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Abstract: Functionalized and environmentally friendly ionic liquids are required in many fields,
but convenient methods for measuring their polarity are lacking. Two novel ether-functionalized
amino acid ionic liquids, 1-(2-methoxyethyl)-3-methylimidazolium alanine ([C1OC2mim][Ala]) and
1-(2-ethoxyethyl)-3-methylimidazolium alanine ([C2OC2mim][Ala]), were synthesized by a neutral-
ization method and their structures confirmed by NMR spectroscopy. Density, surface tension, and
refractive index were determined using the standard addition method. The strength of intermolecular
interactions within these ionic liquids was examined in terms of standard entropy, lattice energy, and
association enthalpy. A new polarity scale, PN, is now proposed, which divides polarity into two
compartments: the surface and the body of the liquid. Surface tension is predicted via an improved
Lorentz-Lorenz equation, and molar surface entropy is used to determine the polarity of the surface.
This new PN scale is based on easily measured physicochemical parameters, is validated against
alternative polarity scales, and is applicable to both ionic and molecular liquids.

Keywords: polarity scale; ionic liquids; ether-functionalized; intermolecular interactions; molar
surface entropy; Lorentz-Lorenz equation

1. Introduction

The green chemistry concept is a widely accepted focus of modern chemical research,
including the design of new materials. Ionic liquids (ILs) have emerged as useful green
reaction media due to their many unique features, such as low vapor pressure and high ther-
mal stability [1,2]. They play important roles in many fields, including energy storage [3],
catalysis [4], pharmaceuticals, and medicine [5,6]. However, the relatively high viscosity of
ILs is a barrier to further practical applications. Inserting ether groups into the cations of ILs
has been shown to substantially reduce their viscosity without lowering thermal stability,
while also reducing their toxicity [7–10]. Ether-functionalized ILs (EFILs) have demon-
strated remarkable performance in many fields. For example, they dissolve lignocellulosic
biomasses [7], reduce viscosity and provide coordination sites for lithium ions in Li/Li-ion
batteries [8], and enhance CO2 selectivity during CO2 capture [11]. However, traditional
ILs containing anions such as Cl−, [BF4]−, and [PF6]− are environmentally hazardous. The
development of environmentally friendly, task-specific ILs based on renewable bioresources
(such as amino acids and fatty acids) is an environmental necessity. Ohno and Fukumoto
were the first to prepare amino acid ILs (AAILs), using 20 different amino acids as the
anion; these AAILs demonstrated lower toxicity [12,13]. AAILs have now been utilized in
enantioselective separation [14], extraction separation [15], and CO2 capture [11]. ILs with
imidazolium-based cations exhibit low toxicity. Meanwhile, the shorter the alkyl chain
on the imidazole ring, the lower the toxicity [16,17]. Thus, imidazolium ILs have proved
more attractive than ILs based on ammonium, phosphonium, and pyridinium cations. The
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present study describes the preparation of two novel ether-functionalized, imidazolium-
based AAILs: 1-(2-methoxyethyl)-3-methylimidazolium alanine ([C1OC2mim][Ala]) and
1-(2-ethoxyethyl)-face Tension, and Refractive Inde ([C2OC2mim][Ala]), together abbrevi-
ated as [CnOC2mim][Ala](n = 1, 2).

There is scope for considerable further research into EFILs because their physiochem-
ical properties are highly susceptible to changes in structure. More experimental data
are required to elucidate their structure–property relationships. This study measures the
density, surface tension, and refractive index of [CnOC2mim][Ala](n = 1, 2). Density cor-
relates with packing efficiency and intermolecular interactions and is a critical design
property in chemical engineering [18]. Its study provides insight into the microstructure
and macroscopic properties of ILs [19]. Surface tension is a crucial property at liquid–gas
interfaces [20], affecting how the phases interact [21]. The surface tension of ILs is between
those of alkanes and water [22]. It can be measured directly or predicted using, for example,
the parachor formula [23] or group contribution methods [24]. This study predicts surface
tension using an improved Lorentz-Lorenz equation. ILs are often used as solvents, so
determining their polarity is crucial. Due to their non-structured nature, polarity cannot
be determined by traditional methods such as relative permittivity (εr) and dipole mo-
ment (δ) [25]. The most widely used experimental method for IL polarity is the ET(30)
scale, which measures the solvatochromic UV−Vis absorbance shift of a solute. However,
this method is time-consuming and expensive, so attempts have been made to develop
predictive models [26,27].

The present study proposes a new polarity scale, PN, which enables polarity to be
predicted from the easily measured physicochemical properties of density, surface tension,
and refractive index. Following on from our previous studies [28–30], (i) [CnOC2mim][Ala]
(n = 1, 2) are synthesized and their structures confirmed by nuclear magnetic resonance
spectroscopy (NMR); (ii) their density, surface tension, and refractive index are measured
from 288.15 to 328.15 K at 5 K intervals; (iii) the strength of their molecular interactions
are studied based on standard entropy, lattice energy, and association enthalpy; (iv) an
improved Lorentz-Lorenz equation is used to predict the surface tension of ILs and molec-
ular liquids; and (v) a new scale, PN, for estimating polarity is proposed, combining molar
surface entropy s (which measures the polarity of the surface of a liquid) and the polarity
coefficient P2 (which measures the polarity of the body of a liquid).

2. Results and Discussion
2.1. Density, Surface Tension, and Refractive Index of [CnOC2mim][Ala](n = 1, 2)

The density (ρ), surface tension (γ), and refractive index (nD) of [CnOC2mim][Ala]
(n = 1, 2) with various water contents over 288.15–328.15 K (at 5 K intervals) are shown
in Tables S1–S3 Supplementary Materials, with each value being an average of three
measurements using the standard addition method. These parameters were plotted against
water content (Figure 1), producing a series of straight lines with correlation coefficient
squares (r2) consistently greater than 0.99. The y-axis intercepts of these lines give the
experimental value of each parameter in anhydrous [CnOC2mim][Ala](n = 1, 2) (Table 1).
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d, and f, respectively).  288.15 K;  293.15 K;  298.15 K;  303.15 K;  308.15 K;  313.15 K;  
318.15 K;  323.15 K;  328.15 K. 
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Figure 1. Density (ρ), surface tension (γ), and refractive index (nD) plotted against water content
(w2) at various temperatures for [C1OC2mim][Ala] (a,c,e, respectively) and for [C2OC2mim][Ala]
(b,d,f, respectively).� 288.15 K; • 293.15 K;N 298.15 K;H 303.15 K;
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Table 1. Density (ρ), surface tension (γ), refractive index (nD), and thermal expansion coefficient (α)
at various temperatures (T) for [CnOC2mim][Ala](n = 1, 2).

T (K) ρ (g·cm−3) γ (mJ·m−2) nD α (K−1 × 104)

[C1OC2mim][Ala]

288.15 1.16073 51.6 1.5112 5.8555
293.15 1.15744 51.2 1.5097 5.8722
298.15 1.15423 50.9 1.5080 5.8885
303.15 1.15082 50.5 1.5066 5.9060
308.15 1.14739 50.0 1.5048 5.9236
313.15 1.14395 49.7 1.5038 5.9414
318.15 1.14049 49.3 1.5019 5.9595
323.15 1.13703 48.8 1.5004 5.9776
328.15 1.13365 48.4 1.4991 5.9954
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Table 1. Cont.

T (K) ρ (g·cm−3) γ (mJ·m−2) nD α (K−1 × 104)

[C2OC2mim][Ala]

288.15 1.13849 49.6 1.4942 5.8490
293.15 1.13475 49.3 1.4927 5.8683
298.15 1.13190 48.9 1.4914 5.8830
303.15 1.12854 48.5 1.4899 5.9005
308.15 1.12514 48.0 1.4885 5.9184
313.15 1.12175 47.6 1.4869 5.9363
318.15 1.11838 47.2 1.4854 5.9541
323.15 1.11521 46.7 1.4839 5.9711
328.15 1.11166 46.3 1.4824 5.9901

Standard uncertainties (u) are u(T) = 0.02 K and u(p) = 10 kPa; expanded uncertainties (U) are U(ρ) = 0.002 g·cm−3,
U(γ) = 0.3 mJ·m−2, and U(nD) = 0.003, with 95% confidence (k = 2).

2.2. Strength of [CnOC2mim][Ala](n = 1, 2) Intermolecular Interactions

The density of ILs increases gradually as temperature rises. At higher temperatures,
the mobility of constituent ions improves and the unit volume increases [31]. The thermal
expansion coefficient (α) is defined as

α = (1/V)(∂V/∂Y)p = −(∂ lnρ/∂T)p (1)

where V is molar volume. Molar volume is defined as

V = M/ρ (2)

The molecular volume Vm is defined as

Vm = M/Nρ = V/N (3)

where N is the Avogadro constant, V is molar volume, and M is molar mass.
At 298.15 K, Vm is 0.3300 nm3 for [C1OC2mim][Ala] and 0.3571 nm3 for [C2OC2mim]

[Ala] (Table S4). The difference between these indicates that the contribution of methylene
(-CH2-) to Vm is 0.0271 nm3. This is close to the average contribution methylene makes to
the Vm of several other ILs listed in Table S5 (0.0278 nm3).

Lattice energy (UPOT) and standard entropy (Sθ
298) can be calculated according to

Glasser’s theory; Equation (4) is suitable for MX(1:1) type ionic salts. The constants in
Equation (5) are empirical values [32].

UPOT = 1981.2 (ρ/M)1/3 + 103.8 (4)

Sθ
298 = 1246.5Vm + 29.5 (5)

UPOT reflects the strength of intermolecular interactions and can be used to measure
the stability of ILs [32,33]. UPOT is 443 kJ·mol−1 for [C1OC2mim][Ala] and 435 kJ·mol−1 for
[C2OC2mim][Ala], implying that methylene’s average contribution to UPOT is −8 kJ·mol−1.
UPOT is inversely related to molar volume. Addition of a methylene group will reduce the
ionic or molecular packing efficiency, decreasing the strength of the interactions.

To some extent, standard entropy reflects the degree of disorder of molecular ar-
rangements [33]. Sθ

298 is 441 J·K−1·mol−1 for [C1OC2mim][Ala] and 475 J·K−1·mol−1 for
[C2OC2mim][Ala], suggesting that methylene’s average contribution to Sθ

298 is
34 J·K−1·mol−1 (Table S5). This indicates that ILs with longer aliphatic chains are more dis-
ordered. Standard entropy increases as molecular volume increases. Sθ

298 of ILs is usually
greater than 200 J·K−1·mol−1, compared with the more molecularly ordered conventional
inorganic salts such as NaCl (72.1 J·K−1·mol−1) and KCl (82.6 J·K−1·mol−1) [34]. This may
explain why ILs are molten below 373 K.
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The association enthalpy (∆AHm
0) also reflects the strength of intermolecular inter-

actions: the higher the ∆AHm
0, the stronger the gaseous state interactions. ∆AHm

0 of
ILs in the gaseous phase can be calculated based on the thermodynamic cycle shown in
Scheme 1 [29].
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Scheme 1. Thermodynamic cycle for calculating ∆AHm
0.

Vaporization enthalpy (∆l
gHm

0) is a key parameter for calculating ∆AHm
0. It is

estimated from Equation (6):

gs = a + b
(

∆l
gHm

0 − RT
)

(6)

gs = γV2/3N1/3 (7)

where gs is the molar surface Gibbs energy; γ is surface tension; V is molar volume; N is the
Avogadro constant; ∆l

gHm
0 is vaporization enthalpy; R is the gas constant; T is temperature;

and a and b are the empirical constants −1.519 kJ·mol−1 and 0.09991, respectively [29].
The estimated vaporization enthalpy is 164.1 kJ·mol−1 for [C1OC2mim][Ala] and

165.1 kJ·mol−1 for [C2OC2mim][Ala]. Consequently, ∆AHm
0 is −278.9 kJ·mol−1 for

[C1OC2mim][Ala] and −269.9 kJ·mol−1 for [C2OC2mim][Ala]. The ∆AHm
0 of other ILs are

listed in Table S5. Again, addition of methylene reduces packing efficiency and increases
the degree of molecular disorder. Thus, for ILs with the same anions, the absolute value of
∆AHm

0 decreases as the length of the imidazole ring alkyl side chains increases. For ILs
with the same cations, ∆AHm

0 decreases with increasing anion volume.

2.3. Prediction of Surface Tension Based on Molar Surface Gibbs Energy

The parameter gs used to estimate vaporization enthalpy was developed in our pre-
vious work by modifying Li’s model [35]. The definition of gs is consistent with the
concept presented by Myers [36]. Thus, gs is a true thermodynamic function that integrates
volumetric and surface properties.

Plotting gs against T for [CnOC2mim][Ala](n = 1, 2) yields straight lines (Figure 2)
such that their relationship can be expressed as

gs = G0 − G1T (8)
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Figure 2. Molar surface Gibbs energy (gs) plotted against temperature (T). � [C1OC2mim][Ala]:
gs = 19,803 − 17.39T, r2 = 0.995, sd = 16.4; • [C2OC2mim][Ala]: gs = 20,658 − 19.94T, r2 = 0.996,
sd = 17.5.
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G0 and G1 for [CnOC2mim][Ala](n = 1, 2) are obtained from Figure 2 and substituted
into Equation (8) to give the estimated molar surface Gibbs energy, gs(est). Values of gs, G0,
G1, and gs(est) are listed in Table 2.

Table 2. Molar surface Gibbs energy (gs), G0, G1, and estimated molar surface Gibbs energy (gs(est))
for [CnOC2mim][Ala](n = 1, 2).

T (K) gs (kJ·mol−1) G0 G1
gs(est)

(kJ·mol−1)

[C1OC2mim][Ala]

288.15 14.78 19,803 17.4 14.79
293.15 14.69 19,803 17.4 14.70
298.15 14.63 19,803 17.4 14.62
303.15 14.55 19,803 17.4 14.53
308.15 14.43 19,803 17.4 14.44
313.15 14.37 19,803 17.4 14.35
318.15 14.29 19,803 17.4 14.27
323.15 14.17 19,803 17.4 14.18
328.15 14.08 19,803 17.4 14.09

[C2OC2mim][Ala]

288.15 14.88 20,658 19.9 14.92
293.15 14.82 20,658 19.9 14.82
298.15 14.73 20,658 19.9 14.72
303.15 14.63 20,658 19.9 14.63
308.15 14.51 20,658 19.9 14.53
313.15 14.42 20,658 19.9 14.43
318.15 14.33 20,658 19.9 14.33
323.15 14.20 20,658 19.9 14.23
328.15 14.11 20,658 19.9 14.13

The Lorentz-Lorenz equation expresses the relationship between nD and the mean
molecular polarizability (αp) [37]:

Rm = [(nD
2 − 1)/(nD

2 + 2)]·V = (4πN/3)·αp (9)

where Rm is molar refraction, αp is mean molecular polarizability, and nD is refractive index.
This has been combined with gs to give an improved Lorentz-Lorenz equation [38] that can
predict surface tension, γ(est):

γ(est)
3/2 = [gs(est)

3/2/N1/2Rm](nD
2 − 1)/(nD

2 + 2) (10)

The Rm, αp, and γ(est) for [CnOC2mim][Ala](n = 1, 2) are listed in Table 3. Plotting
estimated surface tension values against their corresponding experimental values produces
a straight line (Figure 3). A similar plot for other ionic and molecular liquids also illustrates
a linear relationship (Table S6, Figure 4), showing that this method is applicable for the
surface tension prediction of both types of liquid.
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Table 3. Molar refraction (Rm), mean molecular polarizability (αp), and estimated surface tension
(γ(est)) of [CnOC2mim][Ala](n = 1, 2).

T (K) Rm αp × 1024 γ(est)

[C1OC2mim][Ala]

288.15 57.74 22.91 51.6
293.15 57.77 22.92 51.2
298.15 57.76 22.92 50.8
303.15 57.80 22.93 50.4
308.15 57.82 22.94 50.0
313.15 57.84 22.95 49.6
318.15 57.89 22.97 49.2
323.15 57.90 22.97 48.8
328.15 57.89 22.97 48.4

[C2OC2mim][Ala]

288.15 62.24 24.69 49.4
293.15 62.28 24.71 49.0
298.15 62.30 24.72 48.6
303.15 62.32 24.73 48.2
308.15 62.36 24.74 47.7
313.15 62.37 24.75 47.3
318.15 62.39 24.76 46.9
323.15 62.41 24.76 46.5
328.15 62.43 24.77 46.1
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For ILs sharing the same anions (Table 1 and Table S6), nD decreases as the length of the
alkyl chain in the cations increases. Refractive index correlates with dipole moment [39,40],
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which increases with higher molecular packing density [41]. Thus, a larger dipole mo-
ment results in a higher refractive index. The nD is larger in [C1OC2mim][Ala] than
[C2OC2mim][Ala], so the packing density of the former is higher, which is consistent with
the density trend of the two ILs.

As polarizability increases, Coulomb interactions are reduced and ion mobility rises [42].
The αp of [C1OC2mim][Ala] is lower than [C2OC2mim][Ala], so its Coulomb interactions
are stronger. This finding is similar to the pattern observed for UPOT and ∆AHm

0.

2.4. Molar Surface Entropy: Polarity Contribution from Surface Liquid

For most liquids, surface tension declines as temperature increases, as shown by the
Eötvös equation:

γV2/3 = k(Tc − T) (11)

where Tc is critical temperature and k is the Eötvös equation parameter, which is
associated with polarity. For some organic liquids with weak polarity, k is nearly
2.2 × 10−7 J·mol−2/3·K−1, while for some with strong polarity, such as molten NaCl, it is
nearly 0.4 × 10−7 J·mol−2/3·K−1 [35,43]. However, the physical significance of k is not clear.
Multiplying both sides of the Eötvös equation by N1/3 [35] gives

gs = C0 − C1T (12)

which fits the fundamental thermodynamic concept:

G = H − TS (13)

C1 denotes the molar surface entropy and is given by C1= −( ∂gs
∂T )p.

The relationship between molar surface entropy (defined here as s [29]) and k is
expressed as

s = N1/3k (14)

Entropy is directly linked to the number of microstates [44]. Higher entropy means
molecules can be arranged in more ways, while the total energy remains constant. Thus,
the physical significance of s is clear—it reflects the polarity of a liquid’s surface (higher
s, lower surface polarity). The value of s is 17.39 J·mol−1·K−1 for [C1OC2mim][Ala] and
19.94 J·mol−1·K−1 for [C2OC2mim][Ala]. Values for other EFILs are listed in Table 4. The
overall trend is that for ILs with the same cations, such as [C1OC2mim]+, [C2OC2mim]+,
and [C1OC4mim]+, s increases as the volume of anions increases. Cl−, [Ala]−, [Thr]−,
and [Gly]− clearly obey this rule. It can be speculated that larger anions cause greater
disordering of surface molecules, leading to lower polarity. However, [NTf2]− does not
conform to this rule. This may be due to it being more symmetrical than other anions,
facilitating a more orderly arrangement of surface molecules and increasing the polarity.
For ILs sharing the same anions, the general trend is that s increases as the volume of
cations increases. Values of s for different other ILs (Table S7) confirm this effect.

Table 4. Molar surface entropy (s) of various EFILs.

IL s (J·mol−1·K−1) V × 104 (m3·mol−1)

[C1OC2mim]Cl [38] 15.99 1.52
[C1OC2mim][Ala] 17.39 1.99

[C1OC2mim][Thr] [45] 26.60 2.18
[C1OC2mim][NTf2] [19] 17.80 2.80

[C2OC2mim]Cl [38] 17.81 1.68
[C2OC2mim][Ala] 19.94 2.15

[C2OC2mim][Thr] [45] 28.12 2.37
[C2OC2mim][NTf2] [19] 19.32 2.99
[C1OC4mim][Gly] [46] 19.56 2.19
[C1OC4mim][Ala] [46] 20.54 2.29
[C1OC4mim][Thr] [46] 22.082 2.51

[C2OC1mim][NTf2] [19] 18.20 2.81
[C1OC3mim][NTf2] [19] 18.49 2.97
[C3OC2mim][NTf2] [19] 20.57 3.16
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Data for [C1OC2mim][NTf2], [C2OC1mim][NTf2], [C2OC2mim][NTf2], and [C1OC3mim]
[NTf2] (Table 4) imply that, for ILs with the same number of alkyl side chain carbons, the
position of the ether group also affects s, presumably because it affects packing efficiency
on the liquid surface.

2.5. A New Model for Predicting Polarity

Experimental methods for measuring polarity, such as ET(30), are time consuming
and laborious. Here, we present a predictive model that establishes a relationship between
polarity and the easily determined physicochemical properties of density, surface tension,
and refractive index.

Our previous work [28], based on Hildebrand and Scott’s theory [47], proposed δµ as
a polarity scale. δµ is the solubility parameter derived from the contribution of the average
permanent dipole moment:

δµ
2 = ∆g

lH0
mµ/V − (1 − x)RT/V (15)

where V is the molar volume and ∆g
lH0

mµ is the contribution of the average permanent
dipole moment to ∆g

lH0
m, such that

∆g
lH0

mµ = ∆g
lH0

m − ∆g
lH0

mn (16)

where ∆g
lH0

mn is the contribution of the induced dipole moment to ∆g
lH0

m and can be
calculated from the Lawson–Ingham equation [48]:

∆g
lH0

mn = C [(nD
2 − 1) / (nD

2 + 2)]V = C Rm (17)

where C is the empirical constant 1.297 kJ·cm−3. In Equation (15), x represents
∆g

lH0
mn/∆g

lH0
m (at 298.15 K). The δµ polarity of [C1OC2mim][Ala] (21.03 J1/2·cm−3/2) is

larger than [C2OC2mim][Ala] (19.65 J1/2·cm−3/2).
However, there is an obvious drawback to δµ: it has a dimension (J1/2·cm−3/2), while

some polarity scales, such as the dielectric constant, are non-dimensional. Furthermore, the
contribution of the induced dipole moment was neglected. Therefore, δµ was improved as
follows and designated as P [45]:

P = δµ/δn =
[(

∆g
lH0

mµ/V − (1− x) RT/V
)

/
(

∆g
lH0

mn/V − xRT/V
)]1/2

(18)

where δn is the solubility parameter from the contribution of the induced dipole moment.
Comparison of ∆g

lH0
mµ and ∆g

lH0
mn shows that (1−x)RT/V and xRT/V can be omitted

and Equation (18) can be expressed as

P =
(

∆g
lH0

mµ/∆g
lH0

mn

)1/2
(19)

The effects of average permanent dipole moment and induced dipole moment are
both considered within P, which is dimensionless, with a large value indicating high
polarity. [C4mim][BF4] is hydrophilic and [C4mim][NTf2] is hydrophobic. According to
Seddon et al. [49], P is 1.226 for [C4mim][BF4] and 0.401 for [C4mim][NTf2]. This higher
polarity of [C4mim][BF4] fits practical experience. Thus, the parameter P is capable of mea-
suring the polarity of ILs. P is 1.191 for [C1OC2mim][Ala] and 1.043 for [C2OC2mim][Ala].



Molecules 2022, 27, 3231 10 of 18

This study divided polarity into two compartments: the contribution from the body of
a liquid, and the contribution from the surface. Cohesive energy density can demonstrate
the strength of intermolecular interactions within the body [48]. δµ

2 is the cohesive energy
density from the average permanent dipole moment and δn

2 is from the induced dipole
moment. Consequently, P2 can describe the polarity of the body of a liquid:

P2 = δµ
2/δn

2 (20)

Molar surface entropy (s) was proven above to reflect the polarity of a liquid surface.
Combining s and P2, a new polarity scale, PN, is now proposed:

PN = s/P2 = s/
(

δµ
2/δn

2
)

(21)

This compartmentalized scale is a novel method to evaluate polarity, with a large
PN indicating weak polarity. Based on literature data [50–55], PN is 22.03 J·mol−1·K−1 for
[C4mim][NTf2] and 14.50 J·mol−1·K−1 for [C4mim][BF4]. These results fit with practical
experience and demonstrate the rationality of the PN scale. The PN of [C1OC2mim][Ala]
is 12.26 J·mol−1·K−1 and is 18.33 J·mol−1·K−1 for [C2OC2mim][Ala], which is the same
polarity trend observed using δµ and P. As discussed above, ILs with longer alkyl chains
exhibit higher standard entropy and lower molecular packing efficiency. The observed
higher polarity of [C1OC2mim][Ala] may be due to its stronger intermolecular interactions
and more ordered molecular arrangement. This fact can be explained as follows: a polar
molecule has a permanent electric dipole moment, and a molecule may be polar if it has
low symmetry [44]. ILs have asymmetric structures, and an orderly arrangement of ILs
will maintain this structure. In this situation, their permanent electric dipole moments
will not counteract each other, and polarity will be enhanced. The PN of various ether-
functionalized ILs are listed in Table 5. For ILs with the same anion, PN declines as the
length of the imidazole ring alkyl side chain increases. This trend supports the contention
that the strength of intermolecular interactions and the degree of disorder of molecular
arrangements influence polarity.

Table 5. Polarity of various ether-functionalized ionic liquids using the new PN scale.

IL PN (J·mol−1·K−1) Reference

[COC2mim]Cl 12.86 [37]
[C2OC2mim]Cl 16.76 [37]

[C1OC2mim][Ala] 12.26 This work
[C2OC2mim][Ala] 18.33 This work
[COC4mim][Ala] 21.83 [39]
[COC2mim][Thr] 22.18 [38]
[C2OC2mim][Thr] 25.46 [38]
[COC4mim][Thr] 24.52 [39]

[COC2mim][NTf2] 31.31 [13]
[C2OCmim][NTf2] 35.40 [13]
[C1OC3mim][NTf2] 35.57 [13]
[C2OC2mim][NTf2] 42.66 [13]
[C3OC2mim][NTf2] 55.1 [13]

[COC4mim][Gly] 19.64 [39]

The PN scale can be validated by comparison with other polarity scales (Table 6). FTIR
spectroscopy probes [56] and ET

N [57] show that the polarity of [C2mim]BF4 is larger than
[C4mim]BF4. The PN scale gives the same qualitative result. Wu et al. determined the order
of polarity of several ILs to be [C4mim]BF4 > [C4mim]NTf2 > [C4mim]OAc using ET

N [58].
Again, PN gives the same result.
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Table 6. Polarity of various ionic liquids estimated using the PN scale.

IL PN (J·mol−1·K−1)

[C6mim]OAC 35.73
[C4mim]OAC 23.24

[C4mim]NTf2 [51,53] 22.03
[C4mmim]NTf2 19.96

[C4mim]BF4 14.50
[C2mmim]NTf2 14.01

[C5mim]Lact 12.87
[C2mim]BF4 8.24
[C2mim]Lact 8.16

Furthermore, when PN is applied to molecular liquids, the estimated polarity is
broadly, and inversely, consistent with the dielectric constant ε [59] (Table 7). The correlation
between PN and the inverse ε−1 (Figure 5) is r2 = 0.94, demonstrating that PN is also suitable
for molecular liquids.

Table 7. PN and dielectric constant (ε) of various molecular liquids.

Molecular Liquid PN ε

Ethyl acetate 169.14 6.1
Chloroform 167.19 4.8

Tetrahydrofuran 124.29 7.5
Pyridine 60.64 12.3

Benzyl alcohol 48.13 13.0
1-Hexanol 27.06 13.0

Cyclohexanol 25.09 15.0
1-Propanol 8.48 20.3

Ethanol 5.52 25.3
Methanol 2.40 33.0
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Figure 5. Inverse of the dielectric constant (ε−1) of various molecular liquids plotted against the
estimated polarity PN. Linear correlation coefficient (r2) 0.94.
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ET(30) is one of the most popular polarity scales for evaluating ILs, but it is laborious
and costly [60]. Moreover, the results vary depending on the molecular probe used [61].
However, using PN, polarity can be determined simply from density, surface tension, and
refractive index. The dielectric constant is the traditional polarity scale for organic solvents.
The comparison of dielectric constant and PN proves the universal applicability of PN.
Thus, this new PN scale is demonstrated to be a viable predictive method for evaluating
the polarity of both ionic and molecular liquids based on easily measured physicochemical
properties. It will find applications in many fields, particular those employing novel ionic
liquids for which the evaluation of polarity is expensive and time consuming.

3. Materials and Methods
3.1. Materials

The sources and purity of reagents are listed in Table 8. N-Methylimidazole (AR grade)
was purified by distillation, while 2-chloroethyl methyl ether and 2-chloroethyl ethyl ether
(both AR grade) were used as purchased. DL-Alanine was recrystallized from water and
dried in a vacuum oven [62].

Table 8. Source and purity of reagents.

Reagent Name CAS No. Source Purification Mass Fraction Purity Analysis

Anion exchange resin 717 122560-63-8 SRC None Granularity > 0.950 GC
N-Methylimidazole 616-47-7 ACROS Distillation >0.990 FM

2-Chloroethyl methyl ether 627-42-9 SRC None >0.995 FM
2-Chloroethyl ethyl ether 628-34-2 SRC None >0.995 FM

DL-Alanine 302-72-7 SRC Recrystallization >0.990 FM
Acetonitrile 75-05-8 SRC None >0.995 FM
Ethyl acetate 141-78-6 SRC None >0.995 FM

Anhydrous ethanol 64-17-5 SRC None >0.995 FM
Sodium hydroxide 1310-73-2 SRC None >0.960 FM

[C1OC2mim][Ala] - Synthesis Solvent extraction,
vacuum drying >0.990 1H, 13C NMR

[C2OC2mim][Ala] - Synthesis Solvent extraction,
vacuum drying >0.990 1H, 13C NMR

FM—Fractional melting; SRC—Shanghai Reagent Co., Ltd.

3.2. Preparation of ILs [CnOC2mim][Ala](n = 1, 2)

[CnOC2mim][Ala](n = 1, 2) were prepared by Fukumoto’s neutralization method [12],
and [CnOC2mim]Cl(n = 1, 2) by Sheldon’s method [63]. An equal molar amount
of 2-chloroethyl methyl ether or 2-chloroethyl ethyl ether was added dropwise to
N-methylimidazole under nitrogen in a three-necked round-bottom flask while stirring
at 298.15 K. The reaction temperature reached 353.15 K with 2-chloroethyl methyl ether
and 373.15 K with 2-chloroethyl ethyl ether. The reactions lasted for 48 h and produced
light yellow liquids, which were then washed three times with ethyl acetate, producing
[CnOC2mim]Cl(n = 1, 2). These were transformed into [CnOC2mim]OH(n = 1, 2) us-
ing basic anion exchange resin conditioned with sodium hydroxide [29]. The aqueous
[CnOC2mim]OH(n = 1, 2) were then added dropwise (at slight excess) to aqueous DL-
alanine and reacted for 72 h, yielding [CnOC2mim][Ala](n = 1, 2). Water was removed
by rotary evaporation and excess DL-alanine by ethanol:acetonitrile (9:1). The solvents
were evaporated under reduced pressure and [CnOC2mim][Ala](n = 1, 2) were dried in a
vacuum oven for 60 h at 353.15 K. The chemical structures of [CnOC2mim][Ala](n = 1, 2)
are shown in Figure 6.
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3.3. Analytical Methods

The structures of [CnOC2mim][Ala](n = 1, 2) were characterized by NMR (Varian
XL-300), as shown in the Supplementary Materials. The final water contents (w2) of
[CnOC2mim][Ala](n = 1, 2), as measured using a ZSD-2 Karl Fischer moisture titrator, were
0.00472 and 0.00640 ± 0.0001 (mass fraction), respectively.

Since [CnOC2mim][Ala](n = 1, 2) form strong hydrogen bonds with water, it is difficult
to remove all traces of water from these ILs, which affects their density, surface tension,
and refractive index. Therefore, the standard addition method was used to determine these
properties. Each parameter was measured in [CnOC2mim][Ala](n = 1, 2) at different water
contents following heating at graduated temperatures. Values were then plotted against
water content, and the intercept of the regression lines yielded the parameter values in the
anhydrous ILs at a given temperature.

4. Conclusions

[CnOC2mim][Ala](n = 1, 2) were prepared and their structures confirmed by NMR.
Density, surface tension, and refractive index were determined by the standard addition
method. Adding methylene to the aliphatic chain of an IL increased its standard en-
tropy. Lattice energy and association enthalpy measurements showed that molecules of
[C1OC2mim][Ala] were more compacted, and their intermolecular interactions stronger,
than [C2OC2mim][Ala]. An improved Lorentz-Lorenz equation predicted the surface ten-
sion of both ionic and molecular liquids. A new compartmentalized polarity scale (PN)
based on molar surface Gibbs energy and dipole moments is presented. It encompasses
the polarity of both the surface and body of a liquid. [C1OC2mim][Ala] is shown to have
higher polarity than [C2OC2mim][Ala] based on PN. The validity of PN is demonstrated
by comparison with alternative polarity scales and published polarities of both ionic and
molecular liquids.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27103231/s1, Figure S1. 1H NMR spectrum of IL
[COC2mim][Ala]; Figure S2. 1H NMR spectrum of IL [C2OC2mim][Ala]; Figure S3. 13C NMR
spectrum of IL [COC2mim][Ala]; Figure S4. 13C NMR spectrum of IL [C2OC2mim][Ala]; Table S1.
Densities of Ionic Liquids Containing Various Amounts of Water at pressure p = 0.1 MPa; Table S2.
Surface Tensions of Ionic Liquids Containing Various Amounts of Water at pressure p = 0.1 MPa;
Table S3. Refractive Indexes of Ionic Liquids Containing Various Amount of Water at pressure
p = 0.1 MPa; Table S4. The values of molar volume, V/cm3·mol−1 and molecular volume, Vm/nm3

for the ILs [CnOC2mim][Ala](n = 1, 2); Table S5. Molecular volume, Vm, standard molar entropy,
S0, lattice energy, UPOT, vaporization enthalpy, ∆lgHm

0, association enthalpy, ∆AHm
0 for some

ionic liquids; Table S6. The estimated surface tension, γ(est), experimental surface tension, γ(exp),
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refractive index, nD, experimental density ρ(exp), molar surface Gibbs energy, gs, molar refraction,
Rm, molar volume, V for different ILs and molecular liquids; Table S7. The molar surface entropy, s,
for some ILs; Density, ρ, surface tension, and refractive index, nD measuring methods; citation of
ref. [30,39,43,52,54,55,64–106].
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