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Abstract: Crosstalk between the nervous and immune systems in the context of trauma or disease
can lead to a state of neuroinflammation or excessive recruitment and activation of peripheral and
central immune cells. Neuroinflammation is an underlying and contributing factor to myriad neu-
ropathologies including neurodegenerative diseases like Alzheimer’s disease and Parkinson’s disease;
autoimmune diseases like multiple sclerosis; peripheral and central nervous system infections; and is-
chemic and traumatic neural injuries. Therapeutic modulation of immune cell function is an emerging
strategy to quell neuroinflammation and promote tissue homeostasis and/or repair. One such branch
of ‘immunomodulation’ leverages the versatility of biomaterials to regulate immune cell phenotypes
through direct cell-material interactions or targeted release of therapeutic payloads. In this regard,
a growing trend in biomaterial science is the functionalization of materials using chemistries that do
not interfere with biological processes, so-called ‘click’ or bioorthogonal reactions. Bioorthogonal
chemistries such as Michael-type additions, thiol-ene reactions, and Diels-Alder reactions are highly
specific and can be used in the presence of live cells for material crosslinking, decoration, protein
or cell targeting, and spatiotemporal modification. Hence, click-based biomaterials can be highly
bioactive and instruct a variety of cellular functions, even within the context of neuroinflammation.
This manuscript will review recent advances in the application of click-based biomaterials for treating
neuroinflammation and promoting neural tissue repair.

Keywords: biomaterial; scaffold; particles; bioorthogonal; click chemistry; immunomodulation;
neural injury; neurodegeneration; neuroinflammation

1. Introduction

Neuroinflammation is an inflammatory state generally considered to be specific to
the central nervous system (CNS). While communication between neural and immune
cells can be beneficial, such as during tissue development and synapse maintenance [1],
the connotation of ‘neuroinflammation’ is detrimental immune cell involvement in CNS
tissue that induces neurotoxicity and/or neural dysfunction. Events like traumatic injury,
neurodegenerative disease, neurotoxin exposure, local or systemic infection, metabolic
syndromes like diabetes and obesity, and even natural aging can induce a state of neu-
roinflammation [2–5]. The resulting pathological effects are mediated and propagated by
CNS-resident agents of the immune system, such as microglia and astrocytes, as well as
those from the periphery, like circulating monocytes and leukocytes [3]. These cells undergo
spatiotemporal changes in morphology, proliferation rate, and expression of inflammatory
cytokines and markers of activation, which drive neuropathological outcomes [2,6]. Ad-
vancing our understanding of the dynamics of neuroinflammation and how to modulate or
redirect immune-CNS interactions will be critical for developing therapeutic strategies for
neural tissue stabilization or regeneration.

The manipulation of the immune system for therapeutic purposes is an emerging field
known as immunomodulation or immunotherapy. In general, therapeutic molecules are
delivered into the body to instruct or redirect the functions of immune cells to promote
natural repair processes. Immunomodulation strategies have already provided promising
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clinical results for the treatment of recalcitrant tumors [7,8] as well as some autoimmune
diseases [9]. The potential for off-target effects or dosage limitations with systemic delivery
has motivated the use of localized delivery as a preferred route of administration [10].
Toward this goal, injectable or implantable biomaterials offer several advantages over
free-drug formulations, namely controlled, sustained release; increased cell or tissue target-
ing; and enhanced payload delivery [10–12]. Historically, implantable biomaterials were
bioinert to avoid mounting a foreign body response by the host immune system. More
contemporary biomaterial strategies have sought to actively engage the immune system,
becoming a powerful tool for augmenting tissue integration and repair [10,13]. Materials
based on so-called “click” chemistry are of particular interest because click reactions are
bioorthogonal and proceed in the presence of biological molecules or within living systems
without interfering with native biochemistry [14,15].

Bioorthogonal chemistries were initially applied to fundamental studies of biomolecules
in live cells but have been rapidly expanded for biomaterial polymerization, crosslinking,
and functional decoration [16–18]. While several such bioorthogonal biomaterials have
been applied toward treating neuroinflammation or promoting neural tissue regeneration,
it can be difficult to identify many of the references due to variations in diction or approach
descriptions. Hence, our goal is to aggregate resources describing the implementation of
bioorthogonal biomaterials for modulating neuroinflammation, prior to which we review
the contexts and challenges of treating neuroinflammation and the therapeutic potential of
using biomaterials for immunotherapy.

2. Effectors, Stimuli, and Outcomes of Neuroinflammation

Neuroinflammation is driven by the expression of pro-inflammatory cytokines and
reactive oxygen species which collectively act to recruit immune cells to the site of pathol-
ogy; stimulate proliferation, inflammatory activation, and debris clearance; and potentially
induce unwanted tissue damage [3]. While inflammation has a negative connotation, im-
mune cell involvement is both necessary and beneficial for early tissue protection in the
CNS. In fact, inhibiting immune cell involvement early after CNS injury exacerbates tissue
damage [19–24]. Nonetheless, sustained neuroinflammation at chronic stages also inhibits
tissue repair [2,25,26]. This inflammatory environment is potentiated by both resident
glial cells and extravasated peripheral immune cells. The primary glial cells known as
astrocytes and microglia both directly contribute to the inflammatory milieu and modulate
the response of infiltrating peripheral immune cells, namely monocytes/macrophages,
T cell, mast cells, and neutrophils [24,27].

2.1. Cell Types and Phenotypes in Neuroinflammation

Astrocytes are the most common glial cell in the CNS and perform a wide range of
functions, including maintenance of the blood-brain and blood-spinal cord barriers, trans-
port of nutrients and neurotransmitters to neurons, and communication with other neural
cells. Microglia are the tissue-resident macrophages of the CNS and therefore act as the first
line of defense against neural trauma, infection, or disease. Peripheral immune cells are also
often recruited to the CNS by the release of chemotactic factors and the breakdown of the
blood–brain barrier (BBB) following an injury or onset of disease [28]. Both macrophages
and microglia are derived from a monocyte lineage and have long been known to exhibit
a spectrum of phenotypes ranging from neuroprotective to neurotoxic [2,29]. Recently,
astrocytes were also shown to exist on a similar spectrum of phenotypes [30–32]. At end
of the spectrum lies pro-inflammatory or classical activation, denoted as M1 and A1 for
microglia/macrophages and astrocytes, respectively. The converse is anti-inflammatory
or alternative activation, designated as M2 and A2, respectively. While this notation im-
plies a dichotomy, the same cell can simultaneously express markers for both pro-and
anti-inflammatory phenotypes. Hence, more research is needed to better characterize how
cells adopt intermediate phenotypes and the functional impacts of such.
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Pro-inflammatory (M1 and A1) phenotypes are activated mainly by pathogens or
pro-inflammatory stimuli, such as bacterial lipopolysaccharide (LPS), tumor necrosis factor-
alpha (TNFα), and interferon-gamma (IFNγ) [24,33]. For microglia/macrophages, the M1
phenotype is characterized by activation of the signal transducer and activator of tran-
scription 1 (STAT1) pathway and expression of pro-inflammatory cytokines such as TNFα;
interleukins IL-16, IL-1β, IL-18; and reactive oxygen and nitrogen species [2,34,35]. The
M1 phenotype is often identified by the expression of membrane receptors CD16, CD32,
and CD80, and the chemokines CCL5, CCL20, CXCL1, and CXCL9 [35]. The neurotoxic
A1 phenotype is associated with pro-inflammatory pathways such as mitogen-activated
protein kinase (MAPK) and nuclear factor kappa b (NF-κB) and is induced by signaling
from pro-inflammatory microglia via IL-1α, TNF-α, and C1q [30,32,36,37]. A1 astrocytes
express soluble factors like complement C3, IL-1β, TNF-α, and nitric oxide, and genes
such as Serping1, Srgn, and Amigo2 [30]. It was also shown that A1 astrocytes promote
neurotoxicity via saturated lipids. Other pro-inflammatory cytokines include GM-CSF, IL-6,
and several CXCLs and CCLs. Unfortunately, both astrocytes and microglia display char-
acteristics of pro-inflammatory activation with normal aging [38–40], suggesting M1/A1
phenotypes may contribute to age-related cognitive decline. Inflammatory mediators,
such as LPS, therefore can act directly on microglia and still indirectly stimulate astrocyte
activation [41].

In contrast, the M2 phenotype is activated by anti-inflammatory pathways such as
STAT6 via anti-inflammatory cytokines: IL-4, and IL-13, or by activation of STAT3 via the
expression of IL-10 [2]. Activation of the anti-inflammatory M2 phenotype is generally
characterized by the expression of markers such as CD206, ARG1, IL-10, IL-4, IL-13, and
transforming growth factor-β (TGFβ) [2,35]. A2 astrocytes may be regulated by the Janus
kinase/STAT3 pathways and produce IL-4, IL-10, and TGF-β following exposure to the anti-
inflammatory cytokines, IL-4, IL-13, and IL-10. These protective pathways can be activated
by glycoprotein gp130, a signal transducer for the IL-6 cytokine, as well as cytokines such
as TGFβ and IFN-γ. Astrocytes also coordinate with neurons for A2 activation, wherein
neuronal EphB1 promotes A2 astrocyte phenotypes associated with BDNF secretion. This
neuronal-activated pathway was found to activate neuronal STAT3, ultimately preventing
neuronal loss and demyelination and disrupting glial scarring [2,31].

2.2. Neural Pathologies and the Role of Glial Cells

Inflammation is an underlying condition of neural responses to trauma, autoimmune
diseases, and neurodegenerative diseases such as multiple sclerosis, Alzheimer’s dis-
ease, and Parkinson’s disease [2,6]. There are shared characteristics across these diverse
pathologies, but each type can also have disease-specific factors or functional consequences.
Alzheimer’s disease is associated with intracellular tau accumulation and extracellular
accumulation of Aβ protein, which induce microglial and astrocyte activation and secretion
of pro-inflammatory cytokines [42]. The inflammatory stimulus in Parkinson’s disease is
related to intracellular accumulation of Lewy bodies clumps and α-synuclein protein [43].
Multiple sclerosis is characterized by spinal infiltration of myelin-autoreactive T cells which
seek and destroy the myelin sheath [44]. In this context, astrocytes, microglia, and even
neurons also play direct and indirect roles in regulating immune cell phenotypes and
functions [2,27,45,46]. The disease-specific contexts are therefore important to consider
when designing a strategy to treat or overcome neuroinflammation.

The CNS exhibits a unique response to traumatic injury. Astrocytes respond to trauma
by enhanced proliferation and higher expression of proteins like glial fibrillary acidic
protein (GFAP), vimentin, nestin, and synemin than when resting [32,35]. While these
cells are not traditionally considered immune cells, astrocytes do function as phagocytes
and antigen-presenting cells [47,48]. Infiltrating macrophages and resident microglia
acutely exhibit an anti-inflammatory phase that transitions into a prolonged, persistent pro-
inflammatory phase [49,50]. This response is contrary to that of peripheral tissues and is an
active barrier to recovery [51]. One contributing factor to such a contradictory response in
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the CNS is the so-called glial scar. In the acute phase of injury, the glial scar protects adjacent
healthy tissue and limits injury expansion; but the scar also physically and chemically
inhibits neuronal regeneration at chronic times [52,53]. Additionally, the matrix components
of the scar, such as collagen IV, laminin, and chondroitin sulfate proteoglycans, actively
stimulate pro-inflammatory activation of infiltrating immune cells [54,55]. Nonetheless,
depletion of scar-producing astrocytes five weeks after injury leads to lesion expansion
and additional tissue degeneration [22]. A2 astrocytes are indeed present two weeks after
injury, and expression of A2 genes positively correlates with neurological recovery [56].
Microglia are also vital for neuroprotection, in part by actively promoting proliferation
and activation of scar-forming astrocytes [19,20]. More research is needed to understand
how glial scarring relates to astrocyte phenotypes and if it is possible to promote eventual
scar resolution.

The above data highlight the complex orchestra that is the post-injury neural tissue
environment and the nuance requirements for therapeutically combating neuroinflamma-
tion. It is important to consider temporal and disease-specific contexts of both the immune
and glial cell compartments when attempting to modulate neuroinflammation, and thera-
peutic strategies to control cellular phenotypes will advance the ability to target or redirect
detrimental inflammatory responses. Future strategies to combat neuroinflammation will
benefit from the use of biomaterials given their versatility and effectiveness as either passive
vectors or active agents for local drug delivery and immune cell modulation.

2.3. Role of Peripheral Immune Cells

Similar to microglia and astrocytes, the functions of macrophages depend on the
surrounding environment, which can depend on the type and stage of injury or disease [57].
In many contexts, the inflamed CNS experiences an ingress of bone marrow-derived
monocytes, which differentiate into monocyte-derived macrophages and play a pleiotropic
role in neuroinflammation [58]. Macrophage interactions with myelin debris and chon-
droitin sulfate proteoglycans in the glial scar induce the production of pro-inflammatory
cytokines and reactive species that propagate neurotoxic inflammation [59,60]. Conversely,
the presence of bone marrow-derived macrophages also mitigates microglial reactivity
and ultimately reduces inflammation after CNS injury [61,62]. Studies have also shown
that inhibiting macrophage migration disturbs glial scar formation and leads to enhanced
neuronal and functional losses [52]. Administration of IL-4 and IL-10 after injury facilitates
neuronal protection, myelination, and functional recovery [63]. Following the injury, acti-
vated macrophages and microglia must undergo apoptosis or they will likely persist into
the chronic phase [58,64].

T cells are another important cellular element in neuroinflammation [65,66]. Naïve T
cells surveil the CNS from within the dural sinuses of the cerebral and spinal meninges
and also traffic within the meningeal lymphatic vessels [67]. In fact, meningeal lymphatics
play a major role in regulating CNS immunity in health and disease [68–70]. T cell egress
from the meningeal lymphatics is mediated by the C-C chemokine receptor type 7 (CCR7),
expression of which decreases with age and is linked to an increase in detrimental T cell
subsets [71]. This age-associated decrease in T cell trafficking is also directly linked to
cognitive impairment. Once a T cell is activated, it becomes a cytotoxic CD8+ cell or a
helper CD4+ cell, which further differentiates into different subsets: Th1, Th2, Th17, Treg
(regulatory), and Tfh (follicular helper) [65].

Each T cell subset has a specific phenotype, function, and role in inflammation, with
either a pro- or anti-inflammatory effect. For example, Th1 cells are triggered by IL-12
signaling, STAT4, and STAT1, and produce IFN-γ, IL-6, IL-10, TNF-β, and IL-2. The result-
ing pro-inflammatory state is therefore denoted as type 1 immunity (i.e., associated with
Th1 cells). The Th2 phenotype is induced by the GATA-3 pathway, which is enhanced by
NF-kB signaling and results in inhibitory cytokines such as IL-4, IL-13, IL-31, and IL-5 that
trigger a type 2 inflammatory response. Treg cells tend to exert immunosuppressive effects,
which can be beneficial in cases of trauma [72] but detrimental in cancer [73]. Lastly, despite
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the ‘helper’ moniker, Th17 and Tfh cells are implicated in autoimmune disorders such
as multiple sclerosis and directly damage the myelin sheath and oligodendrocytes [74,75].
While it is possible for tissue-resident microglia to engulf living, pathogenic T cells [76], this
ability is likely overwhelmed at high rates of T cell infiltration. Other immune cells with an
active role in neuroinflammation include neutrophils [77–79], mast cells [80], and antibody-
producing B cells [81].

3. Biomaterial Strategies to Modulate Immune Cell Phenotypes

Regulating or manipulating the immune response is a promising strategy to halt
or treat neurological damage. Early iterations of immunomodulation, or immunother-
apy, used systemic delivery of small molecules or protein therapeutics [10]. The most
notable example may be PD1 inhibitors in cancer, which prevent the induction of T cell
apoptosis and immunosuppression by cancer cells [82,83]. Specific to the CNS, the FDA
approved the small molecule fingolimod for the treatment of multiple sclerosis in 2018. The
drug fingolimod prevents T cell infiltration into the spinal cord by blocking sphingosine
1-phosphate (S1P) signaling [84]. Fingolimod also alters the function of astrocytes, peri-
cytes, and oligodendrocytes [85–89], suggesting systemic delivery may have secondary or
off-target effects. Localized or triggered release of such a therapeutic cargo can be accom-
plished using biomaterials. Biomaterials have been used for prophylactic vaccines [90],
cancer therapy [91,92], treating autoimmune diseases like diabetes [93], and promoting
tissue regeneration [94–96]. We briefly review a few notable examples, but further review
of CNS-specific or biomaterial-based immunomodulation is available [10,18,97–103].

Implanting a biomaterial inherently stimulates interactions with the host immune sys-
tem, dictated in part by the preceding cascade of protein adsorption and provisional matrix
formation. These interactions at the cell-biomaterial interface provide an opportunity to
steer the resulting immune response. Biomaterials can be formulated as particles, scaffolds,
or cross-linkable hydrogels [102,104–106]. Engineering the characteristics of a material
and/or encapsulating drug cargo can enable control over cellular recruitment and pheno-
typic biasing, including immune cells. Additionally, conjugation or encapsulation of active
molecules like peptides and proteins protects this fragile cargo from premature clearance or
degradation by harsh physiological conditions [107,108]. Of course, it is critically important
to choose an appropriate biomaterial and drug cargo to achieve a desired stromal, stem cell,
or immune cell outcome [10,109–111]. Therapies for immunomodulation often leverage
known pro- or anti-inflammatory pathways for cancer therapy and regenerative medicine,
respectively. For example, anti-cancer therapies may deliver IL-1β, TNF-α, or agonists of
Toll-like receptors, while anti-inflammatory approaches may include TGF-b, IFNγ, or inter-
leukins IL-4, IL-6, IL-10, and IL-13. One consideration is that anti-inflammatory approaches
may also benefit from small doses of pro-inflammatory signals—at least initially—since M2
macrophages derived from M1 cells are more effective at promoting angiogenesis than M2
cells derived from unstimulated M0 cells [112]. Figure 1 summarizes how materials can be
engineered to impact neuroinflammation.
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3.1. Particulate Biomaterials

Nano- and microparticle formulations leverage the ability of many immune cells to
engulf or phagocytose particulate materials loaded with therapeutic drugs. Biomaterial par-
ticles are therefore an effective strategy to modulate immune cell phenotype from within the
cell itself [113]. Phagocytosis is influenced by the size, shape, charge, stiffness, and fluidity
of the biomaterial particle [107]. Round particles are more readily phagocytosed, but rod-
like particles induce a larger immune response [114]. Rod-shaped particles also enhance
the inflammatory response against decorated ligands, regardless of the ligand-receptor
targets [115]. Particles smaller than 3 microns are good for intracellular drug delivery, while
particles larger than 10 microns are better for extracellular delivery [114,116]. Combining
multiple particle sizes can enable a multifaceted approach [116], as can co-loading multiple
stimulating factors into the same particle. For example, co-loading agonists of the stimula-
tor of interferon genes (STING) pathway and Toll-like receptor 4 yields a stronger type I
IFNβ immune response for eliminating cancer cells [92].

In contrast to inducing phagocytosis, coating particles with poly(ethylene glycol)
(PEG) will protect them from immune recognition and lengthen blood circulation time.
Nonetheless, PEGylated particles must strike a balance between immune evasion, avoiding
off-site accumulation, and desirable uptake by target immune cells, promoting the desired
effect [117]. Nanoparticles can also be attached to living cells as a “cellular backpack”,
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which enhances particle homing and accumulation at target sites. Cellular backpacks are
designed to stick to trafficking cells without being phagocytosed or undesirably altering cell
function. Importantly, immune cells with backpacks can still cross the BBB [118]. Backpack-
laden macrophages address some disadvantages of conventional carriers by enabling
less cargo to be loaded, reaching the target site during inflammation, and protecting and
sustaining the release of the drug cargo [118–120].

One common polymer used for particle development is poly lactic-co-glycolic acid or
PLGA. This copolymer has been used to deliver an array of immunomodulatory agents
to redirect immune cell phenotype and function, including TGFβ [116,121], granulocyte-
macrophage colony-stimulating factor (GM-CSF) [116,122]; agonists of the STING path-
way [123]; steroid hormone vitamin D3 [122]; vaccine adjuvant [124]; and the antioxidant
N-acetylcysteine [125]. The PLGA polymer itself may be immunosuppressive as it degrades
into lactic acid, which causes resistance to pro-inflammatory stimulation by LPS [126]. Other
engineered particle formulations include those based on lipids [92], gold [127,128], and
metal oxides [129], to name a few.

Cells naturally produce lipid-based nanoparticles called extracellular vesicles (EVs),
which enable long-distance cell–cell communication. The most widely recognized type of
EV is exosomes, which are emerging as powerful tools to assess tissue damage, deliver
therapeutic molecules, and directly or indirectly modulate immune responses [130–132].
EVs play a key role in immunomodulation and have been shown to be the mechanism
through which implanted cells like mesenchymal stem cells promote immunosuppression
and wound resolution [133,134]. One key advantage to exosomes for neural applications is
their innate ability to cross the BBB, an ability which is further enhanced under inflamma-
tory conditions [135]. EVs can therefore leverage the conditions of neuroinflammation as a
driving force for targeted drug delivery in the CNS.

EVs contain surface receptors and intracellular cargo derived from the source cell
and can be engineered using genetic manipulation or exogenous chemistries for enhanced
drug delivery or cellular targeting [136–139]. For further compositional control, engineered
liposomes can be developed in vitro using sonication, forced filtration, or microfluidic
methods [140]. A user controls what lipids are contained with the bilayer, the contents of
the liposome interior or surface, which route through which the particles will be taken
up, and the ability to target specific cell types. While standalone EVs and liposomes have
many advantages, loading the particles into scaffolds can deter unintended phagocytosis
and enable controlled or sustained release, and preferential accumulation at the target
site [141,142].

3.2. Solid Scaffolds and Hydrogels

Biomaterial scaffolds also have great prospects for immunomodulation, as reviewed
by [102,143]. Physicochemical properties of the scaffold direct immune cell adhesion,
morphology, proliferation, and polarization and can be tuned by altering material sur-
face chemistry or topography; mechanical properties; geometry, shape, and pore size;
and degradation rates or byproducts [96,144]. Materials with properties similar to native
tissue tend to promote more anti-inflammatory or pro-regenerative immune cell outcomes.
For example, scaffolds comprising polymer fibers promote more M2 macrophages, po-
tentially as a result of mimicking the fibrous qualities of collagen-based tissues [145,146].
Fibrous scaffolds are also inherently porous, and both fiber size and pore size are positively
correlated with increased expression of M2 markers [145,147]. Related to mechanical prop-
erties, materials with Young’s moduli on the order of most native tissues (1–100 kPa) also
promote an anti-inflammatory phenotype, while stiffer matrices prime the cells toward a
pro-inflammatory phenotype [148]. Nonetheless, this macrophage response can depend on
the crosslinking agent used to modulate the material stiffness, since genipin crosslinking
appears to suppress all immune responses while crosslinking with carbodiimide enhances
pro-inflammatory responses, specifically [149–151].
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The chemical properties of a material, such as bulk and surface composition, sur-
face charge and density, and hydrophilicity/phobicity influence protein adsorption and
therefore immune cell interactions [103]. Again, a distinct advantage may be afforded
to materials chemically similar to—or derived from—native tissue, since these materials
mimic the physiological environment. Native tissue can be rendered non-immunogenic
through decellularization—the process of treating tissue with detergents, enzymes, and/or
other reagents to remove cellular components and isolate the extracellular matrix (ECM).
Tissue-derived ECM is a natural source of instructive cues for many cellular processes and
has shown vast potential as an immunomodulatory biomaterial [152,153]. Decellularized
tissues induce a T helper 2 cell response that guides IL-4–dependent (anti-inflammatory)
macrophage polarization [95,154]. Complete removal of cellular debris is required, however,
since incomplete decellularization promotes a pro-inflammatory response [155].

ECM-driven induction of anti-inflammatory phenotypes has been ascribed to the
presence of residual hyaluronan [156] as well as matrix-bound nanovesicles [157,158]. In-
terestingly, the phenotype induced by exposure to ECM scaffolds appears functionally
distinct from canonical anti-inflammatory phenotypes, suggesting the response is more nu-
anced and requires additional study [157]. Nonetheless, one aspect is clear: decellularized
ECM in its native, structured form or as an injectable hydrogel is an effective scaffold for
immunomodulation and tissue repair, including in the CNS [159–162].

3.3. Materials for Glial Cell Modulation

Material implantation into the CNS will recruit and bias the phenotype of not only
peripheral immune cells but also resident glial cells. Intentionally designing materials
to positively interact with, and dictate the phenotype of, glial cells may be an impactful
approach to sustained immunomodulation since these cells play direct roles in regulating
and propagating inflammatory responses. As a baseline, nonionic and anionic materials
appear to be best for avoiding a detrimental foreign body response in vivo [163]. In vitro
studies have informed much of what is known about astrocyte responses to biomateri-
als [164–167], but the recent description of A1/A2 astrocyte phenotypes means much more
work is necessary to understand how to engineer materials that intentionally harness
astrocyte for repair. In mechanically dynamic materials, matrix stiffening limits reactive
astrogliosis while softening of the material enhances astrocyte activation in 3D [168]. These
mechanical effects may be related to the astrocytic scar, which was once assumed to be
stiff but more recently described as being softer than healthy CNS tissue [55]. Fibrous and
porous materials enable astrocyte invasion into the material, and aligned fibers promote
bipolar or stellate morphologies common to quiescent astrocytes. Cultured astrocytes on
larger fiber diameters appear to support more neurite outgrowth compared to smaller fiber
diameters [169]. Nonetheless, electrospun fibers of PLLA were found to the enhance ex-
pression of A1, pro-inflammatory genes, requiring controlled release of TGF-β to promote
neuroprotective A2 phenotypes [167]. For further review of how engineered biomaterials
modulate glial responses and neuroinflammation, see the recent review by Tsui et al. [98].

Next-generation therapies will leverage temporal and spatial control over bulk or
local material properties, ligand presentation, and drug release profiles. Enacting control
over one or more of these axes can be difficult in vivo, but leveraging chemistries that
do not interact with biology—known as bioorthogonal reactions—can enable spatial and
temporal alterations in material composition, even after implantation. This versatility can
enable therapeutics to combine dynamic mechanical or chemical changes, incorporation of
other materials such as liposomes or exosomes, and/or triggered the release, exchange, or
refilling of multiple drug cargos. In the next section, we introduce a range of bioorthogonal
chemistries currently used and discuss their applications in biomaterials science.

4. Bioorthogonal ‘Click’ Chemistry and Neural Biomaterials Applications

Click reactions are generally ligation reactions conducted under ambient conditions
which rapidly and selectively produce the desired ligation product in high yield [14,170].



Int. J. Mol. Sci. 2022, 23, 8496 9 of 25

Several click reactions have been developed to date, enabling an array of chemical ligation
strategies for bioorthogonal polymerization, crosslinking, or conjugation [14,17]. The earli-
est and most widely used click reaction in polymer science is the copper-catalyzed azide-
alkyne cycloaddition (CuAAC). Given concerns about copper toxicity, numerous copper-
free click reactions have also been developed and seen wider adoption in the biomaterials
field. These reactions are used for tuning crosslinking kinetics and dynamics [171–173];
directing site-specific conjugation [174–177]; polymerizing and functionalizing hydrogel
microparticles [178]; controlling small molecule loading and reloading [179], and investigat-
ing cellular mechanobiology [180]. Typically, the reaction scheme involves simply mixing
polymers and biomolecules containing the click reactive groups. Endogenous proteins or
glycans can also be labeled through the cellular metabolism of non-canonical amino acids
or unnatural sugar residues, making it possible to engineer otherwise less-controllable
materials like cell-derived matrices or decellularized tissues [175,181]. Below we highlight
the most common copper-free click chemistries and highlight key biomaterial applications.
Figure 2 depicts the most common reaction schemes discussed here. For further review of
click reactions in biomaterials, refer to Anseth and Klok [14]; Madl and Heilshorn [170];
Arkenberg, Nguyen, and Lin [171]; and Idiago-López et al. [182].
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4.1. Copper-Free Strain-Promoted Azide-Alkyne Cycloaddition (SPAAC)

Since the initial discovery by Bertozzi and colleagues [183], strain-promoted azide-
alkyne cycloaddition (SPAAC) has proven to be an effective alternative to CuAAC, main-
taining the high specificity and reaction rate while limiting cytotoxicity. Known SPAAC
reactions commonly used in biomaterials include the 1,3-dipolar cycloaddition between
azides (a 1,3-dipole, -N3) and cyclooctynes, like dibenzocyclooctyne (DBCO) [184–186];
the tetrazine ligation [187,188]; and oxime chemistry with aldehydes and ketones [189].
Other reactions include the isocyanide-based click reaction [190] and the quadricyclane
ligation [191].

SPAAC reactions can be used as the primary mechanism of hydrogel crosslinking
for gentle and efficient cell encapsulation. For example, Hardy, Lin, and Schmidt used
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oxime click chemistry to crosslink linear, homo-bifunctional aminooxy PEG with aldehyde-
functionalized hyaluronic acid (HA) [189]. Additionally, engineered elastin-like proteins
have been developed to crosslink via SPAAC, which gelled completely within minutes and
supported encapsulation and maintenance of murine neural progenitor cells. The stiffness
and cell adhesion properties of the SPAAC-ELP gels could be tuned independently through
the incorporation of RGD peptides. The same group later modified the elastin-like protein
to contain azide-functionalized tyrosine residues for SPAAC to overcome the reliance on
amine-reactive chemistry [192].

SPAAC reactions are commonly used to functionalize hydrogel biomaterials with
molecules of interest. Azide-bearing nerve growth factor has been selectively grafted onto
an acrylate-terminated, poly(β-amino ester) form of PEG-diacrylate [193]. The resulting
hydrogels were then subsequently conjugated with thiol-containing CYIGSR adhesive pep-
tides through a thio-ene reaction (discussed below) to further promote neuroregeneration.
Adil et al. used a SPAAC reaction to first incorporate azide-containing RGD peptide into
DBCO-functionalized HA, then used the remaining unreacted DBCO groups to crosslink
the hydrogel with homobifunctional PEG-azide [186]. This approach yielded a 5.6-fold
improvement in transplanted cell survival compared to 2D cultured cells and a 5.4-fold
increase in dopaminergic neuron differentiation and survival at 4 months post-injection.
Similarly, Li and colleagues decorated DBCO-functionalized PEG with azide-modified
laminin and interferon proteins prior to crosslinking with four-arm PEG-tetraazide [194].
This approach enabled in vitro culture of neural stem cells over a two-week period and
specified for primarily neuronal differentiation without supplementing differentiation
factors in the medium.

Leveraging the bioorthogonal nature of these reactions can also provide temporal
control over biomolecule presentation. Micropatterned brushes of PEG-azide have been
modified after the initiation of cell culture simply by adding peptide–DBCO conjugates
into the media [184]. Additionally, azide-modified alginate hydrogels have been filled
and refilled long after in vivo implantation using intravenous delivery of cyclooctyne-
conjugated small molecules [179]. One can envision using this approach to alter drug
dosage or completely change to a new drug based on the patient’s therapeutic response.
Hence, temporal control over drug-loaded biomaterials is a step in the right direction for
personalized therapy.

4.2. Diels-Alder and Inverse Electron-Demand Diels-Alder

Diels-Alder reactions occur between a diene (a molecule with two adjacent dou-
ble bonds) and a substituted alkene (one double bond), which is commonly called the
dienophile [195]. These are cycloadditions promoted not by strain but by electron re-
arrangement, either by normal or inverse electron demand. Normal electron-demand
reactions occur between electron-poor dienophiles and electron-rich dienes, while inverse
electron-demand reactions occur between an electron-rich dienophile and an electron-
poor diene. Common diene-dienophile pairs used in biomaterials are maleimide-furan
and tetrazine-norbornene for normal and inverse electron-demand Diels-Alder reactions
(IEDDA), respectively. For a more in-depth review of these reactions and applications in
biomaterials, see [196,197].

Furan modified-HA is a common Diels-Alder polymer backbone used for neural
applications, which is typically crosslinked using PEG-bismaleimide. The mechanical
and degradation properties of the resulting Diels−Alder cross-linked hydrogels can be
tuned by varying the molar ratio of furan to maleimide [172]. These hydrogels can be used
to encapsulate and deliver cells in vivo, such as V2a interneurons derived from mouse
embryonic stem cells [198]. Another application is the production of cryogels, in which the
uncrosslinked polymer mixture is frozen to induce ice crystal formation and then thawed
to induce crosslinking and preservation of the porous architecture [199]. After crosslinking,
maleimide-functionalized peptides can still be clicked into the gel via remaining unreacted
furan groups to add cell adhesion sites or other bioactive motifs. Nonetheless, crosslinking
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between furan and maleimide can be relatively slow, on the order of hours. To improve the
gelation rate, Madl and Heilshorn replaced the furan group with fulvene, which crosslinked
with maleimide an order of magnitude faster than other common Diels-Alder reaction
pairs while remaining stable for months [200]. Yet, another caveat is that many Diels-
Alder reactions are most efficient at acidic pH, which is not optimal for cell encapsulation.
Smith et al. addressed this concern by replacing the furan group on hyaluronic acid with
the more electron-rich methylfuran to achieve faster, more efficient gelation at physiological
pH [201].

IEDDA reactions can also be used as the primary mode of hydrogel gelation for cell
encapsulation. Hydrogel properties like gelation rate and stiffness can be adjusted by
varying the degree of polymer modification and molar ratio of tetrazine to norbornene.
Stiffer, faster gelling materials are achieved at higher percent functionalization and an
equimolar ratio of reactive groups [202]. Notable applications of IEDDA crosslinked
biomaterials include assembling microporous annealed particle hydrogels for injection
after stroke [203,204]; enabling the formation of low polymer content (and therefore low
viscosity) methylcellulose for co-delivery of neural progenitor cells and scar-degrading
enzyme [205]; and demonstrating maintenance of neural stemness depends on hydrogel
degradation and cell–cell contacts regardless of stiffness [192].

4.3. Photo-Click Thiol-Ene Reactions

Photo-induced chemistries can be used to enable more control over temporal and
spatial hydrogel dynamics [206]. Only locations exposed to light will react, and the extent
of the reaction depends on the exposure time. There are photo-induced reactions for many
bioorthogonal chemistries, termed ‘photo-click’ reactions [207], though the most notable in
biomaterials literature is the thiol-ene reaction. Thiol-ene reactions occur between alkenes
and thiol groups in the presence of a photoinitiator and light irradiation. The thiol groups
(-SH) are initiated to thiyl radicals (-S*) following exposure to ultraviolet or visible light,
depending on the photoinitiator. Irgacure 2959 is a common photoinitiator for ultraviolet
activation, while Eosin Y can be used with the more cytocompatible range of visible light.
Because photo-click reactions require a light stimulus of a specific wavelength, it is possible
to perform multiple photo-click reactions within the same material by combining UV and
visible light stimuli [208]. Additional control may be gained by adding photo-cleavage reac-
tions to unmask or degrade chemical moieties with a different light wavelength [209,210].
One caveat is that thiol–based reactions are not perfectly biorthogonal, since thiol groups
are naturally present in the amino acid cysteine. Nonetheless, these reactions often do not
interfere with biological processes since cysteine is relatively low in abundance, and thiols
are mostly present as disulfide bridges [207].

Polymers functionalized with norbornene are commonly used to enable photo-click
crosslinking. For example, Jivan et al. used PEG-norbornene crosslinked with dithiothreitol
(DTT) to form PEG hydrogel microparticles varying in size from 8 to 30 µm in diameter [178].
Given the potential for norbornene to also participate in IEDDA reactions, the researchers
subsequently added tetrazine-functionalized proteins for conjugation with the remaining
unreacted norbornene groups. Instead of using thiol groups on the crosslinker, Sawicki
and Kloxin created hydrogels of thiolated PEG crosslinked with vinyl-containing peptides.
The vinyl group was incorporated by functionalizing the peptides with alloxycarbonyl,
a common protective group used during peptide synthesis. Using the photoinitiator
lithium acylphosphinate, the hydrogels formed rapidly under cytocompatible doses of
long-wavelength ultraviolet light (365 nm) [173]. Alternatively, it was recently shown that
the thiyl radicals needed to initiate thiol-ene crosslinking can be generated using hydrogen
peroxide in the presence of the enzyme horseradish peroxidase [211]. This approach
preserves temporal control over the reaction while averting photodamage to live cells.
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4.4. Thiol-Michael Addition

The thiol-Michael addition is a type of thiol-ene reaction that is base-catalyzed as
opposed to radically mediated [212]. These reactions occur between nucleophilic thiol
groups, known as the Michael donor, and electrophilic-ene compounds, or Michael ac-
ceptors, without the need for light radiation [212]. There are also Michael-type addition
reactions not involving thiols, but the key attribute of the thiol-Michael addition reaction
for biomaterials science is the wide array and availability of possible reactive macromers.
Thiols react with several moieties commonly used in biomaterials, including maleimides,
vinyl sulfones, acrylates and acrylamides, acrylonitriles, and methacrylates [177]. For ex-
ample, a cyclized vinyl polymer of PEG was used as a precursor for hydrogel nanoparticle
synthesis crosslinked with DTT [213]. After crosslinking, there is also potential for a retro
Michael-type reaction with thiol exchange, which imparts degradability in response to
reducing conditions in the microenvironment [210]. More about the thiol-Michael addition
and primary uses for each reactive pairing in biomaterials can be found in [212].

Another major benefit to the thiol-Michael addition is the potential to use cysteine-
containing peptides for easy and versatile biofunctionalization or crosslinking. In their
study, Zhao et al. found that the inclusion of dithiol-containing peptides with laminin-
derived sequences of IKVAV and YIGSR leads to a slower gelation rate but also improves
the viability and metabolic activity of murine neural progenitor cells [213]. As with other
examples, acryl hydrazide HA was loaded with thiol-containing RGD peptides and then
crosslinked using an enzyme-cleavable di-thiol peptide [214]. Tam and colleagues leveraged
thiol-maleimide click chemistry as well as biotin-streptavidin chemistry to covalently im-
mobilize two separate bioactive factors into thiolated methylcellulose: maleimide–GRGDS
for cell adhesion, and maleimide-streptavidin for subsequent binding with biotinylated
platelet-derived growth factor-s (rPDGF-A), an oligodendrocyte differentiation factor [215].

The same group later created thiolated MC for injection into the intrathecal space on
top of the spinal cord, functionalization with maleimide-modified peptide and crosslinked
using PEG-bismaleimide [216]. The peptide exhibited homology to a region on an enzyme
of interest, chondroitinase ABC, released over time to degrade the glial scar tissue and
promote neuronal differentiation of transplanted human neural stem cells. Similarly,
HA hydrogels based on thiol-alkyne Michael type addition promoted in vivo survival of
encapsulated human neural progenitor cells after transplantation into a stroke cavity [214].
The HA backbone was functionalized with cell-adhesive peptides to support the survival of
encapsulated neural progenitor cells as well as thiol-modified heparin, to facilitate growth
factor retention. These authors used a design of experiments approach to optimize the
concentration of the chosen peptides, but others have directly evaluated the landscape of
integrin-binding and MMP-degradable sequences in neural tissue [217]. Proteomic analysis
of the adult human brain tissue identified nine different integrin binding sites and five
different MMP-cleavage sites of high interest. These sites were then incorporated into
PEG-maleimide hydrogels using cysteine-containing peptides and sequential Michael-type
addition reactions, thereby creating brain ECM-mimicking hydrogels that maintained
astrocytes in a stellate, quiescent morphology.

4.5. Click Applications for Immunomodulation

The chemo-selective nature of biorthogonal reactions makes them an ideal choice
for incorporating functional groups that modulate cell-material interactions and instruct
immune cell responses. For example, Glass and colleagues optimized a process to func-
tionalize mannose onto the surface of polymeric nanoparticles using a CuAAC reaction.
The conjugated sugar acted as a targeting moiety on the nanoparticle surface by promoting
specific interactions with the mannose receptor CD206 that is preferentially expressed
on M2 macrophages [218]. The authors demonstrated an optimal range for minimizing
copper-induced cytotoxicity while maintaining high levels of conjugation efficiency and
increased cell targeting. This approach enabled the successful delivery of therapeutic
siRNA and subsequent reprogramming of the M2 macrophages toward an anti-cancer,
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M1 phenotype. A similar but opposite approach may therefore also work to redirect M1
macrophages toward M2 phenotypes to promote tissue repair.

Bioorthogonal conjugation can add functionality or targeting moieties onto surfaces.
Inert beads were chemo-selectively conjugated with a modified TGF-β1 via a Staudinger
ligation between an azide and triarylphosphine [219], and the engineered surfaces efficiently
converted naïve T cells to functional Treg cells for immune suppression. Dendritic cells
were also labeled in vivo using azide-modified glycans [220]. The cells were recruited to
the implantation site using alginate gel releasing GM-CSF as well as an azide-modified
sugar, which was taken up by the dendritic cells and used to improve the generation
of antigen-specific, CD8+ T cells through covalent capture of DBCO-bearing antigens
and adjuvants like IL-15 and IL-15Rα. Hence, biorthogonal chemistries can advance the
therapeutic efficacy of immunomodulation across a range of biomaterial-based systems.

5. Click-Based Materials for Neuroimmune Modulation

Traditional immunotherapy often uses a biomaterial as drug delivery vector, missing
out on the opportunity to leverage cell-material interactions as an active therapy ele-
ment. Combining the efficacy of biomaterial-based immunotherapy with the versatility
of bioorthogonal chemistries is an excellent strategy to create the more intentional or syn-
ergistic effects that may be required to treat complex conditions like neuroinflammation.
Current literature approaches have implemented click chemistry in two primary ways:
bioorthogonal crosslinking and/or selective bioconjugation. Such applications include the
incorporation of cell-adhesion sites, bioactive cytokines, and degradable crosslinks toward
modulating immune, glial, or neuronal cell outcomes. Nonetheless, there remains a vast
unexplored space in which to leverage bioorthogonal reactions for enhancing material
functionality and regulating neuroinflammatory environments.

5.1. Biomaterial Scaffolds and Hydrogels

Hydrogel-based strategies have seen the highest use of bioorthogonal chemistries
for directly or indirectly treating neuroinflammation. It is worth noting that each study
highlighted below used a foundation of hyaluronic acid, the primary matrix component
of the CNS. One notable example is Thompson and collaborators, who developed a modi-
fied HA hydrogel for treating spinal cord injuries. The authors used a mixture of furan-
and methylfuran-modified high molecular weight HA (250 MDa) crosslinked with PEG-
bismaleimide by a Diels-Alder reaction [198]. Prior to crosslinking the gels, the researchers
physically blended in cell-derived ECM from either fibrous or protoplasmic populations of
astrocytes (differentiated from RW.4 mouse embryonic stem cells). Upon implantation into
the hemisected rat spinal cord, ECM from protoplasmic astrocytes decreased the size of the
glial scar, decreased macrophage and microglia infiltration, and increased axonal ingrowth.
Additional encapsulation of mouse embryonic stem cell-derived V2a interneurons further
increased neuronal processes in and around the lesion. Hence, these bioorthogonal hydro-
gels enabled gentle but efficient encapsulation of ECM molecules and motoneuron cells to
encourage spinal cord regeneration.

A di-functional HA was created by modifying the primary hydroxyl and carbonyl
groups of the HA backbone with thiol and azide groups, respectively [221]. The hydrogels
were then crosslinked with methacrylated HA by a photo-click reaction between the thiol
and methacrylate. The ratio of methacrylate HA was varied to determine the effects of
difunctionalization on mouse embryonic stem cell differentiation. A 1:2 ratio for difunc-
tional to methalcrylate HA was selected for testing in a rat model of subacute contusion
spinal cord injury. In vivo gelation relied solely on the Michael-type addition reaction for
crosslinking. Compared to saline controls, the 1:2 hydrogel significantly reduced infiltra-
tion of macrophages into the spinal cord lesion one week after implantation but did not
significantly influence the lesion volume, astrocyte activation, or the presence of axonal
staining. While not conducted in this study, the free azide functional side groups could
be reacted with DBCO-modified cytokines or adhesive peptides as additional bioactive
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signaling molecules, which may lead to further enhancements of axonal in-growth and
tissue sparing.

The introduction of macroporosity will further facilitate vascularization and immune
cell modulation after injury. One such method to produce macroporous hydrogel scaffolds
is by annealing together microgels [105]. Microgels are crosslinked hydrogel microparticles
that can be used to encapsulate and deliver cells, proteins, and/or small molecules. One
study used click chemistry to incorporate three peptides into HA-acrylamide: one peptide
of cell-adhesive RGD and two others for the active clotting enzyme Factor XIIIa [203,222].
The precursor solution could be fluorescently labeled using a maleimide-containing fluo-
rophore, and the decorated HA-acrylamide was crosslinked by a Michael-type addition
with di-cysteine-containing, MMP-cleavable peptides. Finally, the microgels were linked
together using Factor XIIIa, forming an annealed-solid hydrogel scaffold with macrop-
orous void space. Applying the annealed HA microgels into a stroke cavity lowered the
percentage of both astrocytes and microglia in the peri-infarct area. There was also a
significantly higher percentage of vessels in the peri-infarct area and more proliferating
neural progenitor cells migrating toward the damaged tissue. Collectively, the annealed
HA microgels accelerated brain repair after stroke by modifying the extent of astrogliosis,
inflammation, vascularization, and neural progenitor cell recruitment to the lesion.

5.2. Therapeutic Particles

The BBB is a major hurdle for delivering therapies to the CNS, even following injury or
ischemia [223]. Cationic, BBB-penetrating nanoparticles comprising poly(β-amino esters)
were created by reacting excessive PEG-diacrylate with 2-propynylamine via a Michael-
type addition reaction [224]. The poly(β-amino esters) were then functionalized with an
azide-containing nerve growth factor mimetic by azide-alkyne cycloaddition. Further,
thiol-containing adhesive peptide (CYIGSR) was conjugated to the terminal acrylate groups
through a thio-ene photo-click reaction. The functionalized polymeric nanoparticles had
a mean diameter size of ~30 nm and promoted neurite outgrowth of cultured sensory
neurons below 100 ng/mL. The nanoparticle micelles were able to passively penetrate
the BBB, potentially due to the positive charge of the particles and the negative charge
of the endothelial cell layer [225]. Moreover, the incorporation of YIGSR peptides posi-
tively increased the surface zeta potential, further enhancing BBB permeation. To test the
effects on the neuroinflammatory response, the authors used a cryogenic lesion model
of brain injury with tail vein injection of the micelle formulation every other day. The
dual-functional micelles promoted decreased lesion area and BBB leakage by day 8. The
treatment group also had the lowest number of GFAP+ cells in the injured tissue, suggesting
low astrocyte reactivity.

A glycoengineering approach can be used to attach reactive groups or drug cargo onto
cells for on-demand control of phenotype polarization [226]. Li and colleagues engineered
cultured microglia to home to damaged vasculature by fusion with platelet-derived vesi-
cles, and the hybrid cells were fed an azide-modified glycan that became metabolically
incorporated into mucin-type glycoproteins [227]. Separately, the anti-inflammatory cy-
tokine IL-4 was encapsulated into liposomes containing both a DBCO-PEG-modified lipid
and a molecule that sensitizes the membrane to ultrasound, known as protoporphyrin IX.
Excessive azide-PEG was added to quench unreacted DBCO groups and avoid liposome
aggregation, and the sono-sensitive DBCO-liposomes were linked to the hybrid microglia
as a composite cellular therapy. In cell culture studies, exposure to ultrasound-induced the
release of the IL-4, causing upregulation of M2 markers such as Arg-1 and TGF-β. The com-
posite therapy significantly reduced the lesion volume in a mouse model of ischemic stroke,
as well as decreased astrocyte activation and increased microglia recruitment. Ultimately,
triggered release of IL-4 in the stroke cavity increased the proportion of M2 phenotypes,
thereby remodeling the neuroinflammatory environment to promote neuroprotection and
improve functional recovery.
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While the above platelet-derived vesicles had to be generated ex vivo, extracellular
vesicles can be easily isolated for tethering to biomaterials or the cell surface [228]. One
study used CuAAC to conjugate cell-adhesive RGD to the exosome surface [136]. The
RGD-conjugated exosomes were found to accumulate more within an ischemic brain lesion
owing to the upregulation of the integrin αvβ3 in reactive cerebral vascular endothelial
cells. Using the engineered exosomes to deliver curcumin, a natural anti-inflammatory
agent, significantly suppressed the inflammatory response and cellular apoptosis in the
lesion region compared to soluble curcumin or unloaded exosomes alone. Mice treated
with the exosomes expressed significantly less TNF-α, IL-1β, and IL-6, demonstrating
the ability to harness the intrinsic immunosuppressive potential of mesenchymal stem
cell-derived exosomes for targeted delivery of additional anti-inflammatory agents.

5.3. Hydrogel Coatings

Lastly, biomaterials can be used as coatings to create a new, amenable cell-material in-
terface. A major hurdle for sustained use and recording from neural electrodes is that the re-
quired stiff materials cause extensive inflammatory scarring. Matching the mechanical prop-
erties of an electrode to that of brain tissue can minimize the scarring response [229]. The
unique qualities of thiol-ene photo-click chemistry offer precise control over the mechanical
properties and thermal glass-transition temperature of a polymer, making it an ideal elec-
trode coating. By varying the monomer composition, a thiol-ene shape memory polymer
coating can be designed to be stiffer at room temperature for tissue insertion but softer
once equilibrated with brain tissue. Dip coating a uniform layer of thiol-ene shape memory
polymer onto silicon microelectrode reduced astrocytic scarring after 16 weeks [230]. Using
the thiol-ene polymer coating to reduce the mechanical mismatch between the device and
tissue was comparable to, if not better than, the bare silicon microelectrodes. While the
recording efficacy needs to be evaluated, this work suggests bioorthogonal biomaterials
could lengthen the allowable time for intracortical measurements.

Bioorthogonal coatings can also be used to encapsulate single cells in a hydrogel
casing for enhanced cellular protection and control of the microenvironment [231]. Azide-
modified sugars were metabolically incorporated onto the surface of neural stem cells in
culture for subsequent reaction with DBCO-PEG chains of various molecular weights. The
polymeric coating improved cell survival and modulated growth factor release. Varying the
PEG molecular weight also enabled control over the stiffness of the immediate pericellular
environment. Specifically, higher molecular weight PEG (20–30 kDa) produced a softer
polymeric ECM and significantly increased the release of neurotrophic factors such as
VEGF and CNTF. Similar single-cell hydrogel approaches may therefore be useful for
protecting transplanted cells from hostile or mechanically stiff environments, favoring
neuronal differentiation over astrocytic differentiation, or sustaining an anti-inflammatory
phenotype in pre-stimulated cellular therapies [143,148,232].

6. Conclusions and Future Directions

Pathological inflammation of the CNS is complex and difficult to regulate, but the
versatility and effectiveness of biomaterial-based strategies suggest this will become the
next frontier of neuro-immunomodulation. Therapeutic material approaches will benefit
from the specificity and utility afforded by bioorthogonal or ‘click’ chemistry. A majority of
previous bioorthogonal materials applied to the CNS have assessed neuroinflammation as a
secondary outcome opposed to an intentional target, creating vast opportunities for further
impactful advancements. Exciting future directions not yet applied to neuroinflammation
include pre-targeted imaging, personalized or modular drug delivery, theranostics, and
temporally dynamic therapies. Consider bioorthogonal chemistry as the perfect toolbox for
realizing dynamic materials that may one day enable resolving the chronic glial scar, reca-
pitulating an M1→M2 transition of successful wound healing, or reciprocally interacting
and guiding the CNS toward regeneration.
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