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Abstract: Chronic airflow limitation is the common denominator of patients with chronic

obstructive pulmonary disease (COPD). However, it is not possible to predict morbidity and

mortality of individual patients based on the degree of lung function impairment, nor does

the degree of airflow limitation allow guidance regarding therapies. Over the last decades,

understanding of the factors contributing to the heterogeneity of disease trajectories, clinical

presentation, and response to existing therapies has greatly advanced. Indeed, diagnostic

assessment and treatment algorithms for COPD have become more personalized. In addition

to the pulmonary abnormalities and inhaler therapies, extra-pulmonary features and comor-

bidities have been studied and are considered essential components of comprehensive disease

management, including lifestyle interventions. Despite these advances, predicting and/or

modifying the course of the disease remains currently impossible, and selection of patients

with a beneficial response to specific interventions is unsatisfactory. Consequently, non-

response to pharmacologic and non-pharmacologic treatments is common, and many patients

have refractory symptoms. Thus, there is an ongoing urgency for a more targeted and holistic

management of the disease, incorporating the basic principles of P4 medicine (predictive,

preventive, personalized, and participatory). This review describes the current status and

unmet needs regarding personalized medicine for patients with COPD. Also, it proposes a

systems medicine approach, integrating genetic, environmental, (micro)biological, and clin-

ical factors in experimental and computational models in order to decipher the multilevel

complexity of COPD. Ultimately, the acquired insights will enable the development of

clinical decision support systems and advance personalized medicine for patients with

COPD.

Keywords: chronic obstructive pulmonary disease, personalized medicine, systems

medicine, review

Introduction
Chronic obstructive pulmonary disease (COPD) is one of the leading global causes of

morbidity andmortality among the non-communicable chronic diseases (NCD).1 Despite

preventive measures to reduce exposure to risk factors and therapeutic advances, the

worldwide burden of COPD is estimated to increase in the next decades,2 and the disease

cannot be cured.3 Chronic airflow limitation assessed by spirometry remains the defining

feature of COPD in subjects with respiratory symptoms and a history of exposure to risk

factors.3 However, it is well-recognized that different phenotypes can be distinguished4

and that disease trajectories differ between patients.5 Patients with a comparable degree

of airflow limitation may differ considerably in symptoms, functional capacity, and other

patient-related outcomes (PROs),6 implicating that additional factors, such as age and
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extra-pulmonary conditions, contribute to the burden of the

disease in individual patients. Comprehensive lung function

assessment, including the degrees of hyperinflation and diffu-

sion impairment, blood gases and mouth pressures, does not

adequately reflect these PROs in COPD.7 Also, differentiation

of COPD from asthma is challenging, and these conditions

may coexist.3 In the last decades, the diagnostic workup of

COPD has been revised in order to account for the hetero-

geneity of the disease and thereby enable a more patient-

tailored treatment.3 Current strategies, however, neglect the

potential of personalized measures for disease prevention and

mainly focus on individualized pharmacotherapies. In order to

reduce the burden of COPD and change the natural course of

the disease, it is essential to advance our understanding of the

complex pathophysiology, develop diagnostic tools that reflect

the heterogeneity of the disease and its associated conditions,

and be able to predict the response to comprehensive inter-

ventions in individual patients. Also, from a health economic

perspective, better selection of probable responders for speci-

fic or costly interventions is warranted. However, this might

not automatically result in a reduction in costs, if diagnostic

tools to identify these responders are advanced and expensive.

Systems medicine is the integrated study of disease net-

works at multiple levels, ranging from the molecular level,

through cells, organs, to the population level,8 in order to yield

a comprehensive understanding of disease. This approach is

required to provide care that is predictive, preventive, perso-

nalized, and incorporates patient participation (P4 medicine).8

Indeed, a systems medicine approach, integrating genetic,

(micro)biological, radiological, clinical, and environmental

factors in experimental and computational models may

advance personalized treatment of COPD.9 Recently, the

“Systems Medicine-based clinical decision support for

COPD patients” (SysMed-COPD) project was initiated by an

international and interdisciplinary consortium combining clin-

icians, clinical and basic scientists, computational and systems

biology researchers, and bioinformatics engineers.

The first part of this review focuses on the current status

regarding personalized management of COPD, and identifies

the unmet needs in the domains of prevention, diagnosis, and

assessment and treatment. In the second part, we propose a

systems medicine approach towards COPD and highlight its

potential to unravel the complex pathophysiology of the

disease and provide the basis for P4 medicine in COPD.

Development of COPD
Lung development starts prenatally and continues after

birth until maximal lung function is attained in early

adulthood. After a plateau phase of approximately a dec-

ade, this is ensued by an individual lung function decline.10

In some individuals, a unique combination of genetic, life-

style, and environmental factors may prevent reaching the

normal plateau or result in accelerated decline, which may

eventually lead to the onset of COPD at around 40–50 years

of age.11

Pathobiology of COPD
Fully-developed COPD is characterized by a combination of

individual degrees of (small) airway disease (bronchitis) and

destruction of alveolar tissue (emphysema). In most cases, its

development is initiated by long-term inhalation of oxidative

and cytotoxic substances (eg, cigarette smoke) which induce

epithelial and endothelial cell apoptosis, pro-inflammatory

signaling, and recruitment of circulating monocytes and neu-

trophils to the lungs.12–15 The activated immune cells secrete

proteolytic enzymes including neutrophil elastase, which

cause extracellular matrix degradation.16 Some individuals

appear able to maintain normal lung structure and function

by mounting an appropriate repair response. In contrast, an

insufficient repair response results in disintegration of the

lung parenchyma and a dysregulated response in remodeling

of the small airways, including smooth muscle cell, goblet

cell, and mucus gland metaplasia, as well as subepithelial

extracellular matrix deposition.15 Eosinophils seem to con-

tribute to innate airway inflammation in a sub-group of

COPD patients. During later stages of COPD, autoimmune

responses may become activated, as indicated by elevated

TH17-lymphocytes, B lymphocytes, and antibodies against

self-antigens that become exposed during tissue injury.15,17,18

Once established, the loop of tissue damage, inflammation,

and remodeling may self-perpetuate, leading to progressive

airflow limitation, even without continued exposure to envir-

onmental triggers.19

Predisposing factors
Genetic factors have been estimated to account for 40–55%

of the variance in adult lung function.20 Polymorphisms in

genes that influence smoking behavior, the protease-anti-

protease balance, the oxidant-antioxidant balance, inflam-

matory processes, or bronchodilator-response contribute to

COPD risk.21 The most well-known gene associated with

COPD is SERPINA1, which codes for the serine protease

inhibitor alpha1-antitrypsin.21 Alpha1-antitrypsin inhibits

neutrophil elastase and thereby prevents tissue damage.

Mutations and polymorphisms of SERPINA1 that lead to
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decreased expression or activity of alpha1-antitrypsin are

associated with early onset COPD with a strongly emphy-

sematous phenotype, especially in smokers.22

Next to genetics, factors encountered during embryonic

development and childhood also influence adult lung func-

tion and, therefore, COPD risk.23,24 For instance, maternal

smoking during pregnancy, pre-term birth or low birth-

weight, and childhood asthma are associated with low

lung function in early adulthood.25 In a longitudinal pro-

spective cohort study, 44% of children with severe asthma

at age 10 were diagnosed with COPD by the age of 50,

irrespective of their smoking history, corresponding to a

32-fold relative risk.26 Lower respiratory tract infections

during early childhood are also associated with COPD.27

However, it remains to be clarified whether this is a

causative relationship or whether the risks for respiratory

infections and COPD are both elevated due to an under-

lying immune deficiency.

Initiating factors
In the majority of cases, COPD development is initiated by

exposure to noxious particles or gases, with the most

important risk factor being cigarette smoking.28 Related

respiratory irritants arising eg, from passive exposure to

tobacco smoke, occupational sources, indoor open fires,

and outdoor pollution, are thought to account for a large

fraction of the smoking-independent incidence of COPD.29

Most respiratory toxicants are complex mixtures contain-

ing up to several thousand chemically distinct compounds,

and their exact composition varies considerably depending

on their mode of generation.30,31 Therefore, pathological

mechanisms are likely to differ according to the differ-

ences in toxicant composition. Indeed, the type of expo-

sure may influence the clinical phenotype of COPD.32

Modulating factors
A number of factors do not directly contribute to the

predisposition or initiation of COPD, yet influence the

course of the disease. Gender is likely to be an important

modulating factor, as women develop more severe airflow

limitation and emphysema than men with a comparable

smoking history.33 Yet, when comparing women and men

with a similar degree of airflow limitation, women have

less emphysema and better oxygenation, but more small

airway involvement, more frequent exacerbations, and a

poorer quality-of-life.33,34 Also, they have fewer and dif-

ferent comorbidities than men.34

Lifestyle factors, such as diet and physical activity, also

modulate COPD development. A number of epidemiological

studies have found that intake of diets rich in vitamin C,

vitamin E, and β-carotenes (eg, fruit, vegetables, oily fish,

whole grains) is positively associated with lung function and,

therefore, protects against COPD.35 This may be attributed to

the ability of these micronutrients to diminish oxidative

stress and oxidative stress-induced inflammation. Higher

cardiorespiratory fitness is associated with lower incidence

of COPD in the general population,36 and it was shown that

improving fitness during childhood and adolescence is asso-

ciated with greater adult lung volumes.37 Concerning physi-

cal activity, active smokers with moderate or high physical

activity show attenuated lung function decline and reduced

risk of COPD during long-term follow-up compared to those

with low levels of physical activity.38 Moreover, COPD

patients with regular physical activity have lower rates of

hospital admissions and mortality.39

Finally, it has recently been established that the lungs

have a microbiome, which may influence the pathogenesis

of COPD.40 While it is still unclear whether and how smok-

ing affects lung microbiome composition, the microbiome of

COPD patients has a decreased stability and diversity, pro-

moting a disproportionate proliferation of potentially patho-

genic species, such as Haemophilus influenzae, Moraxella

catarrhalis, and Streptococcus pneumoniae in the lower

respiratory tract.40 This outgrowth in turn promotes airway

inflammation and, along with viral infections, constitutes an

important trigger of acute exacerbations. Importantly, it is

known that microbiome composition influences the inflam-

matory profile: when the microbiome is dominated by

Proteobacteria (eg, Haemophilus spp.) or Firmicutes (eg,

Streptococcus spp.), this is associated with mediators of

neutrophilic or eosinophilic inflammation, respectively.41

Personalized prevention of COPD
In individuals with normal early-adult lung function, the

most important strategy for preventing COPD is avoidance

of exposure to respiratory irritants. Depending on the

source of exposure, this may be achieved by occupational

safety procedures such as breathing masks, policies for

reduction of air pollution, providing alternatives to indoor

open fire for cooking and heating and – most importantly –

smoking prevention and cessation. Lifestyle interventions,

including prevention of toxic exposures, dietary changes,

and increased physical activity, would not only decrease

the incidence of COPD but also that of other, often comor-

bid, chronic diseases.42 The challenge here is to motivate
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those at risk to actively participate in preventive measures

and to overcome the high dropout rate of lifestyle inter-

ventions. A personalized motivational approach, taking

into account the individual psychosocial background,

would likely improve the intervention success.43 In addi-

tion, specific preventive measures against comorbid dis-

eases (for example treatment of hypertension or

dyslipidaemia) have to be taken into account, and alpha1

antitrypsin augmentation therapy may be considered in

deficient individuals.

Preventive measures are particularly important for vul-

nerable individuals, for instance with a family history of

COPD, alpha1-antitrypsin-deficiency, or who have experi-

enced considerable early life disadvantage (maternal

smoking, low birth weight, asthma, frequent and severe

respiratory infections, etc.). It can be hypothesized that

influenza and pneumococcal vaccination, by avoiding

lower respiratory tract infections and associated inflamma-

tion, may attenuate lung function decline and lower COPD

incidence; however, evidence is currently lacking to sup-

port this hypothesis.

Unmet needs
Currently, we are lacking effective screening tools to

identify people at risk of developing COPD at an early

stage. Ideally, a vulnerable population should be identified

using a risk score comprising information on the family

history of COPD, relevant early life factors, lung function

in early adulthood,42 and lifestyle. Second, we need a

comprehensive understanding of the different molecular

and clinical disease subtypes, as well as correlated specific

(companion) diagnostic or therapeutic measures. Patients

and people at risk need to be screened over time for

activation of pathobiological modules, such as oxidative

stress, extracellular matrix degradation, neutrophilic or

eosinophilic inflammation, autoimmune effects, and

microbiome dysbiosis, to name just a few. Before this

is possible, we need to expand our knowledge on the

pathobiological modules and to identify corresponding

biomarkers. These markers should be measurable with a

cost-efficient test that allows screening of large at-risk

populations, and should be detectable in biological speci-

mens that can be collected easily during routine visits to

the general practitioner, such as exhaled breath, saliva,

sputum, or blood. We also need to identify strategies for

modification of the pathobiological modules, including

those that contribute to comorbidities. Besides the above-

mentioned lifestyle interventions, these may include

antioxidant and anti-inflammatory drugs, but also anti- or

probiotics to induce shifts in the microbiome composition.

Diagnosis and assessment of COPD
Obstructive post-bronchodilator spirometry is the defining

criterion for COPD in subjects with chronic respiratory

symptoms.3 The Global initiative for Obstructive Lung

Disease (GOLD) recommends a fixed ratio of forced

expiratory volume in one second (FEV1), and forced

vital capacity (FVC) <0.7 to diagnose the disease and

FEV1 as percent predicted is used for spirometric classifi-

cation of severity of airflow limitation.3 Since 2011, the

current severity of symptoms and the history of moderate

or severe exacerbations within the previous 12 months are

assessed to allocate patients to groups A/B/C/D and guide

therapy.3 Although the classification according to these

three domains of the disease enables more personalized

treatment recommendations, substantial heterogeneity in

clinical characteristics is observed in patients within the

same GOLD quadrant.44,45 Also, the GOLD A/B/C/D

system does not discriminate between patients in which

other factors, for example age or comorbidities, contribute

to the burden of disease, and does not adequately differ-

entiate patients with respect to mortality risk.46 Alternative

tools to predict outcomes, including the BODE (body mass

index, airflow obstruction, dyspnea, and exercise capacity)

and ADO (age, dyspnea, and airflow obstruction) indices

have been developed and validated in COPD, but cannot

be used to guide therapy. In order to overcome the

dynamic complexity and heterogeneity of the disease and

facilitate treatments targeting the individual needs of

patients, the “treatable traits” concept was recently

proposed.47 In this concept, all manageable pulmonary

and extra-pulmonary features of COPD are identified in

individual patients and then treated.

Unmet needs
While management of stable COPD became more perso-

nalized over the last decades, by incremented understand-

ing of the determinants of the individual burden of disease,

current disease management does not meet the demands of

P4 medicine. Predicting a beneficial or adverse individual

response to specific interventions remains impossible for

most; despite our increased understanding of the patho-

physiology of COPD, primary or secondary prevention

remains problematic. Also, it is not feasible to assess all

treatable traits in every individual with COPD, and this
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will result in substantial costs for additional diagnostics

and treatments, so there is a need for diagnostic algorithms

for subgroups of homogeneous patients.48

Another unmet need is the high rate of underdiagnosis

of COPD in the general population. While approximately

half of patients with severe airflow limitation have a phy-

sician-based diagnosis of COPD, only 5% of those with

mild lung function abnormality reported a diagnosis of

COPD.49 Timely identification and pharmacologic treat-

ment may ameliorate the progressive decline in lung func-

tion in mild disease.50 In addition, there is a significant

group of symptomatic smokers with preserved spirometry,

formerly referred to as GOLD stage 0.51 While only a

minority of this group will progress to develop chronic

airflow limitation,52 these symptomatic smokers have sig-

nificant morbidity and healthcare utilization.53 Also, radi-

ologic abnormalities including emphysema and air

trapping are common in these subjects.54 Since emphyse-

matous abnormalities predict accelerated loss of lung

function55 and increased mortality,56 there is a need for

early identification of these subjects. Computed tomogra-

phy-based measurement of total airway count (TAC) was

recently identified as a potential biomarker for airway-

related disease changes in early/mild COPD.57 However,

other than smoking cessation, no effective treatments are

currently available for GOLD stage 0.

Exacerbations
Diagnostics and current treatment
COPD exacerbations are defined as acute worsenings of

respiratory symptoms resulting in additional therapy.3

There is large variability in the frequency of exacerbations

between patients.58 While a frequent-exacerbator phenotype

was previously identified, the proportion of patients with two

or more events in consecutive years is very small.59 This

observation limits the clinical value of the assessment of

future exacerbation risk as currently proposed by GOLD.60

Currently, a history of exacerbations and poor health status

remain the best clinical predictors of future events59 and,

thus, may drive pharmacotherapeutic decisions.

Although exacerbations are considered pivotal events

in the natural course of disease, until recently, there was

very little focus on characterizing these events and their

triggers. The heterogeneous nature of exacerbations is

increasingly recognized; distinct biological clusters have

been identified based on sputum biomarkers, namely those

associated with bacteria, viruses, or eosinophilic airway

inflammation.61 In addition, a further cluster associated

with limited changes in the inflammatory profile was

identified. Although the pathophysiology of this cluster is

largely unknown, it is very well possible that these “pauci-

inflammatory” exacerbations are in fact other events

mimicking the symptomatology of exacerbations, such as

acute cardiovascular diseases, pulmonary embolism, acute

psychological distress, or mechanical ventilatory con-

straints. It is increasingly advocated, therefore, that exacer-

bations must be differentiated from other events in order to

enable a precision medical management of a patient pre-

senting with a flare up of respiratory symptoms.62

Personalized exacerbation management
Bronchodilators, systemic corticosteroids, and antibiotics are

central interventions in the management of exacerbations,60

and are broadly prescribed. Strategies to personalize the

treatment of exacerbations are not available; sputum cultures

may be used to guide antibiotics, but are not feasible in most

clinical settings. Use of biomarkers of airway infection,

including C-reactive protein (CRP) and procalcitonin, in the

decision for antibiotics is not recommended.60 Blood eosi-

nophilia is a promising biomarker for biomarker-directed

systemic corticosteroid therapy during exacerbations,63 but

warrants further investigation. Obviously, microbiologic,

inflammatory, and clinical characterization of exacerbations,

more details on pathophysiological interactions and potential

treatment targets are needed to tailor more specific, indivi-

dualized treatment strategies. Moreover, increased under-

standing of individual genetic variants modulating the

immune response involved in exacerbation susceptibility64

and response to treatment65 may enable personalized exacer-

bation management in future patients.

Comorbidities
Concomitant diseases are common in patients with COPD,

and contribute to the burden of disease and mortality in

individual patients. They comprise a wide range of dis-

eases, including cardiovascular disease in terms of athero-

sclerosis, heart failure, arrhythmias, hypertension,

peripheral vascular disease and stroke, metabolic disorders

including hyperglycemia and diabetes, hyperlipidemia,

hyperuricemia, as well as gastroesophageal reflux disease,

osteoporosis, rheumatoid diseases, cachexia, and mental

disorders such as anxiety and depression.66–71 In addition,

there is a substantial overlap with asthma, bronchiectasis,

pneumonia, sleep disordered breathing, as well as an
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increased lung cancer risk.3 Almost all patients with

COPD exhibit at least one comorbidity, while the majority

of patients have four or more other diseases.72

In particular, coexistence of COPD and cardiovascular

disease is associated with a worse prognosis, ie, increased

morbidity and mortality.73,74 Moreover, reduction of FEV1

was shown as an independent unfavorable prognostic pre-

dictor in decompensated heart failure.75 Vice versa, the pre-

sence of COPD also worsens the prognosis of cardiac

disease, as shown in patients hospitalized for acute myocar-

dial infarction76 or decompensated heart failure.77

Recently, it was shown that plasma troponin I concentra-

tions are an indicator of future cardiovascular events and

cardiovascular death in patients with COPD and an increased

cardiovascular risk, evenwhen in the normal clinical range.78

Noteworthy, inhaled therapies affect neither troponin con-

centrations nor mortality or cardiovascular outcomes.78

Current concepts and management of

lung-heart interactions
Occurrence of an increased right heart load in COPD is

well known since decades and referred to as Cor pul-

monale. In contrast, also a reduced right heart size has

been reported recently, named Cor pulmonale parvus.79

Right ventricular volumes were lower and associated

with the degree of pulmonary emphysema. In stable

COPD, the degree of airflow limitation and hyperinfla-

tion are linked to left ventricular volume, wall stress,80

and an impaired diastolic filling.81 Potential mechanisms

are a reduced left ventricular mass,82 and increased

thoracic pressure oscillations during breathing in

COPD, aggravated at exercise.83

Current interventional COPD studies on inhaled corti-

costeroid (ICS)/long-acting beta2-agonist (LABA) therapy

showed short-term increases of left and right ventricular

volumes and an improved ventricular strain.84 The

CLAIM study on dual bronchodilation, using combined

LABA and long-acting muscarinic antagonist (LAMA)

therapy, showed an improved cardiac function, as indi-

cated by left-ventricular end-diastolic volume.85 Recently,

it was shown in this cohort with marked hyperinflation that

dual bronchodilation led to an improved pulmonary micro-

vascular blood flow and regional ventilation, as assessed

by magnetic resonance imaging.86 However, it remains to

be shown whether these interventional short-term effects

translate into persistent cardiac changes during long-term

treatment of COPD.

Personalized management of

comorbidities and unmet needs
The list of comorbidities observed in patients with COPD is

extensive. Currently, most comorbidities remain undiagnosed

and untreated however.87,88 Also, in contrast to international

recommendations, comorbidities are differently treated in

COPD. For example, COPD patients with decompensated

heart failure are prone to receive an inappropriate heart failure

therapy, which is associatedwithworse long-term prognosis.77

Particularly, prescription rates of betablockers are insufficient,

although their beneficial effects in COPD patients with cardi-

ovascular comorbidity have been shown.76

While it is not feasible to screen for all comorbidities in

every patient, there is a need for guidance in the diagnostic

approach towards these. Identification of subgroups of

patients with an increased risk of specific comorbidities

may be helpful. Five patient clusters with distinct comor-

bidity profiles were previously reported in COPD, including

metabolic, cardiovascular, cachectic, psychological, and less

comorbidity clusters.72 While the degree of airflow limita-

tion was comparable, there were significant differences in

other lung function parameters, body weight, fat-free mass,

and health status between clusters which may guide risk

stratification of comorbidities.72 For example, the propor-

tion of patients with comorbid osteoporosis was highest in

the cachectic cluster, while health status was worst in

patients in the psychological cluster. Neither circulating

inflammatory biomarkers nor pack years of smoking dif-

fered between clusters, indicating that the origin of these

profiles is multifactorial and largely unknown. Integrated

analyses of not only the clinical disease network of COPD,

but also incorporating endogenous (genetics, inflammation,

oxidative stress, microbiology, aging, repair mechanisms),

environmental (smoking, air pollution, physical activity,

diet), and socio-economic factors (preterm birth, family

size, employment) is warranted. A systems medicine

approach for COPD provides this opportunity.

Pharmacologic management
Historic and current treatment algorithms
In the context of this document, it seems preferable to focus

not so much on specific drugs but on treatment concepts.

These are nicely reflected in the GOLD documents.89 In

2001, the first GOLD statement was published.51 The com-

mittee suggested to base treatment recommendations primar-

ily on the level of airflow limitation. Regarding treatment
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options, the following proceedings were proposed: first,

bronchodilators come first. Combinations of bronchodilators

with different mechanisms of action may be preferable.

Second, inhaled corticosteroids (ICS) can be given if signifi-

cant symptoms and a significant lung function response (in a

6 week to 3 months trial with ICS) and/or repeated exacer-

bations are present.

In the 2007 Executive Summary,90 a stage dependent

step up of treatments was suggested. Now, the use of ICS

should only be considered in patients with an FEV1 below

50% of predicted and a history of repeated exacerbations.

This recommendation was mostly based on studies with

fixed-dose LABA-ICS combinations.91,92 The abovemen-

tioned ICS test was no longer recommended.

In the 2011 document, the new assessment system

based on spirometry, symptom load and exacerbation his-

tory was introduced,93 and patients were categorized into

four groups (A, B, C, D) with separate treatment recom-

mendations for each group. In this document the goals of

treatment were defined as reduction of symptoms and

reduction of future risk, in particular exacerbations.

In the 2017 version, the assessment system was

refined.3 The A, B, C, D groups that define the pharmaco-

logical treatment were based on symptoms and exacerba-

tion history only. The most relevant reason for this change

was that the exacerbation history proved to be a better

predictor of future risk of exacerbations than spirometric

impairment.94 Now for each group treatment algorithms

were introduced, including escalation and de-escalation

(for ICS) concepts. Besides, the role of non-pharmacologic

treatments including pulmonary rehabilitation (PR) and

other measures that may increase physical activity is

emphasized. It is stated that these treatments are equally

important as drugs and that combining adequate pharma-

cological and non-pharmacological therapies is mandatory.

In the 2019 document, a further refinement was

described.60 Groups A, B, C, D are now used for informing

the initial treatment only. Regarding follow-up, two strata

are suggested: patients that suffer primarily from symptoms

(ie, dyspnoea) vs exacerbations. For both strata, separate

treatment algorithms are proposed. Further, blood eosino-

phil counts are introduced as a biomarker for the likelihood

that treating with an ICS may reduce the exacerbation rate.

A management cycle (review – assess – adjust) is defined

with the goal to identify reasons why patients are not doing

well and adapt the treatments accordingly. Influenza vacci-

nation is recommended as it reduces the incidence of lower

respiratory tract infections95 and mortality96 in COPD,

while pneumococcal vaccination decreases risk of pneumo-

nia, especially in younger patients with severe COPD and

those with comorbidities.97

This brief history nicely shows how the pharmacologi-

cal COPD treatment has evolved. The mainstay of phar-

macological treatment was and is that bronchodilators

come first for most patients – either as mono-treatment

or as a combination of two bronchodilators with different

mechanisms. Because of a superior efficacy for long-term

treatment, long-acting bronchodilators are preferred. Next,

ICS are only considered in individuals with exacerbations

or a history of asthma. ICS containing regimens are com-

binations of long acting ß2 agonists (LABA) and ICS or of

long acting muscarinic antagonists (LAMA), LABA, and

ICS. Third, besides ICS, other anti-inflammatory treat-

ments (roflumilast, macrolides) may be used in selected

patients.

Coming from an all-comers concept where treatment

decisions were mostly based on spirometry data, we now

choose drugs using a more tailored patient stratification

system a) that is based on symptoms and exacerbation risk,

where b) treatment is adapted to the predominant clinical

problem (dyspnea and/or exacerbations), c) blood eosino-

phil counts are used as a biomarker when the use of an ICS

is considered, and d) the combination of pharmacological

and non-pharmacological treatments is advocated.

Unmet needs
The treatment concepts of the future have to be personal or

at least better tailored to the patient's needs. In this context,

open research questions have been summarized in an ATS/

ERS statement.98 Based on this, there are a number of

unmet needs that need further research. The first need

relates to risk factors; are there differences regarding treat-

ment effects between COPD caused by biomass exposure

and smoking induced COPD? Do patients with reduced

lung growth have a different treatment response than indi-

viduals with normally developed lungs? What is the role

of gender and age? The second need concerns the treatable

traits; to what extent is it useful and feasible to implement

elements of treatable traits47 in treatment decisions? So far

only airflow obstruction, exacerbation history, and blood

eosinophil counts are taken into account. What about

chronic bacterial colonization, bronchiectasis, emphysema,

or asthmatic features? In order to make progress in this

field there is an urgent need for (more) biomarkers.

Finally, several questions in the field of drugs and non-

pharmacological treatments remain unanswered; what are
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the benefits of pharmacological treatment of comorbidities

(including cardiovascular disease and systemic inflamma-

tion) on respiratory outcomes and vice versa? What drugs

are best to be combined with measures to improve physi-

cal activity for longer terms? What concepts regarding

physical activation show the best results (hospital-based,

ambulatory, internet-based)? How to incorporate patient

preferences and priorities in the treatment algorithms for

COPD?

Non-pharmacologic management
In addition to pharmacologic treatment, non-pharmacologic

treatments play an important role in COPD management.

Self-management education aims to adapt the health beha-

viour of patients and provide skills to personally manage the

disease on an everyday basis. Reduction of behavioural risk

factors, treatment adherence, and coping with symptoms are

important aspects of self-management. Depending on the

determinants of disease burden and complexity of interaction

between these, additional non-pharmacological interventions

may range frommonodisciplinary interventions such as exer-

cise training or nutritional supplementation to comprehen-

sive interventions such as pulmonary rehabilitation (PR).99

Per definition, PR is a personalized intervention. Following a

comprehensive assessment of the integrated health status of a

patient with COPD, PR is a patient-tailored non-pharmaco-

logical intervention including exercise training, self-manage-

ment education, nutritional counselling, psychological

support, occupational therapy, and other treatments.100 PR

is an evidence-based intervention associated with improve-

ments in symptoms, health status, exercise tolerance, and

healthcare utilization.100 Personalization of PR not only com-

prises variation in the components of the program between

patients, but also flexibility of interventions within these

components. While exercise training is considered the cor-

nerstone of PR, this intervention may consist of endurance

training, interval training, resistance training, nonlinear train-

ing, water-based training, neuromuscular electrical stimula-

tion, or whole-body vibration training, based on the

symptoms, degree of disability,101 and determinants of exer-

cise intolerance in the individual patient.102

Unmet needs
As with pharmacological interventions in COPD, non-

response to PR is common.103 Changes in exercise perfor-

mance and health status are often used to qualify individuals

with COPD as responders or non-responders to PR.

However, it was shown that the response to PR may be

differential; patients may improve health status without an

improvement in exercise capacity or vice versa.104 Within

the same domain, response may depend on the method of

assessment.104 Using a non-parametric regression techni-

que, four different clusters with a distinct multidimensional

response to PR were identified,104 including groups of

patients that show only a moderate (35.4%) or even a

poor (10.5%) response. We need to better understand

these groups as these may require an intensification or

redesign of existing programs.

Interventional therapies
In COPD patients with pulmonary emphysema, air trapping

and hyperinflation of the lungs contribute to dyspnoea, poor

health status, and exercise intolerance.105 Despite optimal

pharmacotherapy and PR, severe emphysema is associated

with enormous refractory disability. Lung volume reduction

is a treatment option for those with the most severe emphy-

sema and results in improved health status, exercise toler-

ance, and even survival in carefully selected patients.106 As

such, it is a nice example of personalized medicine in

COPD. In contrast to other domains of disease manage-

ment, predictors for beneficial response after lung volume

reduction have been identified; patients with predominantly

upper-lobe emphysema and low exercise capacity were

shown to have a survival advantage following surgical

lung volume reduction.107 In addition, absence of interlobar

collateral ventilation is a predictor of response to endobron-

chial valve treatment.108

Unmet needs
Diagnostic workup of patients is complicated, techniques

are expensive and require specific expertise, and most

patients that are screened for lung volume reduction treat-

ments do not meet the inclusion criteria for these

interventions.108 However, the field of interventional pul-

monology for COPD is expanding rapidly, and new tech-

niques are being investigated.

Systems medicine model for COPD
As described before, current therapies for stable COPD

and exacerbations are frequently inadequate to halt dis-

ease progression and unable to cure the disease. In

addition, we lack sufficient tools to predict an indivi-

dual’s disease progression or response to therapies.

Systems medicine promises to improve our understand-

ing of lung health and COPD. Thus, it has the potential

to facilitate development of effective, personalized and
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ideally preventive interventions. The definition of sys-

tems medicine has in recent years been extended beyond

an approach to medical understanding and treatment that

is based on multi-disciplinary healthcare teams and that

integrates biomolecular, psychological, and social

dimensions. Now, systems medicine includes novel tech-

niques for systematic assessment from molecular omics

to physiome and diseasome, and the formalization of

mechanistic hypotheses into computational predictive

models.109 In this focus on mechanistic understanding,

systems medicine differs from current data-heavy

machine learning approaches.110 In the following we

will focus on the research oriented part of systems

medicine combing clinical, epidemiological, and experi-

mental research with mathematical modeling, computer

science, and machine learning110 to model specific

pathophysiologic modules via computer simulation to

test hypotheses, identify preventive measures, derive

new biomarkers, and predict treatment outcomes.111

Recent clinical trials have shown that targeted therapies

with small chemical compounds such as kinase inhibitors112

and therapeutic antibodies113 can serve as highly specific

tools to manipulate inter- and intracellular regulatory path-

ways. Combined, both developments – in principle – allow

correcting dysregulated physiological modules (protease-

antiprotease balance, oxidant-antioxidant balance, inflam-

mation, etc.) in a personalized way for every patient or at

least for patient sub-group.114 As discussed above, PR and

integrated care as well as preventive measures are further

aspects relevant to implement a systems medicine-based

approach to COPD. The big challenge to translation from

research is to develop, test, and implement strategies and

tools to gain clinically meaningful insights for everyday

patient care. The systems medicine research and translation

strategy critically depend on the involvement of patients

and patient representatives, as well as all relevant stake-

holders in the health systems.

Experimental models
Observational and interventional clinical studies are prere-

quisites for systems medicine approaches.110 However, cer-

tain analyses are necessary for the modeling process, but

cannot be performed in humans, eg, because they are diffi-

cult to observe (eg, very early events in COPD develop-

ment), technically not possible (eg, in vitro cellular imaging

of the lung, very detailed time course measurements in the

lung), or would be unethical (eg, early drug testing, genetic

manipulation).115 Therefore, experimental models are indis-

pensable in systems medicine. New and improved molecu-

lar technologies, like single cell sequencing116 and genome

editing by CRISPR technology,117 enable us to deepen our

pathophysiological insight to a detailed level.

Frequent models in biomedical research are inbred mice.

For COPD research, mouse models of acute or chronic

exposure to cigarette smoke are established and under

investigation.118,119 Advantages are the analysis of whole

organisms and the existence of knock-out mice and numer-

ous molecular tools. Disadvantages are relevant differences

in pulmonary anatomy, immunology, and the smoke-induced

clinical phenotype in comparison to COPD patients.

Complementary models are ex vivo cultures of surgically

removed lung tissue,120 or air–liquid interface cultures121 of

epithelial airway cells as obtained by bronchoscopy, which

undergo differentiation in culture to all relevant cells types,

produce mucus, and display ciliary beating. These models

allow access to “real” human COPD, are relatively easy to

work with, but lack crosstalk to other organ systems.

Additionally, new organ-on-a-chip and bioreactor models

allow the cellularization of microfluidic devices or tissue

scaffolds with epithelial and endothelial cells, as well as

flow of air at the apical compartment and buffer, including

immune cells, in the endothelial compartment.122 Finally,

primary human cells or cell lines can be exposed in vitro to

cigarette smoke or cigarette smoke extracts.123

These models can be analyzed by manifold imaging (eg,

high resolution lifetime microscopy), immunology (eg, flow

cytometry), and molecular (eg, single-cell sequencing, pro-

teomics, metabolomics) technologies. They complement

clinical studies and provide comprehensive data sets for

calibration, optimization, and validation of models derived

from computer simulation.

Computational models
A computational model is a mathematical model aimed to

investigate the behavior of a complex system. Due to the

focus of systems medicine on the elucidation of medical

questions, computational models usually have a certain

predictive ability. Different sub-classes of computational

models can be distinguished. Mechanistic models are tradi-

tionally based on the causal understanding of biological

entities (eg, cells, proteins, organs) and their dynamic inter-

actions. Basically, these models represent existing knowl-

edge about biological systems in a form that can generate

predictions on the behavior of the system. Statistical and

Dovepress Franssen et al

International Journal of Chronic Obstructive Pulmonary Disease 2019:14 submit your manuscript | www.dovepress.com

DovePress
1473

http://www.dovepress.com
http://www.dovepress.com


machine-learning based models are based on associations

rather than causal mechanisms, and can provide direct and

strong predictions of (clinically) relevant outcomes.

Mechanistic models
Due to the complexity of COPD, which affects multiple

molecules, cell-types, organs, and psycho-social factors, only

few attempts to apply mechanistic models to predictive, per-

sonalization of treatment have so far been reported. Many of

these models have been based on ordinary differential equa-

tions (ODE) to calculate the change over time in certain

factors.Mostly, these aim to improve prediction of progression

or exacerbation risk, for example by coupling exposure to

inhaled substances, biological activity in terms of inflamma-

tion, and the degree of airflow limitation to progression.124 By

doing so, they provide personalized estimates of ventilation/

perfusion heterogeneity in COPD patients,125 mechanistically

explain etiology from an imbalance of protease-antiprotease,126

leading to a cascade of positive feedback loops in tissue-

degeneration, macrophage and neutrophil inflammation, and

alveolar epithelial cell apoptosis,127 or generate a physiologi-

cal model of breathlessness.128 None of these models have so

far resulted in clinical application. However, models based on

computational fluid dynamics have recently contributed to

treatment optimization by predicting particle deposition in

the airway tree,129 and are supported by the FDA as prognostic

biomarkers in clinical trials.130,131 All models described so far

were based on a single modeling technology such as ODE to

describe effects on a single level, eg, molecular or cellular. In

contrast to these, several approaches recently embarked on the

generation of multi-scale, multi-physics models which com-

bine different technologies such as ODE, agent based model,

or partial differential equations (PDE). One such approach

described the lung in a patient-specific way,132,133 from its

molecular constituents to its cell types134 and overall biophy-

sical structure and properties.135,136 This multi-scale model

already created clinical impact by debunking thermoplasty as

biologically meaningful intervention to asthma.137 Coupling

such a patient specific lung model to a multi-scale full-body

model to explain muscle wasting in COPD and suggest spe-

cific PR approaches was recently reported138 by integrating

the ventilation/perfusion lung model with a physiological gas-

exchange and distribution model,139 and a model of muscle

cell energy generation140,141 and regulation of re-modeling.142

In summary, mechanistic models make inroads to generate

patient specific predictions to aid clinical decisions, but have

not yet reached impact beyond clinical trial stage.

Machine learning models
The increase in size and availability of patient datasets

related to COPD enables us to employ statistical tools such

as machine learning (ML) algorithms in order to solve scien-

tific and clinical problems. ML algorithms use data to predict

certain outcomes, and algorithms can learn and improve their

predictions. ML methods are divided into two types.

Supervised ML algorithms learn rules from annotated data

(eg, labeled emphysema in CT-images) and apply them to

classify new data samples (eg, unlabeled CT-image of

emphysematous lung). Unsupervised ML algorithms use

unlabeled data to detect patterns, eg, principle component

analysis (PCA) or clustering. Unsupervised ML algorithms

are well known in medical research, while supervised ML

algorithms became popular in the last two decades and

achieved promising results, for example in skin cancer

classification143 and diabetic retinopathy detection.144

One main advantage of using ML algorithms (instead

of traditional mechanistic models) is that they are easily

adaptable and do not require a deep understanding of the

underlying mechanisms of the system. Supervised ML

algorithms can learn with the arrival of new data and

improve the outcomes with minimal effort. In contrast,

dynamic models need to be re-examined, the mechanisms

and pathways need changes, and these new models must

be re-analyzed to understand the outcomes, including re-

estimation of the parameters using the new data. This re-

construction of the mechanistic models is often a difficult

and expensive process.

We review here a number of publications focusing

on supervised ML algorithms that support clinical deci-

sions for COPD (Table 1). The most prominently used

ML algorithms are k-nearest neighbor (KNN), support

vector machine (SVMs), and artificial neural network

(ANN). KNNs predict the label of a new data sample

by finding their closest data points (nearest neighbors)

in the training dataset. The nearest neighbors then clas-

sify the new data point by vote (Figure 1A). SVMs try

to find a line or plane that separates data samples with

different labels. If that is not possible, the data points

are transformed into a new dimension (Figure 1C). This

makes it possible to separate the data samples with, for

example, a two-dimensional plane. The ANNs are

assembled by neurons organized in layers (Figure 1B).

Each neuron sums up its weighted inputs and applies a

non-linear activation function on the sum. The calcu-

lated value either functions as an input for the neurons
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in the next layer or as an output of the ANN. Using

non-linear activation functions, ANNs are able to find

complex boundaries to separate differentially labeled

data points.

Most of the reviewed publications report high perfor-

mance results of their tested ML algorithms, for example a

classification accuracy >90% or even >98%. However, we

must consider several important issues in these COPD ML

studies. First, many studies use additional “feature selection”

to decrease the complexity of their data, and thus focus only

on the relevant data variables. Feature selection methods are

often used to remove irrelevant and redundant attributes that

do not contribute to the accuracy of the outcome or may in

fact decrease the accuracy of the predictive model. Feature

selection, therefore, improves the performance of their ML

algorithm, but it should be used on an independent dataset

rather than the entire training data. This is not possible in

most COPD ML studies that have access only to small

datasets (<300 patients). Using feature selection on the entire

training set may yield a model that is enhanced by the

selected features over other models being tested to get see-

mingly better results, when in fact it is a biased result.

Second, when we examined the system performance, we

found that more than half of the studies did not report the

use of an independent test dataset (data that was not used in

the training procedure). A missing independent test dataset

can lead to an overestimation in the performance of the ML

algorithms and should always be implemented in the devel-

opment and evaluation of a ML-based system. Also, to

address the multi-component background of COPD, scien-

tists should incorporate a variety of independent measure-

ment techniques. Despite that, we found that most of the

reviewed publications focused on one or two different data

types (source of the data such as measurement type). Only

some145–152 reported the use of a broader patient health

assessment (eg, spirometry, blood analysis, CT images,

etc.). Finally, it is generally known that a limited training

dataset results in poor approximation, especially for complex

ML algorithms and systems.153 Most of the COPD ML

studies we reviewed have limited access to data, and their

training datasets range from 16–300 patients. This may be

one reason why none of the studies154,155 reported testing

their algorithm in a real-world clinical setting, suggesting a

gap between research in COPD ML algorithms and applica-

tions in daily clinical settings. To close this gap, a represen-

tative training dataset is needed. The data should also be

based on a detailed patient assessment to reflect the multi-

component background of COPD.T
ab
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Statistical models with clinical application
Many approaches to the personalization of COPD risk assess-

ment or treatment suggestion are based on multilevel models,

combining classical statistical analysis and machine learning

approaches to clinical data with mechanistic modeling of

biomedical research data. For example, they use a Bayesian

network algorithm to derive clinical variables predictive of

exacerbation risk and suggest context-aware preventive

action183 or identify survival risk factor attributes by univariate

analysis to generate probability distribution models to predict

ICUCOPDmortality risk.184Many of these combinedmodels

straddle the border between personalized health-behavior

advice and public health preventive policy advice such as the

personal air-exposure monitoring and exposure-health-asso-

ciation analysis and exacerbation risk prediction model for

London which couples exposure-health-association to a

time-activity exposure multi-scale ODE model.185 A linked-

equation model enabled direct estimation of health service

costs and quality-adjusted life years (QALYs) for COPD

patients over their lifetimes and was validated for predicted

annual exacerbation rate and annual decline in FEV1 with a 3-

year longitudinal clinical study186,187 to focus treatment atten-

tion on relevant factors. Recently, a patient-level, health eco-

nomic simulation model including a large number of patient

characteristics and relevant outcomes was developed, which

can be used to personalize treatment decisions in COPD.188

While influence of physical activity189 has resulted only in a

fewmodels, the personalized prediction of exacerbation risk is

a major focus of statistical models.152,190–193

Unmet needs

FAIR (findable, accessible, interoperable, reusable) mod-

els are required that bridge association-based (machine

learning, statistical) and mechanism-based modeling.194

In addition, we need multi-scale, integrated computa-

tional models with medically relevant outputs on the

level of the individual and focused on specific medical

questions.

Access to relevant, high quality data and gold stan-

dards for testing and validation is essential to build

Class AA B

C

Input
layer

Output
layer

Hidden
layer

Hidden
layer

Class B

Class A
Class B

Class A
Class B

Transform

Test 1
Test 2

Figure 1 Different machine learning algorithms. (A) k-nearest neighbor (KNN); (B) artificial neural network (ANN); (C) support vector machine (SVMs). Different

algorithms are explained in the"Machine learning models" section.

Notes: Class represents diagnostic classification, for example as 'normal' or 'abnormal' or representing different stages of disease. Test represents new cases entering classification.
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association-based models. Large scale real-world data

access efforts are ongoing in public health systems and

will greatly improve our ability to learn.195 As data

infrastructures become more important for the ability

to improve healthcare, we believe clinics and health

systems embracing them will flourish.

Beyond infrastructural and methodological tasks, we

need clinical modelers. Too often, even in systems medicine,

the disciplines are still separated due to experts staying in

their own area; clinicians posing diagnostic and treatment

questions and computational and mathematical experts

focusing on methodological breakthroughs and fundamental

insights. However, as long as “translators” intervene between

the clinician and themodel, we will lack the direct interaction

giving rise to intuitive understanding and explorative genera-

tion of new questions, ideas, and hypotheses for clinical

research. Therefore, we need models that are user friendly

and accessible to clinical researchers to enable them to

explore and pose their questions directly in-silico.

Towards a clinical decision support

system for COPD
Given the availability of very large datasets and the

increasing capability of machine learning approaches, clin-

ical benefit could be optimized and patient risk minimized,

developing a dynamic clinical decision support system

(CDSS).196 In the clinical context, the term CDSS is

often used for any computational system that provides

direct aid to clinical decision-making, such as dashboards

that present information in a comprehensive, actionable

form and, therefore, help clinicians to integrate and prior-

itize multiple, diverse evidence.197,198

However, in the context of systems medicine and

computational modelling, we regard CDSS as software

that matches patient characteristics to a computerized

clinical knowledge base (KB) and then presents

patient-specific assessments or recommendations to

the clinician and/or the patient for direct clinical deci-

sion-making.199 These systems interpret or advise for

action and, therefore, are, at least in Europe, regulated as

“medical devices” (EC 2017/745). Existing systems range

from CDSS for spirometry quality control,200 to inte-

grated-care based applications creating individual treatment

pathways from multiple intervention modules based on a

broad biopsychosocial patient assessment.48,201 The results

showed by the available CDSS for the detection and

diagnosis of COPD are promising and can be used in

combination with the existing protocols to facilitate dis-

ease management.202 However, none of these COPD-spe-

cific systems has yet reached regulatory approval for

clinical practice. Outside the field of COPD, examples of

systems start to appear which support complex interven-

tion plans, such as multi-perturbation treatment203 or

dynamic adaptation of biopsychosocial factors (lifestyle,

environment, medication).204

Too many CDSS have been proposed but never under-

went dedicated validation trials at the point-of-care, and

even less are enabled for continuous improvement on real

world data from clinical practice. One of the difficulties to

this is the lack of protocols and processes for regulatory

approval of continuously adapting CDSS as a medical

device.205 In addition, integration of CDSS in healthcare

systems where patient participation and shared decision-

making are increasingly important is a major challenge.206

Conclusion
As a consequence of advances in our understanding of the

pathophysiology of COPD at multiple levels and in com-

prehensive diagnostic and therapeutic strategies over the

last decades, disease management transformed from a “one

size fits all” towards a more personalized approach.

However, additional, far-reaching efforts are required to

transform care into actual P4 medicine for COPD, where

the emphasis is not only on personalized management, but

also on predictive and preventive healthcare in which

individual patients are actively involved. A multidisciplin-

ary systems medicine approach may reveal the multilevel

complexity of COPD and fill current gaps in optimization

of treatment for individuals at risk and those with estab-

lished airflow limitation.
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