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Imaging soliton dynamics in optical microcavities

Xu Yi', Qi-Fan Yang 1 Ki Youl Yang & Kerry Vahala 1

Solitons are self-sustained wavepackets that occur in many physical systems. Their recent
demonstration in optical microresonators has provided a new platform for the study of
nonlinear optical physics with practical implications for miniaturization of time standards,
spectroscopy tools, and frequency metrology systems. However, despite its importance to
the understanding of soliton physics, as well as development of new applications, imaging the
rich dynamical behavior of solitons in microcavities has not been possible. These phenomena
require a difficult combination of high-temporal-resolution and long-record-length in order to
capture the evolving trajectories of closely spaced microcavity solitons. Here, an imaging
method is demonstrated that visualizes soliton motion with sub-picosecond resolution over
arbitrary time spans. A wide range of complex soliton transient behavior are characterized in
the temporal or spectral domain, including soliton formation, collisions, spectral breathing,
and soliton decay. This method can serve as a visualization tool for developing new soliton
applications and understanding complex soliton physics in microcavities.
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emporal solitons are indispensable in optical fiber systems!

and exhibit remarkable nonlinear phenomena®. The

potential application of solitons to buffers and mem-
ories>*, as well as interest in soliton physics has stimulated
approaches for experimental visualization of multi-soliton tra-
jectories. Along these lines, the display of soliton trajectories in a
co-moving frame® allows an observer to move with the solitons
and is being used to monitor soliton control and interactions of
all types in fiber systems>~!2. However, this useful data visuali-
zation method relies upon soliton pulse measurements that are
either limited in bandwidth (pulse resolution) or record length. It
is therefore challenging to temporally resolve solitons over the
periods often required to observe their complete evolution. For
example, the time-lens method!? can provide the required fem-
tosecond-resolution, but has a limited record length set by the
pump pulse. Also, while the relative position of closely spaced
soliton complexes!! can be inferred over time from their com-
posite dispersive Fourier transform (DFT) spectral4, Fourier
inversion requires the constituent solitons to have similar wave-
forms which restricts the generality of the technique. Efforts that
combine these two methods were also reported very recently!>16.

These limitations are placed in sharp focus by recent demon-
strations of soliton generation in microcavities!”=23. This new
type of dissipative soliton?* was long considered a theoretical
possibility> and was first observed in optical fiber resonators®.
Their microcavity embodiment poses severe challenges for ima-
ging of dynamical phenomena by conventional methods, because
multi-soliton states feature inherently closely spaced solitons.
Preliminary real-time measurements using time lens>, and direct
detection?® have been explored, but were limited in either
recording length or pulse resolution. Nonetheless, the compact-
ness of microcavity-based soliton systems has practical impor-
tance for miniaturization of frequency comb technology?’
through chip-based microcombs?82°, Indeed, spectroscopy sys-
tems3%31, coherent communication3?, ranging3334, and fre-
quency synthesis’> demonstrations using the new miniature
platform have already been reported. Moreover, the unique
physics of the new soliton microcavity system has led to obser-
vation of many unforeseen physical phenomena involving com-
pound soliton states, such as Stokes solitons3®, soliton number
switching®” and soliton crystals®3.

In this work, we report imaging of a wide range of soliton
phenomena in microcavities. Soliton formation, collisions!?,
breathing®3°-4!, Raman shifting*>43, as well as soliton decay are
observed. Significantly, femtosecond-time-scale resolution over
arbitrary time spans (distances) is demonstrated (and required) in
these measurements. Also, real-time spectrograms are produced
along-side high-resolution soliton trajectories. These features are
derived by adapting coherent linear optical sampling** and
electric-field cross-correlation®® to the problem of microcavity
soliton imaging. Beyond the necessity to employ a new method
for imaging soliton motion in microcavities, the high-repetition
rate of microcavity solitons (tens of gigahertz and higher) is
advantageous in sampling-based recording of motion.

Results

Coherent sampling of soliton motion. To image the soliton
trajectories, a separate optical probe pulse stream is generated at a
pulse rate that is close to the rate of the solitons to be imaged in
the microcavity. The small difference in these rates causes a pulse-
to-pulse temporal shift of the probe pulses relative to the
microcavity signal pulses as illustrated in Fig. la. By heterodyne
detection of the combined streams, the probe pulses
coherently sample the microcavity signal producing a temporal
interferogram®47 shown in Fig. 1a. Ultimately, the time shift per

pulse accumulates so that the sampling repeats in the inter-
ferogram at the frame rate which is described below, and is close
in value to the difference of sampling and signal rates. Probe
pulses have a sub-picosecond temporal resolution that enables
precise monitoring of the temporal location of the soliton pulses.
Moreover, the coherent mixing of probe and soliton pulses allows
extraction of each soliton’s spectral evolution by fast Fourier
transform of the interferogram. In principle, the probe pulses can
be generated by a second microcavity soliton source operating in
steady state. However, in the present measurement, an electro-
optic (EO) comb is used*>*%4° The EQO comb pulse rate is
conveniently adjusted electronically to match the rates of various
phenomena being probed within the microcavity.

The soliton signal is produced by a 3 mm diameter silica wedge
resonator with a free-spectral-range (FSR) of 22GHz and
intrinsic quality factor above 200 million!8*°. The device
generates femtosecond soliton pulses when pumped at frequen-
cies slightly lower than a cavity resonant frequency'$. To sample
the 22GHz soliton signal the EO comb was formed by
modulation of a tunable continuous-wave (CW) laser. The EO
comb features ~1.3 THz optical bandwidth (within 1dB power
variation) and an 800 fs full-width-at-half-maximum (FWHM)
pulse width is measured by frequency-resolved optical gating
(FROG) and autocorrelation as shown in Fig. 1b. Further details
on the experimental setup are provided in the Methods section. In
all presented measurements, the pump laser of the resonator
scans linearly from higher to lower frequency to initiate
parametric oscillation®! in the microcavity followed by chaotic
dynamics. Ultimately, step-like features are observable in the
resonator transmitted power (Fig. 1c) indicating the formation of
soliton states!”. The typical pump power and laser scan speed are
~70 mW and ~1 MHz/ps, respectively.

Measuring multiple soliton trajectories. As described above,
heterodyne detection of the soliton signal and the EO-comb pulse
produces the electrical interferogram. The period of the signals in
the interogram is adjusted by tuning the EO-comb repetition rate.
In the initial measurements, it is set to ~10 MHz lower than the
rate of the microcavity signal so that the nominal period in the
interferogram is ~100 ns. To display the interferogram signal a
co-rotating frame is applied. First, a frame period T is chosen that
is close to the period of signals of interest in the interferogram.
Integer steps (i.e., mT) are plotted along the x-axis while the
interferogram is plotted along the y-axis, but offset in time by the
x-axis time step (i.e., t-mT). To make connection to the physical
time scale of the solitons, the y-axis time scale is compressed by
the same bandwidth compression factor (TxFSR) that accom-
panies the sampling process (see Discussion). The y-axis scale is
accordingly set to span one microcavity round-trip time. A typical
measurement plotted in this manner is given in Fig. 1d. Because
this way of plotting the data creates a co-rotating reference frame,
a hypothetical soliton pulse with an interferogram period equal to
the frame rate T would appear as a horizontal line in Fig. 1d. On
the other hand, slower (higher) rate solitons would appear as lines
tilted upward (downward) in the plot. In creating the imaging
plot, a Hilbert transformation is applied to the interferogram
followed by taking the square of its amplitude to produce a pulse
envelope intensity profile. The vertical co-rotating time axis can
be readily mapped into the soliton angular position within the
circular microcavity as shown in Fig. 1d (right vertical axis).
Imaging of soliton formation and multi-soliton trajectories is
observable in Fig. 1d. For comparison with the transmitted
power, the time-axis scale is identical in Fig. 1c, d. As the pump
laser frequency initially scans towards the microcavity resonant
frequency its coupled power increases. At ~8 ps the resonator
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Fig. 1 Coherent sampling of dissipative Kerr soliton dynamics. a Conceptual schematic showing microcavity signal (red) combined with the probe sampling
pulse train (blue) using a bidirectional coupler. The probe pulse train repetition rate is offset slightly from the microcavity signal. It temporally samples the
signal upon photo detection to produce an interferogram signal shown in the lower panel. The measured interferogram shows several frame periods during
which two solitons appear with one of the solitons experiencing decay. PD: photodetector. b Left panel is the optical spectrum and right panel is the second
harmonic generation (SHG) intensity of the probe electro-optic comb measured with FROG (pulse repetition period is shown as 46 ps). An intensity

autocorrelation in the inset shows a full-width-at-half-maximum pulse width of 800 fs. ¢ Microresonator pump power transmission when the pump laser
frequency scans from higher to lower frequency. Multiple steps indicate the formation of solitons. d Imaging of soliton formation corresponding to the scan
in €. The x-axis is time and the y-axis is time in a frame that rotates with the solitons (full scale is one round-trip time). The right vertical axis is scaled in
radians around the microcavity. Four soliton trajectories are labeled and fold-back into the cavity coordinate system. The color bar gives their signal

intensity. e Soliton intensity patterns measured at four moments in time are projected onto the microcavity coordinate frame. The patterns correspond to

initial parametric oscillation®' in the modulation instability (MI) regime3 4, non-periodic behavior (M regime), four soliton and single soliton states

enters the modulation instability regime>*1”. Initially, a periodic
temporal pattern is observable in Fig. 1d corresponding to
parametric oscillation®!. Soon after, the cavity enters a regime of
non-periodic oscillation. At ~31ps, this regime suddenly
transitions into four soliton pulses. The soliton positions evolve
with scan time and disappear one-by-one. All solitons have
upward curved trajectories, showing that the soliton repetition
rate decreases as the scan progresses. This soliton rate shift is
caused by the combination of the Raman self-frequency shift
effect and anomalous dispersion in the silica resonator42->2 and a
similar effect on soliton trajectory is observed in optical fiber
resonators*3. Supplementary Movie 1 provides the corresponding
multi-soliton motion around the microcavity. Finally, the cavity
states at four moments in time are plotted within the circular
microcavity in Fig. 1e. These correspond to parametric oscillation,
non-periodic modulational instability, four soliton, and single
soliton states.

Observation of soliton collisions. A variety of non-repetitive
multi and single soliton phenomena were measured in both tem-
poral and spectral domains. To enable more rapid imaging the
repetition rate of EO comb was adjusted to produce an inter-
ferogram at a rate of approximately 50 MHz. The frame period, T,
was then reduced accordingly to ~20 ns. Figure 2 presents obser-
vations of two solitons interacting. Soliton annihilation is observed
in Fig. 2a, wherein two solitons move toward each other, collide,
create an intense peak upon collision and then disappear. A new

4,17

phenomena, a wave splash, is observed immediately following the
collision. Though not discussed, this feature appears in recently
reported simulations!2. In Fig. 2b, two solitons collide but quickly
recover and then collide again, after which point one soliton is
annihilated. Figure 2c shows a third example in which solitons
merge and a single soliton emerges. In a fourth case shown in
Fig. 2d, soliton hopping accompanies annihilation of a soliton.
Interestingly, all soliton collisions are observed at the beginning of
soliton formation (in the soliton breathing regime). After this
regime, the soliton relative motion quickly stabilizes preventing
collisions. This stabilization process is investigated in a later section.
Also, as noted earlier, the observation of these complex motions
requires measurement of events in close temporal proximity over
long time spans. Finally, numerical simulations of soliton collisions
are shown as inset panels in Fig. 2. The collisional features observed
in experiments, including the wave splash in Fig. 2a, are reproduced
in the simulations.

Breather soliton spectrograms. Figure 3 shows measurement of
a breathing soliton®® in both the temporal and frequency
domains. The intensity of an individual breather soliton is imaged
in Fig. 3a. Spectral breathing was explored in fiber-ring resonators
using the DFT method®. In the current work, the spectral
breathing is observed by applying a Fourier transform to the
interferogram signal?’. Figure. 3b shows the resulting spectro-
gram plotted over the same time interval as Fig. 3a wherein the
spectrum is widest when the breather soliton has its maximum
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Fig. 2 Measurements of non-repetitive soliton events. a Two solitons collide and annihilate. A wave splash appears in the collision. b Two solitons survive a
collision, but collide again and one soliton is annihilated. € Two solitons collide and merge into a single soliton. d A soliton hops in location when another
soliton is annihilated. The measurement frame rate is 50 MHz in all panels. Inset panels show similar collision events from numerical simulation, including

the appearance of the wave splash (inset in a)
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Fig. 3 Temporal and spectral measurements of breather solitons. a Motion of a single soliton state showing peak power breathing along its trajectory.
b Spectral dynamics corresponding to a. The y-axis is the relative longitudinal mode number corresponding to specific spectral lines of the soliton. Mode
zero is the pumped microcavity mode. The soliton spectral width breaths as the soliton peak power modulates. The spectrum is widest when peak power is
maximum. ¢ Zoom-in view of the white rectangular region in a. d Soliton amplitude and pulse width breathing corresponding to ¢. The frame rate is 50 MHz

for all panels

peak power. This spectrum also reveals the changing breather
period with frequency scan, which has previously been observed
by measurement of soliton power2®4!, A zoom-in of the soliton
temporal breathing is shown in Fig. 3c. The combined high frame
rate and sub-ps temporal resolution enable the corresponding
amplitude and pulse width of the breather to be extracted and
these are plotted in Fig. 3d. As an observation unrelated to the
breathing action, the soliton spectral envelope in Fig. 3b is con-
tinuously red shifted in frequency by the Raman self-frequency
shift!842 as its average power increases (increasing time in the
plot).

Tracking relative soliton motion. Monitoring relative soliton
position in real time is important for study of soliton optical

memories>?, their interaction and control®? as well as in soliton
crystals®8. Previously, microcavity soliton relative positions have
been measured by autocorrelation®, frequency-resolved optical
gating!” and synchronized cross-correlation3®. However, with an
update rate limited by a mechanical delay line, these methods are
only useful for measurement of steady-state phenomena. In this
work, relative soliton positions can be measured in real time from
the interferogram thereby enabling study of their relative motion
dynamics. To plot soliton relative position, one soliton is selected
to be the reference (i.e., zero point of the angular position) and
the angular position relative to the reference soliton is defined
from —m to . Two representative measurements are shown in
Fig. 4a, b wherein the laser frequency is scanned from high to low
frequency. Even though the reference soliton round-trip rate is
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Fig. 4 Measurement of relative soliton positions and soliton decay. a Plot of the relative positions of four solitons while the pumping laser frequency is
scanned (high to low). The reference soliton, used to establish zero angular position, is indicated and all solitons have stable relative positions after only
several ps of motion. b The relative positions of five solitons is measured versus time as the pump laser frequency is scanned. The soliton relative positions
stabilize and then destabilize at 22 ps. The frame rates for a and b are 10 and 50 MHz, respectively. ¢ Interferogram envelope showing a single soliton
experiencing decay. An exponential fitting is given as the dashed black line. d The measured pulse width (blue) is plotted versus time and its resolution
limit (dashed blue line) is set by the EO comb pulse width. The product of soliton amplitude and pulse width is plotted in red

changing as the laser frequency is scanned (see, for example,
Fig. 1d), the solitons experience extended stable motion relative to
one another. In Fig. 4a, the solitons stabilize relative to each other
within a few microseconds after formation and in Fig. 4b, the
relative positions are stable from 9 to 22 us and then destabilize. It
is believed that the stabilization of solitons is related to the pre-
sence of a dispersive wave caused by an avoided mode crossing”.
Note that ultimately, all of the solitons in both panels are anni-
hilated when the laser is tuned beyond the existence detuning
range!”.

Characterization of soliton decay. Finally, soliton decay is ana-
lyzed using the sampling method. The measurement results are
shown in Fig. 4c, d. In the experiment, the pump laser frequency
is continuously tuned toward lower frequencies. After soliton
formation, at some point the cavity-laser frequency detuning
exceeds the soliton existence range and the soliton decays!”>18.
Figure 4c shows the interferogram signal just before and during
the decay. Pulse widths (7,) are extracted during the decay process
and are plotted in Fig. 4d. Also plotted in Fig. 4d is the product of
pulse width and soliton peak amplitude (Ag). Curiously, the
soliton pulse width and peak amplitude preserve the same soliton
product relationship as prior to decay. This is an indication that
the decaying soliton pulse in the microcavity is constantly
adapting itself to maintain the soliton waveform. A similar
behavior is known to occur for conventional solitons in optical
fiber>. To the authors knowledge, this is the first time this
behavior has been observed in real time. In the Methods section
the amplitude decay of the soliton in the interferogram trace is
analyzed to extract a decay time and the cavity Q factor.

Importance of high soliton repetition rate. Coherent sampling
induces a large bandwidth compression of the ultrafast signal that
is equal to the sampling rate divided by the difference in the
signal rate and the sampling rate. This compression is well known
in the related techniques of dual-comb spectroscopy*” and dual-

| (2018)9:3565 | DOI: 10.1038/541467-018-06031-5 | www.nature.com/naturecommunications

comb ranging®®, and is also present in sampling of optical signals
by four-wave mixing in optical fibers®®. In order to avoid spectral
folding, the compressed signal bandwidth must lie within half of
the EO comb sampling rate*®4” (the Nyquist condition for
sampling). As shown in the Methods section, this basic condition
establishes the following relationship between temporal resolu-
tion (1), frame rate (f) and the sampling rate (approximately the
microcavity free-spectral-range, FSR): f<tFSR?/2. This condition
also reveals the quadratic importance of high sampling rates
(equivalently large FSRs and correspondingly large soliton repe-
tition rates) to create fast frame rates. In the current system, a
temporal resolution of <1 ps combined with a 22 GHz sampling
rate can enable frame rates as high as 200 MHz.

Numerical simulation of multi-soliton trajectories. Soli-
ton dynamics are governed by the Lugiato-Lefever (LL) equa-
tion®” augmented by Raman*>°2 and avoided mode crossing®®
effects. The LL equation can be simulated numerically using the
split-step method>”. Simulated intracavity power versus temporal
profiles for soliton formation are presented Fig. 5a and, for
comparison with the imaging data in Fig. 1d, the corresponding
simulated multi-soliton trajectories are plotted in Fig. 5b. In the
simulation, the laser frequency is linearly scanned from higher
to lower frequency. Moreover, the Raman effect and one avoided
mode crossing are included in the simulation. Concerning
the vertical axis scale, it is noted that because the periodicity of
the soliton interferogram signals varies by <1 % during the
scan, the vertical co-rotating time axis can be readily mapped into
the soliton angular position axis within the circular microcavity as
shown in Fig. 1d, e. The features of soliton formation and evo-
lution observed in Fig. 1d compare well with the numerical
simulation.

Discussion
Imaging of nonlinear dynamical phenomena including complex
soliton interactions with high temporal/spatial resolution over
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arbitrary time/length spans has been demonstrated. The temporal
resolution in the current experiment is limited to 800 fs, however,
resolution at the tens of fs level is possible by spectrally broad-
ening the EO comb® used for coherent sampling. It is also
possible to replace the EO-comb with a microcomb that is closely
matched to the FSR of a microcavity to be sampled. Such
matching has been used in dual-microcomb spectroscopy
demonstrations®31. In this case, even higher sampling rates
would be possible that would enable gigahertz-scale frame rates.
Moreover, an implementation of soliton sampling produced
within a single microresonator comb has also been recently
reported®. The coherent sampling method can serve as a general
real-time state visualization tool to monitor the dynamics of
microcavity systems. It would provide an ideal way to monitor
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Fig. 5 Simulation of multiple microcavity soliton formation and their
trajectories. a Simulated intracavity power plotted versus time as the
pumping laser is tuned across a cavity resonance from higher to lower
frequencies. The step features correspond to the formation of solitons.

b Simulation results corresponding to panel a and showing the formation of
multiple solitons. In the simulation, the Raman effect and avoided mode
crossing are included

Microresonator signal setup

the formation and evolution of soliton complexes such as Stokes
solitons®, soliton number switching®”, and soliton crystals38. It
can also be used to monitor the state of chip-based optical
memories based on microresonator solitons.

Methods

Detailed experimental setup. Figure 6 divides the experimental setup into three
sections. In the microresonator section, a tunable, continuous-wave (cw) laser is
used to pump the microcavity for production of solitons. An erbium-doped fiber
amplifier (EDFA) amplifies its power to 500 mW and an acousto-optic modulator
(AOM) is used for rapid control of power to the microcavity. A tunable bandpass
filter (BPF) is used to block the spontaneous emission noise from the EDFA. The
pump is coupled into the microcavity through a tapered-fiber®162. The emitted
power from the microcavity (along with transmitted pump power) is split by a 90/
10 fiber coupler. Ten percent of the power is sent to a fiber-Bragg grating (FBG)
filter to separate the pump power and the microcomb power. The drop port output
is the pump power transmission, while the through-port output is the comb power.
Both the pump transmission and the microcomb power are detected with photo-
detectors (125 MHz bandwidth). The other 90% of the power is combined with the
electro-optic (EO) modulation comb sampling pulse using a second fiber coupler.

In the EO comb setup, a pump laser is amplified by an EDFA to 200 mW and
then phase modulated by three tandem lithium niobate modulators. The EO comb
and microcavity setup can share the same pump laser when the acousto-optic
modulator can provide a frequency offset higher than half of the electrical
bandwidth of the interferogram signal (to avoid frequency folding). This is the case
in Fig. 1. However, they can also use separate pump lasers, which is demonstrated
in Figs. 2 and 3. In this case, the frequency sweep range of the soliton pump laser is
always less than the frame rate to ensure that the soliton spectrum can be
accurately inferred from Fourier transform of the interferogram. The modulators
are driven by amplified electrical signals (frequency close to 22 GHz) that are
synchronized by electrical phase shifters. The output power of the electrical
amplifiers is 33 dBm. The phase modulated pump is then coupled to an intensity
modulator to select only portions of the waveform with a uniform chirp. The
intensity modulator is driven by the recycled microwave signal from the external
termination port of the first phase modulator. The phase and amplitude of the
modulation are controlled by electrical attenuators and phase shifters. A
programmable line-by-line waveshaper is used to flatten the EO comb optical
spectrum and to nullify the linear chirping so as to form a transform-limited sinc-
shaped temporal pulse. The average power from the waveshaper output is around
100 uW. The EO pulses are amplified by an EDFA before combining with the
microresonator signal.

In the interferogram measurement, the microcavity signal and the EO pulses are
combined in a 90/10 coupler and are then detected by a fast photodetector with 50
GHz bandwidth. An FBG filter is used to block the pump laser of the microcavity
to avoid saturation in the photodetector. All photodetected signals are recorded
using a 4 GHz bandwidth, 20 GSa/s sampling rate oscilloscope. The center
frequencies (compression factors) for the interferograms are around 0.7 GHz
(2200) and 2.1 GHz (440) for the 10 MHz and 50 MHz frame rates, respectively.

Data acquisition
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Fig. 6 Experimental setup. Schematic showing the three functional sections in the experiment. CW laser: continuous-wave laser; EDFA: erbium-doped-
fiber-amplifier; AOM: acousto-optic modulator; BPF: bandpass filter; PC: polarization controller; PM: phase modulator; IM: intensity modulator; PS: phase
shifter; ATT: attenuator; Amp: RF amplifier; DC: voltage source; WS: optical waveshaper; FBG: fiber-Bragg-gating; PD: photodetector
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Time constant in soliton decay. In the soliton decay process, the average intra-
cavity energy decays exponentially and its time constant equals the dissipation rate
of the cavity (k = w/Q), where w is the optical frequency and Q is the loaded cavity
Q factor. For large cavity-laser frequency detuning!”>?, the average intracavity
energy is approximately the soliton energy, 7,A%, such that

7, ()AL(1) = 7,(0)AE(0)e ™. 1)

When the dissipation rate is relatively small compared to soliton Kerr nonlinear
shift, the dissipation is a perturbation and the pulse maintains its soliton
waveform®®. The corresponding balance of dispersion and Kerr-nonlinearity
requires that the product of soliton amplitude and pulse width be constant. This

condition was also verified experimentally in Fig. 4d°%°5,
7(DAg() = 7,(0)A5(0). @)
Inserting eq. (2) into eq. (1) gives,
A5(8) = A(0)e™, 7,(8) = 7,(0)e", A2(r) = AZ(0)e . 3)

In particular, the soliton amplitude decays at the cavity dissipation rate, the
pulse width exponentially grows, and the soliton peak power decays twice as fast as
the cavity dissipation rate. In the experiment, the fitted decay constant of the
soliton amplitude is 133 ns, which corresponds to x/(2m) = 1.2 MHz giving Q =
161 million. This value is in reasonable agreement with the measured loaded-Q
factor of 140 million.

Nyquist condition for sampling. In the EO comb sampling process the optical to
electrical conversion is accompanied by a large bandwidth compression of the
sampled signal. In effect, sampling stretches the time scale so that, for example, the
optical temporal resolution (1) is stretched to T<FSR/f after conversion to the
electrical signal where f is the frame rate given by f= FSR - f.omp. This stretching
means that the THz EO comb resolution bandwidth is compressed to an electrical
bandwidth of f/(7FSR). To avoid non-sensical signals in the electrical spectrum, the
compressed bandwidth should lie within the Nyquist frequency set by the FSR*.
This gives the condition f/(TFSR)<FSR/2, or f<tFSR?/2. In practice, when the
oscilloscope bandwidth (f,s) is smaller than the Nyquist frequency, the inter-
ferogram signal will be limited by the oscilloscope instead of the Nyquist frequency,
such that f/(TFSR)<fose, or f<tfosFSR. This is, in fact, the case in the present
measurement as the oscilloscope bandwidth is 4 GHz while the Nyquist frequency
is 11 GHz. In addition, the frequency components of the interferogram signal must
be positive to avoid frequency folding near zero frequency. This requires that the
carrier frequency of the interferogram signal is larger than half of the electrical
bandwidth. In the present measurement, the carrier frequency is the frequency
offset between the EO comb pump laser and the microcavity pump laser (defined
as AQ). As a result, this condition is expressed as AQ>f/(27FSR).

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding author upon reasonable
request.
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