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Long non-coding RNAs (lncRNAs) play a significant role in
multiple human cancers as competing endogenous RNAs (ceR-
NAs). However, a systematic mRNA-microRNA (miRNA)-
lncRNA network linked to kidney renal clear cell carcinoma
(KIRC) prognosis has not been described. In this study, we
aimed to identify the prognosis-related ceRNA regulatory
network and analyzed its relationship with immune cell infil-
tration to predict KIRC patient survival. The MMP25-AS1/
hsa-miR-10a-5p/SERPINE1 ceRNA network related to the
prognosis of KIRC was obtained through bioinformatics anal-
ysis based on The Cancer Genome Atlas (TCGA) and Gene
Expression Omnibus (GEO) databases. Meanwhile, we con-
structed a three-gene-based survival predictor model, which
could be referential for future clinical research. Methylation
analyses suggested that the abnormal upregulation of the SER-
PINE1 likely resulted from hypomethylation. Furthermore, the
immune infiltration analysis showed that theMMP25-AS1/hsa-
miR-10a-5p/SERPINE1 axis could affect the changes in the tu-
mor immunemicroenvironment and the development of KIRC
by affecting the expression of chemokines (CCL4, CCL5,
CXCL13, and XCL2). Tumor Immune Dysfunction and Exclu-
sion (TIDE) analysis indicated that the high expression of SER-
PINE1 might be related to tumor immune evasion in KIRC. In
summary, the current study constructing theMMP25-AS1/hsa-
miR-10a-5p/SERPINE1 ceRNA network might be a novel sig-
nificant prognostic factor associated with the diagnosis and
prognosis of KIRC.
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INTRODUCTION
Renal cell carcinoma is a malignant tumor that originates from renal
tubular epithelial cells, accounting for nearly 90% of renal malig-
nancies and 3% of adult malignancies.1 Kidney renal clear cell carci-
noma (KIRC) is the most typical subtype of renal cell carcinoma.2 It is
usually asymptomatic, and approximately 30% of patients are diag-
nosed in the advanced stage. Advanced KIRC has an extremely
poor prognosis due to its inherent resistance to radiotherapy and
chemotherapy.3 Currently, surgical resection is the most effective
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treatment for KIRC patients.4 Therefore, a comprehensive under-
standing of the molecular mechanisms of KIRC and the development
of effective early diagnostic and therapeutic strategies are urgently
needed.

Competitive endogenous RNA (ceRNA) is a gene expression regula-
tion mechanism proposed by Salmena et al.5 in 2011. The ceRNA hy-
pothesis holds that endogenous RNA molecules have microRNA
(miRNA) target sites and can competitively bind to miRNAs, thereby
indirectly regulating the expression of miRNA target genes.6 This
competitive miRNA binding effect is also called the miRNA sponge
effect. A large number of studies have found that long non-coding
RNAs (lncRNAs) can act as miRNA sponges to regulate target gene
expression.7,8 The lncRNA-miRNA-mRNA ceRNA network has
been shown to play vital roles in progression and metastasis of mul-
tiple cancers, such as colorectal cancer,9 pancreatic cancer,10,11 liver
cancer, as well as breast cancer.12–14 Nevertheless, the pivotal
lncRNA-miRNA-mRNA ceRNA networks that are significantly asso-
ciated with prognosis of KIRC still need further research.

The tumor microenvironment (TME) is a mixture of fluids, immune
cells, stromal cells, extracellular matrix molecules, and numerous
cytokines and chemokines.15 KIRC has the typical features of an
immunogenic tumor, including numerous tumor-infiltrating T lym-
phocytes (TILs) and cytotoxic T cells, which identify and selectively
destroy tumor cells, as well as circulating tumor-specific T cells.16

However, KIRC can suppress the anti-tumor immunity of CD4
T cells, CD8 T cells, natural killer (NK) molecules, and dendritic cells
through unclear mechanisms, successfully evading immune recogni-
tion.17 The crosstalk between the tumor cells and tumor-infiltrating
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Figure 1. Flow diagram of construction and analysis of ceRNA network
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immune cells is usually modulated by the ceRNA networks.18 There-
fore, it is necessary to do better research on KIRC-infiltrating immune
cells and ceRNA networks.

Advances in immunotherapies, particularly immune checkpoint
blockade (ICB) and engineered T cells, have revolutionized cancer
therapy in recent years.19 ICB exerts profound anti-tumor effects in
many cancer types. However, the efficacy of ICBs is greatly affected
by the tumor microenvironment.20 KIRC patients usually exhibit
higher immune-related scores. Previous studies have shown that
the interplay of somatic alterations and immune infiltration modu-
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lates the response of advanced KIRC to PD-1 blockade.21 Although
ICB has achieved durable disease control in some patients with
advanced KIRC, the molecular mechanisms underlying ICB resis-
tance have not been fully understood.22 Therefore, it is necessary to
do better research on the relationship between ICB response and
ceRNA networks in KIRC.

In this study, we first obtained differentially expressed mRNAs
(DEGs) by analyzing 4 GEO datasets and 1 The Cancer Genome Atlas
(TCGA) dataset. We further identified and visualized 33 hub genes by
a protein-protein interaction (PPI) analysis. Through prognostic
analysis, 14 upregulated genes and 9 downregulated genes were
used for subsequent analysis. The experimentally validated micro-
RNA-target interactions database (miRTarBas) was used to predict
the upstream miRNA of the above gene, and miRNet and starBase
were used to predict the upstream lncRNAs of candidate miRNAs.
Through differential expression analysis, co-expression correlation
analysis, prognostic analysis, and Cox regression analysis, we
successfully established a new ceRNA (MMP25-AS1/hsa-miR-10a-
5p/SERPINE1) regulatory network (Figure 1) and constructed a
three-gene-based survival predictor model. Methylation analysis, im-
mune infiltration analysis, and Tumor Immune Dysfunction and
Exclusion (TIDE) analysis were further performed to study the poten-
tial biological function of the MMP25-AS1/hsa-miR-10a-5p/SER-
PINE1 axis in KIRC. The established ceRNA network may help us
to fully understand the pathogenesis of KIRC and provide KIRC
with promising diagnostic biomarkers or effective therapeutic targets.

RESULTS
Identification of significant DEGs in KIRC

In the present study, five mRNA microarray datasets (GSE15641,
GSE36895, GSE46699, GSE53757, and TCGA) were analyzed to
obtain DEGs between KIRC tissues and adjacent normal tissues. As
shown in the volcano plot, the genes with adjusted (adj.) p value <
0.05 and log2 (fold change) R 1.5 or % �1.5 were regarded as
significant DEGs (Figure 2A). In the GSE15641 dataset, a total of
825 upregulated and 347 downregulated significant DEGs were
screened out. In the GSE36895 dataset, there were 448 upregulated
and 680 downregulated significant DEGs in KIRC tissues compared
with adjacent non-tumor samples. For the GSE46699 dataset, there
were 341 upregulated genes and 367 downregulated genes. For the
GSE53757 dataset, a total 1,047 upregulated genes and 1,230 downre-
gulated genes were identified. For the TCGA dataset, there were 345
upregulated mRNAs and 335 downregulated mRNAs. Venn diagram
analysis revealed that there were 103 common upregulated DEGs and
58 common downregulated DEGs in five datasets (Figures 2B
and 2C).

To explore the biological functions of the identified DEGs, we per-
formed GO and KEGG pathway enrichment analysis using Meta-
scape. GO analysis results indicated that for biological processes
(BPs), the common significant DEGs were mainly enriched in
response to hypoxia, response to wounding, and extracellular struc-
ture organization (Figure S1A). For cell components (CCs), the



Figure 2. Screening of significant DEGs

(A) Differentially expressed mRNA volcano plot (log2 (fold

change)R 1.5 or%�1.5; adj. p value < 0.05). Blue dots:

significantly downregulated (down); red dots: significantly

upregulated (up); grey dots: no significant differences (ns).

(B and C) Venn diagram showing the intersection of up-

regulated and downregulated genes in five datasets. (D)

The PPI network showed the top 20 hub genes of the

significantly upregulated genes. (E) The PPI network

showed the top 13 hub genes of the significantly down-

regulated genes.
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common significant DEGs were particularly enriched in extracellular
matrix, cytoplasmic vesicle membrane, and side of membrane (Fig-
ure S1B). For molecular functions (MFs), the common significant
DEGs were enriched in oxidoreductase activity, extracellular matrix
structural constituent, and carbohydrate binding (Figure S1C).
Molecular The
With regard to KEGG pathways, we found
that the common significant DEGs were
significantly enriched in PI3K-Akt signaling
pathway, phagosome, and ECM-receptor inter-
action (Figure S1D).

In order to understand the mutual interaction
of the identified DEGs, PPI networks were con-
structed respectively for the upregulated and
downregulated DEGs. According to the node
degree calculated by CytoHubba of Cytoscape
software, we obtained 33 hub genes, among
which 20 were upregulated hub genes and 13
were downregulated hub genes (Figures 2D
and 2E). Meanwhile, the overall survival (OS)
of those hub genes in KIRC patients was also as-
sessed by Kaplan-Meier (KM) plotter analysis
with the TCGA database. We found that 14 up-
regulated hub genes (C1QA, C1QB, C3, CAV1,
CCL5, COL1A1, CXCR4, FN1, IL10RA, LOX,
MYC, SERPINE1, TYROBP, and VEGFA) were
not only dramatically upregulated in KIRC
but also significantly correlated with poor prog-
nosis of KIRC patients (Figure S2). On the other
hand, 9 genes (ALB, ALDOB, AQP2, CLCNKB,
G6PC, HMGCS2, PCK1, SCNN1A, and
SLC12A1) were screened from 13 downregu-
lated hub genes, and the low expression of
them was related to the poor prognosis in
KIRC (Figure S3). The 23 key genes identified
from the expression pattern and survival anal-
ysis were selected for next analyses.

Identification and validation of key miRNAs

The upstream miRNAs of those 23 hub genes
were predicted by using the miRTarBase. Based
on strong evidence validations (reporter assay, western blot, or qRT-
PCR), a total of 112 upstream miRNAs (miRNA group1) were eventu-
ally identified as interacting with 10 upregulated hub mRNAs. The
mRNA-miRNA regulatory networks for upregulated mRNA, consist-
ing of 147 miRNA-mRNA relationships, was constructed and
rapy: Oncolytics Vol. 22 September 2021 309
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Figure 3. Screening the key miRNAs in KIRC

(A) Construction of a miRNA-mRNA network. The blue and yellow ellipses represent miRNA. The red diamond indicates upregulated hub mRNA. (B) The volcano plot of the

differentially expressed miRNAs (log2 (fold change)R 1.5 or% �1.5; adj. p value < 0.05). Blue dots: significantly downregulated (down); red dots: significantly upregulated

(up); grey dots: no significant differences (ns). (C) Venn diagram showing the intersection between miRNA group1 (upstream miRNAs of upregulated hub genes) and

downregulated miRNAs. (D) The co-expression analysis of miRNA-mRNA. (E and F) Overall survival of hsa-miR-10a-5p and hsa-miR-200b-3p in KIRC.
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Figure 4. Construction of the ceRNA network

(A) Volcanomap of differentially expressed lncRNAs of KIRC in TCGA (log2 (fold change)R 0.5 or%�0.5; adj. p value < 0.05). Blue dots: significantly downregulated (down);

red dots: significantly upregulated (up); grey dots: no significant differences (ns). (B) Upstream lncRNAs of miRNAs (hsa-miR-10a-5p and hsa-miR-200b-3p) were identified

using miRNet and starBase. Venn diagram analysis of upregulated lncRNAs and miRNA-linked upstream lncRNAs. (C) The miRNA-lncRNA interaction pairs were visualized

using Cytoscape. (D and E) Co-expression correlation analysis of miRNA-lncRNA and mRNA-lncRNA. (F) Univariate Cox proportional hazards regression analysis. (G)

Diagram of the ceRNA network. (H) KEGG-GSEA analysis of SERPINE1 in the ceRNA regulatory network.
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visualized by using the Cytoscape (Figure 3A). Meanwhile, a total of 4
upstream miRNAs (miRNA group2) were eventually identified as in-
teracting with 3 downregulated hub mRNAs. Cytoscape was used to
construct and visualize a mRNA-miRNA regulatory network for
downregulated mRNA, which consists of 6 miRNA-mRNA relation-
ships (Figure S4A). Furthermore, we screened the differentially
Molecular Therapy: Oncolytics Vol. 22 September 2021 311
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Table 1. Correlation of gene expression (MMP25-AS1, miR-10a-5p and SERPINE1) with clinicopathological variables in KIRC of TCGA datasets

Clinicopathological features Cases

MMP25-AS1 miR-10a-5p SERPINE1

Low High F p Low High F p Low High F p

Group

Normal 71 71 0 146.279 1 70 101.105 63 8 71.387

KIRC 513 257 256 0.000* 257 256 0.000* 257 256 0.000*

Age

Younger (<70 years) 387 187 200 0.419 189 198 3.076 189 198 0.005

Older (R70 years) 126 70 56 0.518 68 58 0.080 68 58 0.943

Gender

Male 337 179 158 7.687 172 165 0.038 146 191 18.776

Female 176 78 98 0.006* 85 91 0.845 111 65 0.000*

Race

White 443 231 212 0.000 235 208 44.247 212 231 7.429

Black 55 21 34 0.983 16 39 0.000* 37 18 0.007*

Pathological stage

I–II 307 158 149 7.805 130 177 21.794 165 142 7.515

III–IV 203 98 105 0.005* 125 78 0.000* 90 113 0.006*

AJCC pathological T

T1–T2 325 168 157 7.530 142 183 18.133 175 150 9.245

T3–T4 188 89 99 0.006* 115 73 0.000* 82 106 0.002*

AJCC pathological N

N0 227 107 120 0.331 117 110 2.266 125 102 7.761

N1 16 7 9 0.566 10 6 0.134 4 12 0.006*

AJCC pathological M

M0 405 215 190 4.249 202 203 5.043 205 200 2.851

M1 77 36 41 0.040* 50 27 0.025* 33 44 0.092

Tumor status

Tumor-free 320 159 161 1.175 154 166 2.987 173 147 18.544

With tumor 147 73 74 0.279 81 66 0.085 60 87 0.000*

Laterality

Left 237 112 125 2.715 123 114 2.717 110 127 1.384

Right 275 145 130 0.100 134 141 0.100 146 129 0.240

*p value less than 0.05.
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expressed miRNAs between tumor and normal samples in KIRC. Ac-
cording to the cut-off criteria (adj. p value < 0.05 and log2 (fold change)
R 1.5 or % �1.5), 76 miRNAs were differentially expressed between
KIRC and normal tissues. As shown in the volcano plot, there were
15 upregulated miRNAs and 61 downregulated miRNAs (Figure 3B).
Venn diagram analysis showed that 17 of the 112 miRNAs targeted
to the upregulated hub mRNAs were significantly downregulated in
KIRC (Figure 3C). However, among the 4 miRNAs that bound to
the downregulated hub mRNAs, none of them were significantly upre-
gulated in KIRC (Figure S4B). Thus, we used the starBase database to
analyze the expression correlation between 17 miRNAs (including 5
miRNAs and 5 mRNAs) and target mRNAs in KIRC (Table S1). We
found 6 inversely correlated miRNA-mRNA pairs, including 5 miR-
312 Molecular Therapy: Oncolytics Vol. 22 September 2021
NAs and 5 mRNAs (Figure 3D). Among the 5 miRNAs, 2 of them
(hsa-miR-10a-5p and hsa-miR-200b-3p) were prognostic biomarkers
according to the overall survival analysis for patients with KIRC (Fig-
ures 3E and 3F).

Construction of the lncRNA-miRNA-mRNA network

We first looked for those lncRNAs differentially expressed in KIRC
patients in the TCGA database, generating volcano maps based on
those genes with adj. p value < 0.05 and log2 (fold change) R 0.5 or
% �0.5 (Figure 4A). A total of 377 significantly differentially ex-
pressed lncRNAs were obtained, including 270 upregulated
lncRNAs and 107 downregulated lncRNAs. Next, we predicted
the upstream potential lncRNAs of the hsa-miR-10a-5p and hsa-



Figure 5. Construction of the prediction model based on the ceRNA network

(A) Risk plot for the KIRC patients. It consists of three rows: top rows show a risk score distribution for the high-risk-score group and low-risk-score group; middle rows

represent the KIRC patient distribution and survival status; the bottom rows show the heatmap of ceRNA network expression (MMP25-AS1/hsa-miR-10a-5p/SERPINE1). (B)

Kaplan-Meier survival curve by the risk score of the TCGA-KIRC dataset. (C) Time-dependent ROC curve analysis for survival prediction by the risk score. (D) Multivariate

analyses of clinical parameters associated with overall survival. (E) A nomogram based on 4 variables, including MMP25-AS1/hsa-miR-10a-5p/SERPINE1 axis risk score,

was developed for the estimation of the 1-, 3-, and 5-year survival probability in KIRC.
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miR-200b-3p through miRNet and starBase databases. The overlap-
ping Venn diagram showed that 6 upregulated lncRNAs could
potentially bind to hsa-miR-10a-5p, while 4 upregulated lncRNAs
were predicted to bind to hsa-miR-200b-3p (Figure 4B). Based on
the above information, we constructed 10 miRNA-lncRNA interac-
tion pairs (Figure 4C). Subsequently, the expression correlation of
miRNA-lncRNA interaction pairs in KIRC were evaluated by the
starBase database (Table S2). A total of 2 significantly negatively
correlated miRNA-lncRNA pairs were selected (Pearson’s r <
�0.1, p < 0.05) (Figure 4D). At the same time, the two lncRNAs
(MSC-AS1 and MMP25-AS1) showed a positive correlation with
the corresponding mRNAs (Figure 4E). Univariate Cox propor-
tional hazards regression analysis indicated that MMP25-AS1,
hsa-miR-10a-5p, hsa-miR-200b-3p, and SERPINE1 were signifi-
cantly related to the overall survival of KIRC patients (p < 0.05)
(Figure 4F). Finally, we obtained a ceRNA network (MMP25-AS1/
hsa-miR-10a-5p/SERPINE1) related to the prognosis of KIRC,
which is shown in Figure 4G. Furthermore, we explored the associ-
ations between gene expression (MMP25-AS1, miR-10a-5p, and
SERPINE1) and clinicopathological characteristics, with the results
summarized in Table 1. MMP25-AS1 expression was significantly
associated with gender, pathological stage, American Joint Commit-
tee on Cancer (AJCC) T stage, and AJCC M stage. The expression of
miR-10a-5p was significantly associated with race, pathological
stage, AJCC T stage and AJCC M stage. SERPINE1 expression
was significantly associated with gender, race, pathological stage,
AJCC T stage, AJCC N stage, AJCC M stage, and tumor status.
In order to further explore the biological function of the ceRNA
network, KEGG pathway analysis of SERPINE1 via gene set enrich-
ment analysis (GSEA) revealed that SERPINE1 was mainly involved
in the chemokine signaling pathway, cytokine receptor interaction,
ECM receptor interaction, and the JAK-STAT signaling pathway,
which were closely related to epithelial-mesenchymal transition
(EMT) (Figure 4H).
Molecular Therapy: Oncolytics Vol. 22 September 2021 313
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Construction of a ceRNA-associated risk model

In order to explore KIRC’s prognostic biomarker based on the ceRNA
network (MMP25-AS1/hsa-miR-10a-5p/SERPINE1), we investigated
the association of the ceRNA network and overall survival in KIRC
patients using the univariate and multivariate Cox regression. KIRC
patients were then divided into high- and low-risk subgroups accord-
ing to the median cutoff of the three-gene-based prognosis risk score
(Figure 5A). Kaplan-Meier curves were plotted when the median risk
score in the TCGA dataset was used as the cutoff value to compare
survival risk between high-risk and low-risk groups. As shown in Fig-
ure 5B, KIRC patients with high risk scores had poor clinical out-
comes. Receiver operating characteristic (ROC) analysis revealed
that the MMP25-AS1/hsa-miR-10a-5p/SERPINE1 prognostic model
effectively predicted the survival of KIRC patients in 1-year, 3-year,
and 5-year survival rates in the TCGA dataset (Figure 5C).

Moreover, univariate analyses of clinical variables considered as po-
tential predictors of survival are shown in Figure S5. Our results indi-
cated that AJCC stage, T stage, age, recurrence, laterality, as well as
risk score were significant risk factors for poor survival. Figure 5D
shows the result of Cox multivariate analysis including these factors.
However, multivariate analysis confirmed that AJCC stage, age,
recurrence, and risk score were independent poor prognostic factor
of overall survival. A nomogram was established based on the final
Cox multivariable model, where the 1-, 3-, and 5-year survival prob-
abilities of the KIRC patients could be easily predicted by summing up
the points assigned to each respective variable (Figure 5E).

Pan-cancer analysis of MMP25-AS1 expression and prognostic

association

In order to examine the expression of MMP25-AS1 in cancers
thoroughly, we conducted pan-cancer analysis of MMP25-AS1
expression in 23 types of cancers using the Gene Expression Profiling
Interactive Analysis (GEPIA) database. The results showed that
compared with normal tissues, the expression of MMP25-AS1 was
significantly decreased in several types of tumor tissues, such as
kidney chromophobe (KICH), lung adenocarcinoma (LUAD),
lung squamous cell carcinoma (LUSC), prostate adenocarcinoma
(PRAD), thyroid carcinoma (THCA), thymoma (THYM), and
uterine corpus endometrial carcinoma (UCEC). However, it was
only significantly increased in KIRC (Figure 6A). Later, univariate
Cox analysis suggested that there were only significant associations
between MMP25-AS1 expression and KIRC patient prognosis (Fig-
ure 6B). Meanwhile, analyses of the Clinical Proteomics Tumor Anal-
ysis Consortium (CPTAC) database revealed that the protein levels of
SERPINE1 were significantly upregulated in KIRC tumor samples
relative to normal tissues (Figure 6C). The expression of MMP25-
Figure 6. A pan-cancer analysis of MMP25-AS1

(A) The expression of MMP25-AS1 in pan-cancer analyzed by the GEPIA dataset (http://g

association between MMP25-AS1 expression and overall survival time in 8 types of can

expression of SERPINE1 in KIRC, ovarian serous cystadenocarcinoma (OV), colon ad

analyzed by the UALCAN database. (D) The expression of SERPINE1 in different stages o

or low expression with the tumor overall survival of KIRC patients with stage I and II or sta

survival (OS), progression-free survival (PFS), and disease-specific survival (DSS) rates.
AS1 was associated with tumor stage, as it had a significantly higher
expression level in KIRC stage III and IV compared to stage I patients
(Figure 6D). For this, all 510 patients were divided into an early-stage
group (stages I and II) and an advanced-stage group (stage III and
IV), and a survival analysis of each subgroup was conducted. We
found that high MMP25-AS1 expression was significantly correlated
with poorer survival in patients with early-stage and advanced-stage
disease (Figures 6E and 6F). Finally, we evaluated the effect of
MMP25-AS1 expression on overall survival, progression-free survival
(PFS), and disease-specific survival (DSS). MMP25-AS1 expression in
KIRC tumor was significantly associated with overall survival , PFS,
and DSS (Figures 6G–6I).

Relationship between methylation and expression of SERPINE1

It has been shown that the occurrence and development of KIRC
was associated with aberrant methylation of tumor suppressor
genes. Our research found that DNA methyltransferases
(DNMT1, DNMT3A, and DNMT3B), the key enzymes involved
in DNA methylation, were significantly upregulated in the high-
risk score group and the MMP25-AS1 high-expression group (Fig-
ure 7A). To further clarify the mechanism of abnormal upregulation
of SERPINE1 in KIRC tissues, we explored the relationship between
the expression level of SERPINE1 and its methylation status. The
analysis of UALCAN demonstrated that the methylation level of
SERPINE1 was significantly lower in KIRC tissues than in the
normal tissues (Figure 7B). Similarly, DiseaseMeth version 2.0 anal-
ysis by the Illumina 450K array showed a significantly decreased
methylation level in KIRC tissues as compared with normal tissues
(Figure 7C). Additionally, we found the 3 most significant methyl-
ation sites (cg08792542, cg12584355, and cg01975495) in the DNA
sequences of SERPINE1 that were negatively associated with their
expression levels (Figure 7D). Kaplan-Meier survival analysis based
on methylation status showed that cg08792542 and cg01975495 site
hypomethylation was associated with poor survival in KIRC
(Figure 7E).

Correlation between immune infiltration and the risk score of the

ceRNA network

In order to further study the correlation between the ceRNA network
and tumor microenvironment immune cell infiltration, we first calcu-
lated the score of 28 immune cells’ infiltration in each KIRC sample
using ssGSEA. At the same time, the association between immune
infiltration of each cell type and patient survival was assessed using
Cox proportional hazards regression. A univariate Cox regression
analysis showed that 15 immune infiltration cells were statistically
significant for survival risk in KIRC cancer (Table S3). We used an
unsupervised clustering method to divide all samples into three
epia.cancer-pku.cn/). (B) Univariate Cox regression analysis was used to assess the

cers (KICH, KIRC, LUAD, LUSC, PRAD, THCA, THYM, and UCEC). (C) The protein

enocarcinoma (COAD), and breast invasive carcinoma (BRCA) from CPTAC was

f KIRC. (E and F) Kaplan-Meier plotter analysis of the correlation of MMP25-AS1 high

ge III and IV disease. (G–I) A Kaplan-Meier analysis was performed to estimate overall
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clusters (high immune infiltration, cluster 1; intermediate immune
infiltration, cluster 2; low immune infiltration, cluster 3). The heat-
map showed the level of infiltration of 15 immune infiltration cells
in three clusters (Figure 8A). Survival analysis showed that patients
in the high immune cell infiltration cluster had shorter overall sur-
vival than patients in the low immune cell infiltration cluster (Fig-
ure 8B). Further research found that the ceRNA network risk score
was highly correlated to the immune cell infiltration. The ceRNA
network risk score of patients in the high immune cell infiltration
group was significantly higher than that of patients in the low
immune cell infiltration group, and the expression of SERPINE1,
hsa-miR-10a-5p, and MMP25-AS1 also showed the same trend (Fig-
ure 8C). Moreover, the ceRNA network risk score was negatively
correlated with tumor purity (Figure 8D). We found that ceRNA
network risk score had significantly positive correlation with 10 cell
subsets (activated CD4+ T cells, activated CD8+ T cells, activated
dendritic cells, macrophages, myeloid derived suppressive cells
(MDSCs), effector memory CD4+ T cells, gamma delta T cells, natu-
ral killer T cells, central memory CD4+ T cells, and type 1 T helper
cells), and the increase in these 10 cell subsets was associated with
poor prognosis (Figures 8D and 8E). Only CD56bright natural killer
cells had significant negative correlation with the ceRNA network risk
score, and lower CD56bright natural killer cells had a poor prognosis
(Figures 8D and 8E).

MMP25-AS1 might mediate the immune cell infiltration via

regulation of chemokines

Chemokines are a group of small chemotactic cytokines that play a
pivotal role in regulating infiltration of immune cells. To determine
the chemokines associated with immune cell infiltration, we evaluated
the differential expression of the 40 known human chemokines be-
tween KIRC and normal tissues. We found 15 significantly differently
expressed chemokines (CCL18, CCL20, CCL21, CCL3, CCL4, CCL5,
CX3CL1, CXCL10, CXCL11, CXCL12, CXCL13, CXCL2, CXCL5,
CXCL9, and XCL2) (Figure 9A). The univariate Cox regression anal-
ysis of 15 differentially expressed chemokines showed that CCL4,
CCL5, CX3CL1, CXCL13, CXCL2, CXCL5, and XCL2 were signifi-
cantly associated with overall survival (Figure 9B). Furthermore,
hierarchical cluster correlation analysis was performed to investigate
significant relationships among 19 variables (tumor purity, 11 cell
subsets, and 7 chemokines). We found that 4 chemokines (CCL4,
CCL5, XCL2, and CXCL13) were positively correlated with 7 immune
infiltrating cells (activated CD4+ T cells, activated CD8+ T cells, acti-
vated dendritic cells, macrophages, MDSCs, central memory CD4+
T cells, and type 1 T helper cells) and negatively correlated with tumor
purity (Figure 9C). Finally, Pearson’s correlation analysis was per-
formed to assess relationships between the ceRNA network and the
4 key chemokines. Results showed that CCL4, CCL5, XCL2, and
Figure 7. Methylation analysis of SERPINE1

(A) Differential expression of three DNA methyltransferases (DNMT1, DNMT3A, and DNM

using DiseaseMeth version 2.0. (D) The methylation site of SERPINE1 DNA sequence a

significant methylation sites are marked with red font and were negatively correlated wit

and cg01975495) in SERPINE1 in KIRC patients.
CXCL13 were significantly positively correlated with MMP25-AS1
and SERPINE1 and significantly negatively correlated with hsa-
miR-10a-5p, respectively (Figure 9D).

The high expression of SERPINE1 might be related to tumor

immune evasion

Immune checkpoints were negative regulators of T cell activation,
T cell proliferation, and effector functions. ICB was a promising
approach to activating antitumor immunity. Hence, we evaluated 8
genes previously reported to be targets of immune checkpoint inhib-
itors: CD274 (PD-L1), CTLA4, HAVCR2, LAG3, PDCD1 (PD-1),
PDCD1LG2 (PD-L2), TIGIT, and SIGLEC15. We found that 7 genes
other than SIGLEC15 were significantly highly expressed in KIRC
and were significantly related to tumor stage (Figure 10A). The rela-
tionship between SERPINE1 expression and the expression of im-
mune checkpoint genes was analyzed using the Spearman correlation
analysis. The results showed that SERPINE1 expression level was
significantly positively correlated with 4 immune markers (CTLA4,
LAG3, PDCD1LG2, and TIGIT) (|cor| > 0.1 and p < 0.01)
(Figure 10B).

Afterward, the TIDE algorithm was used to predict the likelihood of
an immunotherapy response. A low TIDE score meant a high prob-
ability of response to ICB therapy. The result showed that KIRC pa-
tients with early-stage disease (AJCC stage I and II) had lower TIDE
scores compared to the patients with advanced-stage disease (AJCC
stage III and IV) (Figure 10C). Meanwhile, we observed that TIDE
scores were significantly lower in the SERPINE1 low-expression
group compared with the SERPINE1 high-expression group (Fig-
ure 10D). The above results indicated that KIRC patients with high
expression of SERPINE1, regulated by the MMP25-AS1/hsa-miR-
10a-5p axis, might have a higher chance of anti-tumor-immune
escape and thus showed a lower ICB treatment response rate.

DISCUSSION
KIRC is a common urinary system tumor with a high level of tumor-
infiltrating immune cells and high aggressiveness. Because KIRC is
insensitive to conventional radiotherapy and chemotherapies,
treatment of this disease largely relies on targeted therapy and immu-
notherapy. Due to the lack of precise and specific targets, the long-
term efficacy of molecular targeted therapy and immunotherapy in
the treatment of advanced KIRC is still not ideal.23 The ceRNA reg-
ulatory network has been demonstrated to be involved in the initia-
tion and progression of human cancers.24 To the best of our knowl-
edge, a comprehensive KIRC ceRNA network based on immune
cell infiltration and prognostic factors has not been constructed so
far. Therefore, we tried to establish the mRNA-miRNA-lncRNA
ceRNA network related to the immune infiltration and prognosis of
T3B). (B) Methylation was evaluated using UALCAN. (C) Methylation was assessed

ssociation with gene expression was visualized using MEXPRESS. The top 3 most

h SERPINE1 expression. (E) Survival analysis of two methylation sites (cg08792542
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KIRC and provide clues for further exploring KIRC prognostic bio-
markers and potential therapeutic targets.

Here, for the first time, we searched for upstream lncRNAs and miR-
NAs based on the key mRNAs and finally obtained the ceRNA
network (MMP25-AS1/hsa-miR-10a-5p/SERPINE1) related to the
immune infiltration and prognosis of KIRC. By searching for these
genes in PubMed, we observed that miR-10a-5p and SERPINE1 had
been studied for their roles in cancer or in the relationship with
KIRC cancer. hsa-miR-10a-5p, as an antitumor gene, was significantly
downregulated in KIRC specimens. Simultaneously low expression of
hsa-miR-10a-5p was associated with poor prognosis.25,26

SERPINE1 encoded plasminogen activator inhibitor-1 (PAI-1),
which could modulate the essential processes of tumor development,
growth, invasion, and metastasis, as well as angiogenesis and
fibrosis.27–29 We found that SERPINE1 (also known as PAI-1) was
significantly upregulated in KIRC, and high expression of SERPINE1
was associated with poor prognosis. These results were consistent
with previous studies (Sui et al., 202130). In this study, we first iden-
tified the MMP25 antisense RNA 1 (MMP25-AS1) as an oncogenic
factor in KIRC. MMP25-AS1 expression was significantly higher in
KIRC than in normal tissues, and high expression of MMP25-AS1
was associated with poor outcome by survival analysis. However, so
far no studies have investigated the role of MMP25-AS1 in cancer.

DNA methylation is an epigenetic modification that maintains gene
silencing with the addition of methyl groups to the fifth carbon posi-
tion of the cytosine residues by DNA methyltransferases (including
DNMT1, DNMT3A, and DNMT3B).31 Aberrant DNA methylation,
in particular promoter hypermethylation and transcriptional
silencing of tumor suppressor genes, has an important role in the
development of many human cancers, including KIRC.32 In the pre-
sent study, we demonstrated for the first time that DNAmethyltrans-
ferases were highly expressed in KIRC patients with high expression
of MMP25-AS1 and high ceRNA network risk scores. This suggests
that MMP25-AS1 may be related to cancer-related DNA hyperme-
thylation in KIRC patients. Meanwhile, we found that the level of
SERPINE1 methylation was significantly lower and the expression
of SERPINE1 was significantly higher in KIRC tissues compared to
normal tissues, suggesting that the expression of SERPINE1 was up-
regulated by low DNA methylation in KIRC. Upon further research,
we found that high expression of SERPINE1 was negatively correlated
with methylation sites cg08792542 and cg01975495, and these
methylation sites were associated with better survival in KIRC.

Immune cells that infiltrate tumors form an ecosystem in the tumor
microenvironment to regulate cancer progression and are closely
Figure 8. Analysis of the correlation between the ceRNA network risk score an

(A) Heatmap of major immune cells in KIRC, clustered by their relative expression of the m

of different immune infiltration cells clusters. (C) Analyzed ceRNA network risk score an

three distinct immune infiltration clusters. (D) Spearman correlation analysis was furth

immune infiltration cells. (E) The Kaplan-Meier survival analysis was utilized to analyze t
associated with clinical outcome in KIRC.17 It has been found
that KIRC tissue is often infiltrated by lymphocytes (T cells, B cells,
and natural killer cells), macrophages, and dendritic cells.33,34 The
activated CD8+ T cells and activated dendritic cells were associated
with the poor prognosis of KIRC, and the infiltrating CD4+ T cells
could enhance KIRC cell proliferation. Infiltrating macrophages
increased KIRC cell invasion via alteration of EMT and increasing
the stem-cell-like population.33 Thus, KIRC is considered to have
a unique TME, because CD8+ T cell infiltrates and a high density
of activated dendritic cells correlate with favorable prognosis in
the majority of solid tumors except for KIRC.35 In this study, we
first studied the correlation between the MMP25-AS1/hsa-miR-
10a-5p/SERPINE1 axis risk score and 28 immune cells’ infiltration.
We found 11 types of tumor-infiltrating immune cells (activated
CD4+ T cells, activated CD8+ T cells, activated dendritic cells, mac-
rophages, MDSCs, effector memory CD4+ T cells, gamma delta
T cells, natural killer T cells, central memory CD4+ T cells, type
1 T helper cells, and CD56bright natural killer cells) were not
only highly correlated with the ceRNA network risk score but also
particularly relevant to the prognosis of KIRC patients. These find-
ings together suggest that these differences induced by the MMP25-
AS1/hsa-miR-10a-5p/SERPINE1 axis may have an impact on the
changes in the tumor immune microenvironment and the develop-
ment of KIRC.

Chemokines are chemoattractant cytokines that play a pivotal role in
regulating migration and infiltration of immune cell populations.36

Over 40 human chemokines are now acknowledged, each with its
own specific pattern of cellular chemotaxis.37 We found that only 4 of
the 40 chemokines (CCL4, CCL5, XCL2, and CXCL13) were signifi-
cantly correlated with the expression of the MMP25-AS1/hsa-miR-
10a-5p/SERPINE1 axis and 7 immune infiltrating cells (activated
CD4+ T cells, activated CD8+ T cells, activated dendritic cells, macro-
phages, MDSCs, central memory CD4+ T cells, and type 1 T helper
cells). Previous studies have reported that the RNA transcript levels of
CCL4, CCL5, and CXCL13 are higher in KIRC tissues compared with
normal tissues.38,39 CCL5 is expressed not only in immune cells but
also in tumor cells. Several studies have focused on the effect of CCL5
on tumors, finding that CCL5 can significantly promote tumor growth,
metastasis,40 angiogenesis,41,42 and immune escape.43,44 The experi-
mental results show that reduced expression of CCL5 and CXCL13
decreased cell proliferation and invasion in the KIRC cell lines.45,46 In
addition, the latest study found that CXCL13 secreted by CD8+
T cells impairs the immune function of the infiltrating CD8+ T cells
in KIRC.47 At the same time, CCL5 and CXCL13 have been shown to
be potential biomarkers and therapeutic targets, which is related to
CD8+ T cell infiltration in KIRC.46,48 The chemokine XCL2 was
recently shown to play a critical role in recruiting cross-presenting
d immune cell infiltration

arkers. (B) Kaplan-Meier survival analysis was performed to evaluate the prognosis

d the expression of three genes (SERPINE1, hsa-miR-10a-5p, and MMP25-AS1) in

er employed to examine the correlations between ceRNA network risk score and

he outcome of immune cells with differential infiltration.
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dendritic cells to tumors.49 In addition, studies have reported that tu-
mor-resident natural killer cells express many chemokine genes (such
as CCL4, CCL5, and XCL2), which are important for the infiltration
of dendritic cells, T cells, andother immune cells.50,51These results indi-
cated that the MMP25-AS1/hsa-miR-10a-5p/SERPINE1 axis may
participate in immune cell infiltration through chemokines CCL4,
CCL5, XCL2, and CXCL13.

Immune checkpoints play important roles in immune regulation, and
blocking immune checkpoints on the cell membrane is a promising
strategy in the treatment of cancer.52 Monoclonal antibodies targeting
a variety of immune checkpoint inhibitors (e.g., anti-CTLA4,
anti-PDCD1, and anti-LAG3) have been investigated across multiple
tumor types, including prostate cancer, lung cancer, and KIRC.22

However, many advanced KIRC patients are resistant to ICB ther-
apy.53 Through TIDE analysis, we found that the high expression of
SERPINE1 in KIRC patients may be related to the resistance to ICB
therapy. KIRC patients with high expression of SERPINE1 had
high expression of multiple immune checkpoints (CTLA4, LAG3,
PDCD1LG2, and TIGIT). Therefore, single-agent immunotherapy
is usually inadequate, and combined immunotherapy may be a
good choice for the treatment of KIRC cancer. Some studies have
shown that blockade of PD-1 combined with blockade of CTLA4,
LAG3, or TIGIT, to some extent, can reverse T cell dysfunction and
enhance antitumor immunity.54,55 The anti-CTLA4 antibody ipili-
mumab, in combination with the anti-PD-1 antibody nivolumab,
has been US Food and Drug Administration (FDA) approved for
the treatment of metastatic melanoma, metastatic colorectal cancer,
and advanced KIRC.56–58 PD-L1 is encoded by CD274 and PD-L2
is encoded by PDCD1LG2, both of which are immunosuppressant
proteins inhibiting cytokine production and cytolytic activities of
CD4+ and CD8+ T cells.59,60 Our study also found that PD-L2
expression was significantly positively correlated with SERPINE1
expression but not PD-L1 expression. These results could further
explain themechanism of CD8+ T cell infiltration and poor prognosis
of KIRC in renal cancer.

By integrating these mRNA-miRNA and miRNA-lncRNA interac-
tions, a potential mRNA-miRNA-lncRNA ceRNA network
associated with prognosis and immune cell infiltration of KIRC was
constructed. However, there are some limitations to this study. First,
the function of the key lncRNA MMP25-AS1 in KIRC requires
further experimental research. Second, the ceRNAs axis of MMP25-
AS1/hsa-miR-10a-5p/SERPINE1 should also be verified in in vitro
and in vivo studies.

Conclusion

In conclusion, through integrated identification and means of step-
wise reverse prediction, we identified KIRC-related lncRNA,
Figure 9. Chemokines mediated the regulatory effects of MMP25-AS1 on imm

(A) Differential expression of the 40 known human chemokines in normal and KIRC tis

mokines. (C) Hierarchical clustering analysis was performed using Pearson’s correlation

between the ceRNA network and the 4 key chemokines.
miRNA, and mRNA. Based on the rules of ceRNA hypothesis, a
ceRNA regulatory network consisting of the MMP25-AS1/hsa-
miR-10a-5p/SERPINE1 axis was constructed successfully, and
each component in the network was significantly associated with
the prognosis and immune cell infiltration of KIRC patients. The
MMP25-AS1/hsa-miR-10a-5p/SERPINE1 axis identified in our
research provided valuable clues for further basic and clinical
research and provided guidance for future KIRC diagnosis, targeted
therapy, and immunotherapy.
MATERIALS AND METHODS
Microarray data

Four mRNA microarray datasets (GSE15641, GSE36895,
GSE46699, and GSE53757) were downloaded from the GEO data-
base. The GSE15641 contained 32 KIRC tissue samples and 23
adjacent non-tumor samples. The GSE36895 included 29 KIRC tis-
sue samples and 23 adjacent non-tumor samples. The GSE46699
covered 67 KIRC tissue samples and 63 adjacent non-tumor sam-
ples. The GSE53757 contained 72 pairs of KIRC tissue samples and
adjacent non-tumor samples. The gene expression of mRNA,
lncRNA, and miRNA and clinical data of KIRC patients were
downloaded from The CGA database by TCGAbiolinks package
in R (version 4.0.4).
Screening of differentially expressed genes

We identified DEGs, miRNAs (DEmiRNAs), and lncRNAs (DElncR-
NAs) using the Linear Models for Microarray data (Limma) pack-
age61 in R. The DEGs and DEmiRNAs were identified using the
adj. p value < 0.05 and log2 (fold change)R 1.5 or%�1.5. We deter-
mined the DElncRNAs with thresholds of |log2 (fold change)|R 0.5
and adj. p value < 0.05. Meanwhile, volcano plots of the DEGs, DEmi-
RNAs, and DElncRNAs were visualized using the R gplots program.
To investigate the potential function of the DEGs in the KIRC, GO
functional enrichment analyses of the identified DEGs were per-
formed using Metascape.62 The identified DEGs were classified in
terms of the BP, MF, and CC categories.
Identification of hub genes

The PPI network was constructed separately for upregulated and
downregulated DEGs using the search tool for the retrieval of inter-
acting genes online database63 (https://string-db.org/). The PPI pairs
with a combined confidence score R 0.4 were visualized in the
network. The hub genes in the PPI network that had high degrees
of connectivity were identified using the CytoHubba plugin for Cyto-
scape software (version 3.8.0). Finally, the top 20 upregulated DEGs
according to the degree algorithm were selected separately, and the
top 13 downregulated DEGs were selected separately as hub genes
for further analysis.
une cell infiltration

sues. (B) The univariate Cox regression analysis of 15 differentially expressed che-

coefficient. (D) Pearson’s correlation analysis was used to assess the relationships
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Figure 10. The correlation between SERPINE1 and immune checkpoint genes

(A) The distribution of 8 immune checkpoint genes’ expression in different AJCC stages of KIRC. (B) Correlation analysis of SERPINE1 expression and 8 immune checkpoint

genes. (C) The distribution of TIDE scores in different AJCC stages of KIRC. (D) TIDE scores between high- and low-SERPINE1-expression patients.
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Identification of upstream miRNA and lncRNA

The upstream miRNAs that interacted with hub mRNAs were pre-
dicted by using the miRTarBase database64 (https://mirtarbase.
322 Molecular Therapy: Oncolytics Vol. 22 September 2021
cuhk.edu.cn/). Targets of miRNAs were downloaded from the
miRNA targets database miRTarBase, and only the miRNA/target
pairs with strong experimental evidence were retained. We used

https://mirtarbase.cuhk.edu.cn/
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miRNet database (https://www.mirnet.ca/) and starBase database65

(http://starbase.sysu.edu.cn/index.php) to predict the upstream
lncRNAs of miRNA. The common genes were selected for further
analysis.

Co-expression analysis

The co-expression analysis of miRNA-mRNA, miRNA-lncRNA, and
mRNA-lncRNA pairs identified in this study was assessed in KIRC
cohorts from the starBase database. Gene pairs with |r| > 0.1 and p
value < 0.05 were considered as potential pairs and were selected
for further analysis.

lncRNA-miRNA-mRNA network construction

Based on the negative correlation betweenmiRNA and its targets, and
the positive correlation betweenmRNA and the lncRNA/pseudogene,
we constructed a lncRNA/pseudogene-miRNA-mRNA regulatory
network. To further explore the molecular mechanism underlying
the pathogenesis of KIRC, KEGG analysis of mRNAs in the network
was performed by using the GSEA software package. Only the terms
with a nominal p value < 0.05 and false discovery rate (FDR) q value <
0.25 were considered statistically significant.

Survival analysis and construction of a specific prognosismodel

for KIRC

A standard Cox proportional hazards model implemented in the R
package survival was used for patient survival and Kaplan-Meier plot-
ting. The time-dependent ROC curves were constructed using the
survivalROC package of R. We developed a prognostic factor-based
risk stratification nomogram for 5-year overall survival with Cox pro-
portional hazards regression analysis using the rms library in R.

Methylation and expression analysis of SERPINE1

We investigated the expression level of three DNAmethyltransferases
(DNMT1, DNMT3A, and DNMT3B) between high/low expression
of MMP25-AS1 by the TCGA database. We utilized UALCAN66

(http://ualcan.path.uab.edu/) and the human disease methylation
database DiseaseMeth version 2.0 (http://bio-bigdata.hrbmu.edu.cn/
diseasemeth/) to assess methylation levels of SERPINE1 between
the KIRC and normal tissues. We investigated the association be-
tween SERPINE1 gene expression and its DNAmethylation status us-
ing MEXPRESS67,68 (https://mexpress.be).

Immune infiltrate levels and expression analysis of ceRNA

network

The marker genes of 28 immune cell types for ssGSEA were obtained
from a previous study (Bindea et al., 201369). Infiltration levels for
different immune cell types were quantified using the ssGSEA imple-
mentation R package gsva. Tumor purity, which represents the het-
erogeneity of each tumor sample, was estimated by the ESTIMATE
R package. Heatmaps of immune infiltration levels were generated us-
ing the R heatmap package. Visualization scatterplot for a Spearman
correlation between the ceRNA network risk scores and tumor-infil-
trating immune cells in KIRC could be generated through the ggplot
function in the ggplot2 package in R software. Correlation plots of all
variables were produced using the corrplot function of the corrplot R
package.

TIDE analysis

The TIDE model was a computational method that integrated the
expression signatures of T cell dysfunction and T cell exclusion to
model tumor immune evasion. The TIDE score of patients with
KIRC from the TCGA dataset were downloaded from the TIDE web-
site (http://tide.dfci.harvard.edu) after uploading the transcriptome
profiles.

Statistical analysis

Most of the statistical analysis has been done by the bioinformatic
tools mentioned above. The R software (version 4.0.4) was used for
all the rest of the statistical analyses. Differential expression levels
of mRNAs, miRNAs, and lncRNAs were estimated by a two-tailed
Student’s t test. The Benjamini-Hochberg FDR method was used
for p value adjustment. Fisher’s test was used to identify the signifi-
cant GO terms. Spearman correlation coefficients were calculated to
evaluate the correlations. A p value < 0.05 was considered as statisti-
cally significant.
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