139.29 ± 24.26 196.25 ± 38.13 <0.000�b 121.84 ± 13.49 192.00 ± 38.86 <0.000�b

HDL (mg/dL) 43.78 11 43.45 ± 11.19 44.78 ± 10.43 0.413b 43.36 ± 11.62 44.67 ± 9.59 0.360b

40.90 ± 13.67 44.38 ± 10.29 0.129b 46.37 ± 13.71 43.55 ± 10.74 0.394b

Triglycerides (mg/dL) 138.8 73.7 132.12 ± 69.19 159.38 ± 83.43 0.027�b 129.33 ± 70.12 158.80 ± 77.47 0.124b

142.37 ± 85.15 138.07 ± 71.29 0.764b 115.89 ± 64.34 140.83 ± 74.26 0.124 b

LPL gene methylation

level (%)

36% 19% 36% ± 20% 36% ± 17% 0.901b 36% ± 19% 37% ± 18% 0.632b

34% ± 18% 38% ± 19% 0.430 b 37% ± 23% 36% ± 19% 0.919 b

ADRB3 gene methylation

level (%)

41% 18% 42% ± 18% 38% ± 17% 0.098b 43% ± 18% 39% ± 18% 0.151b

43% ± 19% 41% ± 18% 0.452 b 52% ± 19% 40% ± 18% 0.010�c

MTHRF gene methylation

level (%)

35% 18% 34% ± 18% 36% ± 17% 0.487b 34% ± 18% 36% ± 18 0.381b

31% ± 16% 36% ± 18% 0.165 b 26% ± 10% 36% ± 18% 0.031�c

a: proportions test

b: t-test

�: significant results

c: Mann-Whitney test; -: the calculation does not apply or does not make sense; F: Friedewald; M: Martin; LDL-C: low-density lipoprotein cholesterol.

https://doi.org/10.1371/journal.pone.0239989.t002
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Hcy, the LDL-C estimated by the Martin equation increased, on average, 6.37 mg/dL and 6.25

mg/dL, respectively.

With the methylation levels of the MTHFR gene as one of the independent variables, for

each nmol/L MDA, the LDL-C Friedewald increased, on average, 10.29 mg/dL, and for

each μmol/L Hcy, the LDL-C Friedewald increased, on average, 0.56 mg/dL. According to the

Martin equation with this same gene, the variable MDA had a positive influence on the vari-

able LDL-C, and for each nmol/L MDA, LDL-C increased, on average, 6.57 mg/dL.

There was a positive influence of cholesterol intake on the LDL-C concentrations calculated

according to the Friedewald equation, based on Model 3, which has the methylation levels of

the LPL, ADRB3 and MTHFR genes as independent variables (Table 3).

Table 2. Relationship between LDL-C levels estimated based on the Friedewald and Martin equations and the methylation levels of the LPL, ADRB3 and MTHFR
genes, oxidative stress, and plasma levels of vitamin B12 and folate.

Model 1—Response variable: LDL-C Friedewald equation

Variable LPL coefficient p-value ADRB3 coefficient p-value MTHFR coefficient p-value

Intercept 75.13 >0.000 75.13 >0.000 72.99 >0.000

Gene (%) 11.10 0.408 11.10 0.426 19.17 0.201

MDA (nmol/L) 10.06 0.000 � 10.06 0.000� 10.29 0.000�

TAC (%) 10.17 0.566 10.17 0.55 7.02 0.693

CRP (mg/L) -1.10 0.143 -1.10 0.117 -1.18 0.115

AGP (mg/dL) 0.03 0.814 0.03 0.875 0.02 0.903

Hcy (μmol/L) 0.55 0.040� 0.55 0.040� 0.56 0.038�

Vitamin B12 (pg/ml) -0.03 0.145 -0.03 0.152 -0.03 0.153

Folic Acid (ng/ml) -0.01 0.599 -0.01 0.531 -0.00 0.962

Model 2—Response variable: LDL-C Martin Equation

Intercept 100.20 >0.000 109.70 >0.000 96.48 >0.000

Gene (%) 6.61 0.604 -15.52 0.247 18.04 0.205

MDA (nmol/L) 6.37 0.020� 6.25 0.022� 6.57 0.016�

TAC (%) 1.14 0.946 2.4 0.887 -1.53 0.928

CRP (mg/L) -0.86 0.230 -0.924 0.195 -0.91 0.199

AGP (mg/dL) 0.09 0.487 0.09 0.508 0.08 0.535

Hcy (μmol/L) -0.12 0.638 -0.11 0.663 -0.11 0.665

Vitamin B12 (pg/ml) -0.02 0.284 -0.02 0.278 -0.02 0.286

Folic Acid (ng/ml) 0.00 0.973 -0.00 0.899 0.01 0.637

�: p < 0.005; LDL-C: low-density lipoprotein cholesterol; AGP: alpha-1-acid glycoprotein; Hcy: homocysteine; MDA: malondialdehyde; CRP: C-reactive protein.

https://doi.org/10.1371/journal.pone.0239989.t003

Table 3. Relationship between LDL-C levels estimated with the Friedewald and Martin methods and the methylation levels of the LPL, ADRB3, MTHFR genes and

habitual dietary intake.

Model 3—Response variable: LDL-C Friedewald

Variable Coefficient LB-UB (95%) Z statistic p-value

Intercept 109.10 98.16 ± 120.04 9.97 >0.000

LPL gene (%) 10.85 -2.83 ± 24.53 0.79 0.428

ADRB3 gene (%) -8.93 -23.73 ± 5.87 -0.60 0.547

MTHFR gene (%) 10.02 -5.42 ± 25.46 0.65 0.517

Cholesterol (mg) 0.03 0.02 ± 0.05 2.15 0.033�

Model adjusted for the intake of the nutrients were included in the explanatory model; �: p < 0.005; LDL- C: low-density lipoprotein cholesterol; LB: lower boundary;

UB: Upper boundary. No significant relationship was found in this model for Martin.

https://doi.org/10.1371/journal.pone.0239989.t004
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Additionally, there was a positive relationship among age and WC with LDL-C concentra-

tions based on the two LDL-C estimates using Models 5 and 6; in contrast, for Model 5, there

was not a positive relationship between the methylation level of the LPL gene and cholesterol

and LDL-C levels calculated based on the Friedewald equation (Table 4).

Discussion

LDL-C concentrations varied as a function of the equations used to estimate their values, both for

the Friedewald equation and for the Martin equation, and were significantly different. In this

sense, the present population-based study identified that there is a distinction in the dimension of

the problem; that is, LDL-C concentrations vary according to the estimation method used.

The inaccuracies of the formula with regard to triglyceride levels > 400 mg/dL (levels

observed in 1% of the population of the present study) were recognized by Friedewald, Levy

and Fredrickson [36]. However, even when triglyceride levels are below 400 mg/dL, research-

ers have suggested that the LDL-C calculated by the Friedewald formula underestimates

LDL-C concentrations, corroborating the data found in the present study, where the mean

LDL-C of the total sample was 107.24 and 117.81 mg/dL according to the Friedewald and Mar-

tin equations, respectively. The LDC-C concentrations estimated according to the Friedewald

equation can therefore erroneously classify the CVD risk, particularly in individuals with high

triglyceride levels (�200 mg/dL; levels observed in 18% of the population in the present study,

who presented mild cardiovascular risk) [6, 13].

The results from the only study found in the literature that compared the LDL-C levels esti-

mated using the two equations in an adult population cannot be compared with the results of

the present study because the objectives were different, considering that no comparisons were

made between the two equations but, rather, between their results and the direct method [14].

However, notably, Lee et al. [14] observed that the Martin equation exhibited significantly

higher overall agreement with the NCEP-ATP III guideline classifications than did the Friede-

wald equation, with values of 82.0% and 78.2%, respectively.

Table 4. Relationship among LDL-C levels estimated based on the Friedewald and Martin methods and methylation levels of the LPL, ADRB3, and MTHFR genes

and demographic, epidemiological, lifestyle and anthropometric variables.

Model 6—Response LDL-C Martin

Variable Coefficient LB-UB (95%) Z statistic p-value

Intercept 26.70 7.63 ± 45.77 1.40 0.163

LPL gene 3.16 -8.61 ± 14.93 0.27 0.789

ADRB3 gene -9.42 -22.14 ± 3.30 -0.74 0.460

MTHFR gene 10.58 -2.06 ± 23.22 0.84 0.404

Age 0.80 0.59 ± 1.01 3.86 0.000�

Waist circumference 0.51 0.35 ± 0.67 3.21 0.001�

Model 5—Response variable: LDL-C Friedewald

Intercept 42.35 19.96 ± 64.74 1.89 0.060

LPL gene 13.02 -7.92 ± 18.87 0.90 0.367

ADRB3 gene -1.42 -15.92 ± 13.08 -0.10 0.922

MTHFR gene 14.00 -0.39 ± 28.39 0.97 0.331

Age 0.50 0.26 ± 0.73 2.11 0.036�

Waist circumference 0.42 0.24 ± 0.60 2.33 0.020�

Model adjusted for demographic, epidemiological, lifestyle and anthropometric variables included in the explanatory model

�: p < 0.005; LDL-C: low-density lipoprotein cholesterol; LB: lower boundary; UB: Upper boundary.

https://doi.org/10.1371/journal.pone.0239989.t005
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In the multivariate regression analysis, MDA was the only variable that positively correlated

with LDL-C concentrations, calculated based on the Friedewald [36] and Martin et al. [13]

equations, in all multivariate models analysed and composed of independent variables such as

methylation levels of the LPL, ADRB3 and MTHFR genes, oxidative stress, inflammation,

abdominal obesity, food intake and epidemiological variables. In addition, a positive relation-

ship was found among Hcy and cholesterol with the LDL-C concentrations estimated accord-

ing to the Friedewald equation in all models.

There was also a relationship among age and WC with LDL-C concentrations, estimated

based on the two equations, with the exception of the model that included the methylation lev-

els of the LPL gene as independent variable and LDL-C estimated based on the Friedewald

equation as the dependent variable [36].

This study is unprecedented with regard to the identification of relationships and analysis

of the influence of variables such as LPL, ADRB3 and MTHFR gene methylation, oxidative

stress, inflammation, abdominal obesity, food intake and epidemiological variables on the

LDL-C concentrations estimated by different equations.

In the present study, 50% of the individuals presented no morbidity, 17% had more than

one morbidity, and 33% had one morbidity, and most individuals showed methylation levels

between 35% and 41%. Differences in the methylation levels of the MTHFR and ADRB3 genes

were identified only with the LDL-C concentrations estimated according to the Martin equa-

tion and at the cut-off value of 70 mg/dL. Although in the regression there was no significant

relationship, we observed that at lower concentrations of LDL-C, methylation levels were sta-

tistically reduced when compared to higher values of LDL-C. Regarding the ADRB3 gene, in

the present study ADRB3 methylation levels were lower at LDL-C levels� 70 mg/dL. Although

the population is different from the present study, it has been shown in men with familial

hypercholesterolemia (FH) that the mean methylation levels of the ADRB3 gene were lower

and correlated with high levels of LDL-C [30]. Interestingly, those authors found that hyper-

methylation was associated with higher ADRB3 mRNA levels. They also detected that severely

obese men also showed an overall ADRB3 hypomethylation compared to FH men, suggesting

that ADRB3 hypomethylation might be associated with obesity, body fat distribution and

related disorders in men. The β-3 adrenergic receptor (β-3AR), a protein polypeptide consist-

ing of 402 amino acids is, a member of the G protein-coupled receptor superfamily and mainly

mediates the decomposition and heat generation of fat [53]. If the hypomethylation found in

the present study could confirm its relationship with the decrease in ADRB3 transcript level,

the higher LDL-C levels found could be better understood.

In contrast, another study showed that in women with excess weight, higher intake of

monounsaturated and polyunsaturated fats from hazelnut oil was associated with lower

ADRB3 methylation levels and greater reductions of LDL-C levels [39].

This result was inverse for the MTHFR gene, that is, at LDL-C levels� 70 mg/dL, MTHFR
methylation levels were higher. In the reviewed literature, hypermethylation of the MTHFR
gene was associated with higher levels of TC and LDL-C in diabetic individuals [31]. MTHFR

is an enzyme that acts on the folate cycle, and in MTHFR-deficient mice it was shown that the

deficiency affects apolipoprotein levels and leads to lipid deposition [54]. In addition, the rela-

tionship between hypermethylation and decreased MTHFR transcript levels has already been

shown [55]. Thus, lower MTHFR levels could lead to increased lipid levels. Although the

mechanism of this enhancement is not yet clear, some studies of MTHFR polymorphisms that

lead to decreased enzyme activity also show an association with higher lipid levels [31, 56].

Regarding the levels of methylation of the LPL gene, no relationship was found in the pres-

ent study between the methylation levels of this gene and LDL-C concentrations, corroborat-

ing studies based on the analysis of the visceral adipose tissue of individuals with metabolic
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syndrome [12], of leukocytes from individuals with familial hypercholesterolemia [57] and of

the placenta of pregnant women with gestational diabetes mellitus [58], thus also in individuals

with defined clinical diagnoses.

Malondialdehyde (MDA) is an end-product of the radical-initiated oxidative decomposi-

tion of polyunsaturated fatty acids; therefore, it is frequently used as a biomarker of oxidative

stress [23]. In the present study, 12% of the total population had high MDA, and 25% and 33%

had high LDL-C (> 130 mg/dL), according to the Friedewald and Martin equations, respec-

tively. Thus, although less than 15% of the population presented high MDA values, these values

likely affect the lipid profile, increasing the LDL-C concentrations in the analysed models in

the study population, with 75% to 67% of the LDL-C concentrations considered adequate,

according to the two equations used.

In the Veterans Affairs Diabetes Trial, which investigated the association between MDA

and diabetes mellitus, it was observed that the levels of MDA and LDL-C in circulating

immune complexes can predict the occurrence of myocardial infarction, in addition to acute

cardiovascular events in patients with type 2 diabetes [59]. However, the precise mechanism

by which MDA can cause endothelial cytotoxicity is not known [23].

Regarding the relationship between MDA and LDL-C, several studies have shown that

MDA and LDL-C values decrease in animal models with interventions based on the intake of

different foods: Garlic (Allium sativum L.) polysaccharide [21], Chicory (Cichorium intybus L.)

polysaccharides [22], Morechella esculenta polysaccharide [27].

Regarding the other study variables, considering that vascular inflammation is a fundamen-

tal mechanism in the progression of atherosclerosis and acute coronary syndromes [60], CRP

stands out as an inflammation biomarker and is recommended as a secondary risk assessment

factor in treatment decision-making [61, 62], particularly with regard to the treatment of high

blood cholesterol [63, 64]. However, possibly because the mean CRP values for the majority of

the population (81%) remained within the reference values, this variable did not influence

LDL-C levels.

Hcy was included as a variable because increased Hcy affects the vascular endothelium, pro-

moting structural endothelial injury [65]. Several mechanisms have been proposed to explain

the association between Hcy and coronary artery disease, including the stimulation of LDL-C

oxidation [66, 67]. In the present study, 14% of individuals had Hcy values above the reference

range; however, the increased values may not have been sufficient to significantly influence the

increase in LDL-C levels.

Regarding triglyceride values, Ference et al. [68] emphasized that the clinical benefit of

reducing triglyceride levels is directly similar to the clinical benefit of reducing LDL-C levels

per unit difference in apolipoprotein B; reduced triglyceride and LDL-C levels are associated

with a lower risk of CVD. In the present study, triglyceride values increased significantly as a

function of increased LDL-C. Further studies are needed to explain why there was only a dif-

ference between the triglyceride values when distributed at cut-off values of<130 mg/dL

and� 130 mg/dL LDL-C estimated according to the Friedewald equation.

Regarding the relationship among demographic, anthropometric and epidemiological vari-

ables, there was a positive influence of age, habitual cholesterol intake and WC on LDL-C lev-

els. In the literature, advanced age and male sex have long been well established risk factors for

CVD [69–72].

With regard to cholesterol intake, [73] observed that the intake of a high-fat diet (70.8%)

increased the LDL-C levels in an experimental group; however, in the control group (29% fat),

there was no significant difference. In the present study, even when the total fat intake was

within the reference range (29%) [70] and the habitual cholesterol intake was 243.51 mg, an

influence of this intake on LDL-C levels was identified.
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Saturated fat, which is part of the habitual intake of this population, is a good source of ath-

erogenic saturated fatty acids and is found in products such as coconut oil, which is rich in lau-

ric fatty acids, and butter, which is a source of myristic and palmitic fatty acids [49].

Another explanation for this discrepancy may involve the type of fat consumed, since, in

the case of the present study, the consumption of saturated fatty acids was 12%, exceeding the

recommendation according to the National Institute of Heart, Lung and Blood: Detection,

assessment and treatment of high blood cholesterol levels in adults (adult treatment panel III),

final report, US Department of Health and Human Services, NIH Publication No. 02–5215,

Bethesda, Maryland, September 2002.

WC is associated with CVD [74], and understanding changes in LDL-C with increased WC

may help predict reductions in LDL-C, a result that can be achieved through weight loss.

Regarding explanations for the relationship between LDL-C and WC, there are several hypoth-

eses, which are different for values above or below the inflexion points for WC found in the

population according to Laclaustra et al. [11].

In the present study, WC was not analysed by inflexion points, as in the aforementioned

study, thus precluding comparisons with it. In this sense, we can only infer that according to

the variable sex, the population of the present study was rated between 85% and 59% below

and 14% and 39% above the WC reference values for males and females, respectively.

As limitations we emphasize that the results of this observational study, due to its innova-

tive nature, should be confirmed in intervention or longitudinal follow-up studies to check if

these associations are definitely causal or merely correlative. Another limitation is the fact that

the LDL-C values were not assessed by the direct method. In addition, we emphasize the lack

of pressure values, making it relevant to mention that, among the five most important studies

conducted in the last decade in Brazil, two of them used self-reported data to calculate the

prevalence of hypertension [49]. The strengths include the unprecedented aspect regarding the

identification and analysis of the relationships between the LDL-C concentrations estimated

based on different equations and the inclusion of the methylation levels of the LPL, ADRB3
and MTHFR genes as independent variables.

In addition to adding to our understanding in relation to the Martin and Friedewald equa-

tions, our data contribute to the elucidation of molecular mechanisms involved in cellular

metabolism. The molecular data can be tabulated collectively in a gene panel indicating the

susceptibility to a variety of pathologies and it can be used as a tool for personalized medicine,

an action that will help in diagnosis, prognosis and treatment.

Conclusion

The LDL-C concentrations estimated by the Friedewald and Martin equations were different,

and the Friedewald equation values were significantly lower than those obtained by the Martin

equation.

MDA was the variable that was most positively associated with the estimated LDL-C levels

in all multivariate models composed of variables associated with LPL, ADRB3 and MTHFR
gene methylation levels, oxidative stress, inflammation, abdominal obesity, food intake and

epidemiological variables.

Regarding the association of the variables age and WC with the LDL-C concentrations esti-

mated based on the two equations, a positive association was observed for all models, with the

exception of the model that had the methylation levels of the LPL gene and LDL-C concentra-

tions estimated by the Friedewald equation. Based only on the Friedewald equation, Hcy and

cholesterol intake were two positive associations with LDL-C levels.
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The methylation levels of the ADRB3 and MTHFR genes were different with the Martin

equation using the lowest LDL-C concentrations as cut-off values.

Further studies are needed to explain why some associations only occurred based on the

LDL-C concentrations estimated by the Friedewald equation and for the methylation levels,

which were only different when compared to the LDL-C concentrations at the lowest cut-off

values based on the Martin equation.
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Writing – original draft: Jéssica Vicky Bernardo de Oliveira, Raquel Patrı́cia Ataı́de Lima,
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