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Abstract
We combine a systems pharmacology approach with an agent-based modelling
approach to simulateLoVocells subjected toAZD6738, anATR(ataxia–telangiectasia-
mutated and rad3-related kinase) inhibiting anti-cancer drug that can hinder tumour
proliferation by targeting cellular DNA damage responses. The agent-based model
used in this study is governed by a set of empirically observable rules.By adjusting only
the rules when moving between monolayer and multi-cellular tumour spheroid simu-
lations, whilst keeping the fundamental mathematical model and parameters intact, the
agent-based model is first parameterised by monolayer in vitro data and is thereafter
used to simulate treatment responses in in vitro tumour spheroids subjected to dynamic
drug delivery. Spheroid simulations are subsequently compared to in vivo data from
xenografts in mice. The spheroid simulations are able to capture the dynamics of in
vivo tumour growth and regression for approximately 8 days post-tumour injection.
Translating quantitative information between in vitro and in vivo research remains
a scientifically and financially challenging step in preclinical drug development pro-
cesses. However, well-developed in silico tools can be used to facilitate this in vitro
to in vivo translation, and in this article, we exemplify how data-driven, agent-based
models can be used to bridge the gap between in vitro and in vivo research. We further
highlight how agent-based models, that are currently underutilised in pharmaceutical
contexts, can be used in preclinical drug development.
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1 Introduction

1.1 Bridging In Vitro and In Vivo Research

Mathematical models, and their corresponding in silico tools, can be used to simulate
both in vitro and in vivo scenarios that involve cancer cell populations, or tumours,
and their responses to anti-cancer treatments (Rockne et al. 2019; Bruno et al. 2020;
Stephanou et al. 2018; Brady-Nicholls et al. 2020; Scott et al. 2020). However, cancer
cells in an in vitro cell culture experience a microenvironment that is significantly
different from the microenvironment experienced by cancer cells in a solid tumour
in vivo. As these microenvironments influence cell proliferation and the delivery of
oxygen, drug and nutrient molecules to cells, it follows that the dynamics of a cancer
cell population in vitro differs from the dynamics of a solid tumour in vivo. Conse-
quently, translating data obtained by in vitro experiments into quantitative information
that can guide or predict in vivo experiments remains a challenging, but important,
step in drug development processes. As an intermediate step between monolayer cell
cultures and in vivo tumours, multi-cellular tumour spheroids (in this study referred
to as spheroids) provide in vitro models that are able to capture certain key-features of
in vivo tumours such as intratumoural heterogeneity resulting from nutrient-gradients
and resource-limited tumour growth (Nunes et al. 2019).

Agent-based models (ABMs) are used in many applications in mathematical biol-
ogy but are underutilised in the context of pharmaceutical drug development (Cosgrove
et al. 2015). An ABM consists of multiple, distinct agents that may interact with each
other and their microenvironment. There exist different types of ABMs. For example,
agents can be deformable or of fix size, and agent movements and neighbourhood-
interactions can be constrained by an underlying lattice geometry (on-lattice models)
or not (off-latticemodels). CombiningABMswith hybridmodelling techniques allows
for the integration of discrete and continuous variables describing tumour dynamics on
multiple scales. A thorough review on various types of hybrid ABMs used to simulate
tumour growth is provided by Rejniak and Anderson (2011). Furthermore, a number
of open-source in silico tools, such as Chaste (Mirams et al. 2013), CompuCell3D
(Swat et al. 2012) and PhysiCell (Ghaffarizadeh et al. 2018), are freely available to
facilitate the implementation of ABMs.

In this study, we introduce a novel modelling approach that uses an agent-based
mathematical model to bridge the gap between in vitro monolayer and spheroid
research as a step towards bridging the gap between in vitro and in vivo research, as
conceptually illustrated in Fig. 1. For a broader scope discussion on how to develop,
calibrate and validate mathematical models that can predict novel anti-cancer ther-
apies, we refer the reader to a recent article by Brady and Enderling (2019). In the
ABM at the core of this modelling approach, an agent consists of one cancer cell or
a group of cancer cells, where the behaviour and fate of each agent are governed by
a set of empirically observable and well-established modelling rules that incorporate
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Fig. 1 Aschematic of themathematicalmodelling approach used in this study.An agent-basedmathematical
model, that distinguishes between in vitro monolayer and spheroid modelling rules, is formulated. The
mathematical model is first parameterised by in vitro monolayer data and is thereafter used to simulate
spheroid dynamics

both intracellular and microenvironmental dynamic variables, as described through-
out Sect. 2. To account for differences between monolayer and spheroid scenarios,
the modelling rules are adjusted when moving between monolayer and spheroid sim-
ulations. By only adjusting the rules, whilst keeping the fundamental mathematical
model and parameters intact, when moving between monolayer and spheroid simula-
tions, the mathematical framework can first be parameterised by monolayer data and
thereafter be used to simulate spheroid treatment responses. To exemplify this mod-
elling approach, we here simulate LoVo (human colon carcinoma) cells subjected to
the anti-cancer drug AZD6738. The ABM is first calibrated bymonolayer in vitro data
and is thereafter used to simulate in vitro spheroids subjected to dynamic drug deliv-
ery. Spheroid simulations are subsequently compared to xenograft in vivo data. The in
vitro and in vivo data used in this study are gathered from previous work by Checkley
et al. (2015). The ABM used in this study is an extension of a model introduced by
Powathil et al. (2012b).

1.2 DNA Damage Response Inhibiting Drugs

The deoxyribonucleic acid (DNA) in human cells is perpetually exposed to, potentially
harmful, influences that can be derived from both exogenous and endogenous sources
and events (Minchomet al. 2018; Sundar et al. 2017). Exogenous sources include ultra-
violet radiation, ionising radiation and chemotherapeutic drugs, whilst erroneousDNA
replication is an example of an endogenous event yielding DNA damage (Minchom
et al. 2018). Regardless of the source, a multitude of intracellular events are triggered
when the DNA in a cell becomes damaged. Cells may, for example, respond to DNA
damage by activating DNA repair mechanisms, cell cycle arrest or, in cases of severe
DNA damage, apoptosis (Carrassa and Damia 2017). Such cellular responses to DNA
damage are mainly governed by the DNA damage response (DDR), which comprises
a complex network of signalling pathways (Carrassa and Damia 2017). The DDR has
many functionalities and, amongst other things, it monitors DNA integrity and repairs
DNA damage in order to maintain genomic stability in cells. The DDR also governs
DNAreplication, cell cycle progression and apoptosis (Minchomet al. 2018;Namet al.
2019). When DNA repair in a cell is needed, the DDR activates relevant effector pro-
teins (Minchomet al. 2018). Included in the group ofDDR-associated effector proteins
are approximately 450 proteins (Nam et al. 2019), out of which the twomain regulators
for cell cycle checkpoints are ataxia–telangiectasia-mutated kinase (ATM) and ataxia–
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telangiectasia-mutated and rad3-related kinase (ATR) (Sundar et al. 2017). ATM and
ATR belong to the enzyme family phosphatidyilinositol-3-OH-kinases (PI3K), and
they both play central roles when cells respond to DNA damage (Carrassa and Damia
2017). In this work, we study the effects of an anti-cancer drug, namely AZD6738,
that works by inhibiting ATR activity.

DNA lesions in form of single-strand breaks are a common result of replication
stress, and the repair of single-strand DNA breaks is mainly attributed to ATR activ-
ity. A drug that inhibits ATR activity consequently inhibits the repair of single-strand
DNA breaks post-replication stress. Cancer cells are associated with high replication
stress and consequently ATR inhibitors have, during the last decade, been explored as
anti-cancer agents (Minchom et al. 2018; Carrassa and Damia 2017; Mei et al. 2019).
With the premise that inhibiting DNA damage responses should increase the effect of
some other main therapy, DDR inhibitors have been explored as both radiotherapy and
chemotherapy treatment intensifiers (Carrassa and Damia 2017; Mei et al. 2019). Two
well-studied ATR inhibitors are AZD6738 and VX-970. AZD6738 is an oral ATR
inhibitor, and its anti-tumour potential has been demonstrated in preclinical vitro
and in vivo xenograft studies for various ATM-deficient cell lines, including ATM-
deficient lung cancer, chronic lymphocytic leukaemia and metastatic adenocarcinoma
of the colon (Checkley et al. 2015; Sundar et al. 2017; Foote et al. 2018). Combination
treatments that combine AZD6738 with either radiotherapy or chemotherapy have
produced synergistic results in preclinical settings (Sundar et al. 2017), and AZD6738
is currently being evaluated in clinical phase I/II trials (Minchom et al. 2018;Mei et al.
2019). VX-970 is an intravenous ATR inhibitor (Tu et al. 2018) that has demonstrated
tumour controlling effects in a phase I clinical trial, both as a monotherapy and in
combination with the chemotherapy drug carboplatin (Minchom et al. 2018). A sum-
marising table of clinical trials involving ATR-inhibitors can be found in an article by
Mei et al. (2019).

2 Model andMethod

We use an ABM approach to model monolayer populations of cancer cells and multi-
cellular tumour spheroids that evolve in time and space. The model describes the
behaviour of cancer cells using a set of modelling rules. In order to account for dif-
ferences between monolayer and spheroid scenarios, these rules are adjusted when
moving betweenmonolayer and spheroid simulations, as described throughout Sect. 2.
Taking a minimal parameter approach, we aim to use as few rules and parameters as
possible to capture the nature of the regarded systems.We here chose to include model
rules and parameters that pertain to the cells’ doubling time and cell cycle (Sect. 2.2),
cell proliferation on the lattice (Sect. 2.3), the distribution of oxygen and drugs across
the lattice (Sects. 2.4 and 2.5, respectively) and cellular responses to local oxygen and
drug concentrations (Sects. 2.4 and 2.6, respectively). In this work, details concerning
nutrient distribution and its effect on tumour growth are not included. Instead, under
a simplifying modelling assumption, the diffusion of oxygen forms a surrogate for
the distribution of nutrients. Differences between monolayer and spheroid simulation
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modelling rules are pictorially summarised in Sect. 2.8, and monolayer-calibrated
model parameters are listed in Sect. 2.7.

The in vitro and in vivo data used in this study are gathered from previous work
by Checkley et al. (2015). In the regarded in vitro experiments, populations of LoVo
cells were plated and subjected to AZD6738, where population sizes of up to roughly
4000 cells were reported (Checkley et al. 2015). In the in vivo experiments, LoVo cells
were subcutaneously injected in flanks of female Swiss nude mice in order to produce
human tumour xenografts, and AZD6738 treatments started when the tumours had
reached a volume of 0.2–0.3 cm3 (Checkley et al. 2015). Here, we regard treatment
responses in terms of two dynamic variables: population cell count or tumour size and
percentage of DNA-damaged (i.e. γH2AX-positive) cells. The in vitro and in vivo
data used in our current study are available in Supplementary Material S1.

2.1 The ABM Lattice

In the model, one agent corresponds to one cancer cell (in the monolayer simulation)
or, due to computational costs, one group of cancer cells (in the spheroid simulation).
The behaviour and fate of each agent are governed by a set of rules that incorporate
both intracellular and environmental dynamic variables using multiscale modelling
techniques (Rejniak and Anderson 2011). At the start of an in silico experiment, one
initial agent is placed in the centre of the lattice. This initial agent produces daughter
agents and ultimately gives rise to a heterogeneous population of agents. When the
population has reached an appropriate size (chosen to match the in vitro and in vivo
data in the monolayer and spheroid simulations, respectively), AZD6738 anti-cancer
treatments commence. The ABM lattice is a square lattice, and every lattice point
is either empty or occupied by one agent. If a lattice point is empty, it consists of
extracellular solution providing nutrients to cells. In the monolayer simulations, the
dispersion of anymolecules across the lattice ismodelled as instantaneous, and thus the
extracellular solution is considered to render the entire lattice homogeneous in terms
drug and oxygen concentrations at all times. In the spheroid simulations, however, drug
and oxygenmolecules aremodelled as diffusing over the spheroid and the extracellular
environment, and consequently the spheroid lattice will be heterogeneous in terms of
drug and oxygen concentrations. Oxygen and drug distribution across the lattice are
further discussed in Sects. 2.4 and 2.5, respectively. Since Checkley et al. (2015) report
monolayer cell population sizes in units of number of cells, and in vivo tumour sizes
in cm3, we here choose to measure simulated monolayer and spheroid sizes using
cell counts and volumes, respectively. The ABM lattices are chosen accordingly, as
described below.
Monolayer lattice: Cell populations evolve on a two-dimensional square lattice with
100 × 100 lattice points, where the spacing in both spatial directions, x1 and x2,
corresponds to one cell diameter.
Spheroid lattice: We simulate (only) a central cross section of the spheroid as an,
approximately circular, disc of cells living on a two-dimensional square lattice. This
lattice is specifically an L̃×L̃ =1000×1000 square lattice,with a spacing in both spatial
directions x̃1 and x̃2 equal to 40μm. The dimensions are chosen in order to allow our
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ABMto simulate the requiredphysical dimensions,whilst keeping computational costs
low. Post-simulation time, the two-dimensional cross section of cells is extrapolated
to represent a three-dimensional spheroid. This disc-to-spheroid extrapolation process
is outlined in Supplementary Material S4.

2.2 Cell Cycle Model

In order to capture the influence of ATR and the ATR inhibitor AZD6738 on the
cell cycle, we use a probabilistic, rule-based cell cycle model adapted from previous
mathematical (non-agent-based) work by Checkley et al. (2015). As illustrated in
Fig. 2, this cell cycle model can be represented as a graph with nodes (cell cycle phases
or states) that are connected via various paths (phase/state transitions). A cell can be
in an undamaged state (G1, S or G2/M), a replication stress-induced DNA damaged
state (D-S) or a dead state, where the cause of cell death is unrepaired replication
stress. As ATR is active in the checkpoint in the intra-S phase of the cell cycle, both
under undamaged circumstances and in response toDNAdamage (Carrassa andDamia
2017), ATR inhibition will inhibit the cell from progressing to the G2/M state in the
mathematical cell cycle model. A cell can take different paths through the cell cycle
graph, and every time that paths fork, random number generation determines which
path will be taken. Every cell commences its life in the G1 state, but thereafter a cell
can enter either the S state or the damaged S (D-S) state. The probability that a cell
enters the D-S state is denoted�D−S and is calibrated by in vitro data (Checkley et al.
2015). If a cell enters the D-S state, it has a chance to repair itself and enter the S state.
If there is no drug in the system, this repair is always achieved, however the repair path
is inhibited by the presence of the drug AZD6738. The higher the drug-concentration,
the more unlikely it is that a cell in the D-S state will successfully repair itself to the
S state. If a cell in the D-S state fails to repair, it is sentenced to die. Whether a cell in
state D-S repairs or dies is decided by comparing a random number, generated from
a uniform distribution, to the cell’s survival probability, which is influenced by the
local drug concentration C(x̄, t), as described in detail in Sect. 2.6. A cell that has
successfully reached the S state continues to the G2/M state, after which it duplicates
and starts over in the G1 state again, ready to perform another cell cycle.

In order to allow for asynchronous populations, each agent i on the lattice is assigned
an individual doubling time τi , where τi is a random number generated from a normal
distribution with mean value μ and standard deviation σ . Each agent is attributed
an individual cell cycle clock, that determines when the agent should progress to a
subsequent state in the cell cycle model. Progression to a subsequent cell cycle state
occurs once an agent has spent a certain fraction of its doubling time in its current state.
The fraction of the doubling time spent in the G1, S (including D-S) and G2/M states
are, respectively, denoted �G1, �S and �G2/M , where these values are approximate
and chosen from the literature to match values for typical human cells with a rapid
doubling time of 24 hours so that �G1 = 11/24, �S = 8/24 and �G2/M = 5/24
(Cooper and Hausman 2007). The fraction of an agent’s doubling-time spent in the
D-S state, �D−S , is on the other hand fitted by in vitro data produced by Checkley
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Fig. 2 Cell cycle model: An agent, i.e. a cell (in the monolayer simulation) or a group of cells (in the
spheroid simulation), progresses through various states of the cell cycle, where the states correspond to cell
cycle phases and are shown as nodes in the graph. Viable (undamaged or damaged) states are shown in
circles, whilst the dead state is shown as a cross. Paths illustrate transitions between states, and symbols
next to the paths denote the probabilities that the corresponding paths will be taken. The dashed path can
be inhibited by an ATR-inhibiting drug, such as AZD6738 (Colour figure online)

et al. (2015), as outlined in Supplementary Material S2. Monolayer and spheroid cell
cycle modelling rules are described below.
Monolayer cell cycle model rules: One agent corresponds to one cancer cell that is
assigned an individual doubling time τi . The cell cycle path taken by cell i is governed
by drug concentrations and random number generations specific to that cell.
Spheroid cell cycle model rules: One agent comprises a group of identical cancer cells.
Each agent is assigned an individual doubling time, τi , and thus all cells belonging to
agent i progress simultaneously and uniformly through the cell cycle model. Random
number generations specific to agent i determine which path the agent takes through
the cell cycle.

2.3 Cell Proliferation

When an agent has completed the mitosis state in the cell cycle model a daughter
agent is produced. Each daughter agent is placed on a random lattice point in the
(approximately circular) neighbourhood of its parental agent. To accomplish circular-
like growth, the model stochastically alternates between placing daughter agents on
Moore and von Neumann neighbourhoods of parental agents, as pictorially described
in Supplementary Material S3. A daughter agent is allowed to be placed on, up to, a
νth-order neighbourhood of its parental agent, but lower-order neighbourhoods (i.e.
neighbourhoods closer to the parent) are prioritised and populated first. Modelling
rules concerning monolayer and spheroid cell proliferation are outlined below.
Monolayer proliferation rules: In the experimental monolayer in vitro setup, there is
no spatial constraint or nutrient deficiency that is inhibiting cell division within the
time-course of the experiment. Consequently cells are allowed to divide freely in the
monolayer model and we set ν to be equal to infinity (with the restriction that agents
cannot be placed outside the lattice in the in silico implementation). Although this
non-local placement of daughter cells neglects physics, we are not considering spatial
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heterogeneity in the monolayer simulation and therefore cell location does not affect
the evaluated simulation results.
Spheroid proliferation rules: In vivo tumours and in vitro spheroids typically consist of
a core with non-proliferating cells and a shell of proliferating cells. To accommodate
for this, a daughter agent (representing a group of daughter cells) is allowed to be
placed on up to a third-order (approximately circular) neighbourhood of its parental
agent, so that ν̃ = 3, in accordance with previousmathematical models (Powathil et al.
2012b). For the spheroid simulation regarded in our current study, ν̃ = 3 matches the
experimental in vivo data. However, for other experiments, the value of ν̃ should be
adjusted to fit the specific cell-line and modelling scenario at hand. When an agent
is in the G1 phase of the cell cycle, it scans its environment to see if it has enough
resources, in terms of space and nutrients, to commence the process of producing a
daughter cell. If not, the cell enters the quiescent phase (Alarcon et al. 2004). Thus in
the model, when an agent is in the G1 phase, it continues to progress through the cell
cycle model, provided that some free space is available on the lattice within its ν̃th
neighbourhood. If this is not the case, the agent exits the cell cycle to enter a quiescent
state G0. Should neighbourhood space be made available again, here as a result of
anti-cancer targeting, quiescent agents may re-enter the cell cycle.

2.4 Oxygen Distribution and Influence on Cells

Tumour growth and treatment responses are highly influencedby intratumoural oxygen
levels (Hu et al. 2010; Liapis et al. 2015; Peeters et al. 2015) and severely hypoxic
(cancer) cells may proliferate slower than well-oxygenated cells (Alarcon et al. 2004).
Monolayer oxygen distribution and responses: In the mathematical monolayer model,
all cells are assumed tobewell-oxygenated in accordancewith the experimental in vitro
setup performed by Checkley et al. (2015). Consequently, neither oxygen dynamics
nor cellular responses to oxygen levels are incorporated in the monolayer model.
Spheroid oxygen distribution and responses: Within solid tumours, oxygen concentra-
tions typically vary and hypoxic regions are common tumour features (Peeters et al.
2015; Hamis et al. 2020a; Sun et al. 2012). Oxygen gradients are also observed in
in vitro tumour spheroids (Voissiere et al. 2017), thus oxygen dynamics across the
lattice are here described using a mechanistic diffusion equation, where the oxygen
concentration in location x̄ at time t is denoted by K (x̄, t) where

∂K (x̄, t)

∂t
= ∇ · (DK (x̄, t)∇K (x̄, t)) + rKm(x̄, t) − φK K (x̄, t)cell(x̄, t). (1)

The first term in Eq. 1 describes oxygen diffusion across the lattice, the second
term is an oxygen supply term and the third term describes oxygen uptake by cells.
Accordingly, DK (x̄, t) is the oxygen diffusion coefficient, and rK and φK are supply
and consumption coefficients, respectively. The diffusion coefficient for oxygen is
known from the literature to be 2.5×10−5 cm2 s−1 (Powathil et al. 2012b). Assuming
that oxygen diffuses slower inside the spheroid than outside the spheroid, the oxygen
diffusion coefficient is divided by a factor 1.5 if there is a cell in location x̄ at time
t (Powathil et al. 2012b). The binary factor m(x̄, t) is 1 if the regarded location x̄ is
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outside the spheroid boundary at time t and 0 otherwise, i.e. m(x̄, t) is 1 if the regarded
lattice point is not occupied by an agent nor completely surrounded by agents, thus
oxygen is here modelled as supplied from ‘outside the boundary of the spheroid’.
Similarly, the binary factor cell(x̄, t) is 1 if there is a viable (non-dead) cell in location
x̄ at time t , and 0 otherwise (Powathil et al. 2012b). Equation 1 is coupled with no-flux
boundary conditions, thus the total amount of oxygen in the system will fluctuate over
time (Powathil et al. 2012a). A scaled oxygen variable K̂ (x̄, t) is introduced in order
to express oxygenation levels in percentages (%) between 0% and 100%. This scaled
oxygen value is computed at every unique time step tu by

K̂ (x̄, tu) = K (x̄, tu)

maxx̄,tu K (x̄, tu)
· h, (2)

where maxx̄,tu K (x̄, tu) denotes the maximum occurring K (x̄, tu)-value at the time
point tu and h is a scaling factor that is included in order to classify cells with oxygen
levels of 10%, or less, as hypoxic (Powathil et al. 2012b; Hamis et al. 2020a). Low
cellular oxygen levels have been shown to delay cell cycle progression by inducing
arrest in, particularly, theG1phase of the cell cycle (Alarcon et al. 2004).Consequently,
in our model, hypoxic cells display arrest (i.e. delay) in the G1 phase of the cell cycle.
In mechanistic Tyson–Novak type cell cycle models (Tyson and Novak 2001; Novak
and Tyson 2003, 2004), the cell cycle is governed by a system of ordinary differential
equations (ODEs) in which the G1 phase can be inherently elongated under hypoxic
conditions by incorporating hypoxia-induced factors into the ODEs (Powathil et al.
2012b). In the mathematical model discussed in this paper, however, we use agent-
attributed clocks to model cell cycle progression and thus, in order to achieve a longer
G1-phase under hypoxic conditions, we introduce a G1 delay factor (G1DF) (Hamis
et al. 2020a) where

G1DF(K̂ (x, t)) =

⎧
⎪⎨

⎪⎩

2 if 0% ≤ K̂ (x, t) < 1%,

a1 + a2
a3+K̂ (x̄,t)

if 1% ≤ K̂ (x, t) ≤ 10.5%,

1 otherwise.

(3)

The G1DF is an approximation for howmuch the G1 phase is expanded in time as a
function of cellular oxygen concentration. It ismatched to fit data points extracted from
a previous mathematical study by Alarcon et al. (2004), in which a Tyson–Novak cell
cycle model is extended to incorporate the action of p27, a protein that is up-regulated
under hypoxia and delays cell cycle progression. Data-fitting yields the parameter
values a1 = 0.9209, a2 = 0.8200, a3 = −0.2389 (Hamis et al. 2020a). Thus the
fraction of an agent’s doubling time spent in the G1 state is G1DF(K̂ (x̄, t)) · �G1,
where G1DF(K̂ (x̄, t)) = 1 for normoxic cells.

2.5 Drug Distribution Across the Lattice

Drug distribution significantly varies between monolayer and spheroid settings. In the
regarded monolayer setup, the drug concentration can be regarded as homogeneous,
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whilst heterogeneous drug concentrationsmust be accounted forwhen simulating drug
distribution across the spheroid. Drug uptake and receptor dynamics is omitted in the
model, the drug response of an agent is instead influenced by the drug concentration
in the lattice point that it occupies.
Monolayer drug distribution: In the in vitro experiments performed by Checkley et al.
(2015), plated cell populations of roughly 1000 cells were treatedwithAZD6738 in the
solvent dimethyl sulphoxide (DMSO). In the mathematical model, we approximate
the drug distribution across the lattice to be instantaneous (occurring at treatment
time T0) and homogeneous. We furthermore assume that the drug has a half-life time
that exceeds the time course of the experiment, and note that there is no other drug
elimination from the in vitro system. In our mathematical model, this is equivalent
to there being no drug decay or elimination, hence the drug concentration C(x̄, t), in
location x̄ at time t is simply given by

C(x̄, t) =
{
0 everywhere if t < T0,

C everywhere if t ≥ T0,
(4)

where C denotes the applied drug concentration (in units of molarity).
Spheroid drug distribution: The spheroid scenarios simulated in this study are com-
pared to the in vivo experiments performed by Checkley et al. (2015), in which the
drug AZD6738, or vehicle in the control case, were administered via oral gavage once
per day to female Swiss nude mice. Therefore we include dynamic drug delivery and
drug decay in our spheroid simulations. In the mathematical spheroid model, we con-
sider the drug to diffuse through the spheroid from its surrounding, creating a drug
gradient within the spheroid. This drug dynamics is modelled using a partial differ-
ential equation (PDE), where the concentration of AZD6738 at location x̄ at time t is
denoted by C(x̄, t) such that

∂C(x̄, t)

∂t
= ∇ · (

DAZD(x̄, t)∇C(x̄, t)
) + p(x̄, t) − ηAZDC(x̄, t), (5)

where DAZD is the diffusion coefficient of the drug AZD6738, and the supply coef-
ficient p(x̄, t) is greater than zero at drug administration times only for lattice points
outside the tumour. Assuming first-order kinetics for drug elimination, the drug decay
constant ηAZD is matched to the reported half-life time of 6 hours for AZD6738 in
vivo (Vendetti et al. 2015). Note that the drug decay term here represents all drug
elimination from the system, both metabolic and that caused by excretion.

The diffusion rate of a drug is predominantly affected by the molecular size of the
drug. More specifically, the diffusion coefficient of a drug is inversely proportional to
the square root of themolecularweight of the drug, so that largemolecules diffusemore
slowly than do small molecules (Dale andRang 2007). Using this assumption, the drug
diffusion coefficient DAZD is set in relation to the oxygen diffusion coefficient D02 , as
done in previous mathematical studies (Powathil et al. 2012b). Thus the relationship
between the diffusion coefficients corresponds to the square of the inverse relationship
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between the molecular weights, such that

DAZD

D02
=

√
molecular weight(O2)√
molecular weight AZD)

=
√

31.998 g/mol

412.512 g/mol
≈ 0.27851, (6)

where the molecular weights are collected from the PubChem database (Kim et al.
2019). Details regarding pharmacokinetics are outside the scope of this study, bioavail-
ability is instead calibrated using extreme case drug scenarios, as described in
Supplementary Material S2.

2.6 Drug Responses

AZD6738 inhibits DNA repair from the D-S state to the S state in the cell cycle model,
as illustrated in Fig. 2, and, in our model, maximal drug effect corresponds to complete
repair inhibition. The drug effect is modelled using an agent-based adaptation of the
sigmoid Emax model (Holford 2017), a note on the choice of drug model is included
in SupplementaryMaterial S6. In the ABM-adapted sigmoidal Emaxmodel used here,
the drug effect on a cell in position x̄ at time t is given by

E(x̄, t) = Emax
C(x̄, t)γ

ECγ

50 + C(x̄, t)γ
, (7)

where the drug concentration in lattice point x̄ at time t is given by C(x̄, t). Emax

denotes the maximal drug effect, here corresponding to complete repair inhibition
(Emax = 1), EC50 denotes the drug concentration required to achieve half of the
maximal drug effect (0.5 · Emax ) and γ is the Hill-exponent (Holford 2017). EC50
and γ are fitted from the in vitro data, as outlined in SupplementaryMaterial S2.When
an agent is scheduled to progress from theD-S state in the cell cycle, it has a probability
�rep ∈ [0,1] to repair, where �rep is determined by the local drug concentration so
that

�rep(x̄, t) = 1 − E(x̄, t). (8)

Note that in the absence of drugs, the repair probability is 1. When a cell dies, it is
transformed into a membrane-enclosed ‘cell-corpse’ (Dale and Rang 2007). In an in
vivo setting, this cellular debris is digested by macrophages but in an in vitro setting
such ‘cell-corpses’ may linger on the lattice during the course of the experiment. Post
the lethal event (i.e. the D-S to S repair failure) a cell is declared ‘dead’ in the model
after a time TL→D has passed (where L stands for ‘lethal event’ and D stands for
‘death’). The parameter TL→D is calibrated by in vitro experiments. The differences
between modelling rules for monolayer and spheroid drug responses are described
below.
Monolayer drug responses: After failure to repair from the D-S state, a cell (i.e. an
agent) is considered to be dead after a time TL→D has passed. However, a dead cell is
never physically removed from the lattice.
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Table 1 In vitro-calibrated
parameters

Section Parameter Calibrated Value

2.2 μ, σ 24 h, 0.5 h

�D−S , θD−S 0.75, 0.03

2.6 EC50, γ 1 μM, 2

TL→D τi

μ and σ , respectively, denote themean value and the standard deviation
of the normal distribution from which an agent’s cell cycle length is
picked. �D−S and θD−S denote the probability that an agent enters
the D-S state, and the fraction of its cell length spent in the D-S state.
EC50 and γ denote the half maximal drug concentration and the Hill-
exponent in the drug response equation (5). TL→D denotes the time
it takes for an agent to die post-DNA damage repair failure, and τi
denotes the cell cycle length of agent i

Spheroid drug responses: In order to simulate in vivo-like removal of dead cancer
cells, an agent (i.e. a group of cells) is declared to be dead and is removed from the
lattice after an amount of time TL→D post the lethal event (failure to repair).

2.7 Parameters

The parameters used in the mathematical model are calibrated by monolayer in vitro
data, this calibration process is described in SupplementaryMaterial S2. In the context
of quantitative pharmacology, knowledge about a model’s robustness is crucial (Visser
et al. 2014), therefore we have provided results from the uncertainty and sensitivity
analysis in Supplementary Material S9. We performed three different uncertainty and
sensitivity analyses techniques, suitable for stochastic agent-based models, namely (i)
consistency analysis, (ii) robustness analysis and (iii) Latin hypercube analysis (Hamis
et al. 2020b; Alden et al. 2013). Detailed descriptions on how to perform and interpret
these techniques are available in an introductory uncertainty and sensitivity analyses
review (Hamis et al. 2020b). In accordance with the performed consistency analysis,
we run 100 simulations per in silico experiment in order to formulate results (in terms
of mean values and standard deviations) that mitigate uncertainty originating from
intrinsic model stochasticity.

2.8 Differences BetweenMonolayer and Spheroid Modelling Rules

Modelling rules are adjusted when moving between monolayer and spheroid simula-
tions. Differences between monolayer and spheroid rules are pictorially summarised
in Fig. 3. A note on the simplifying modelling assumptions that we have used in this
study is provided in Supplementary Material S5.

2.9 Implementation

Themathematical model is implemented in an in-house C++ (Stroustrup 1995) frame-
work, in which PDEs are solved using explicit finite difference methods. Simulation
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Fig. 3 A summary of the differences between the monolayer and spheroid modelling rules used in the
mathematical framework (Colour figure online)

cell-maps are visualised using ParaView (Utkarsh 2015) and data analysis, as well as
uncertainty and sensitivity analyses, are performed in MATLAB (MATLAB 2019).

Themathematical framework is first calibrated by in vitromonolayer data produced
by Checkley et al. (2015). Thereafter, spheroids subjected to dynamic drug delivery
and the removal of dead cells are simulated. Spheroid simulations are then compared
to in vivo treatment responses in human tumour xenografts. Two model outputs are
considered in the in silico simulations: the fraction of DNA damaged cells in the
system and the size of the cancer cell population or tumour spheroid over time. Note
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that, in themodel, a cell is classified as DNA-damaged if it is in the D-S state of the cell
cycle depicted in Fig. 2. In the experimental setup, DNA damaged cells are labelled
as γ -H2AX positive (Checkley et al. 2015).

3 Results

3.1 SimulatingMonolayer Experiments

In the in vitro experiments, populations of LoVo (human colon carcinoma) cells
were exposed to the ATR-inhibiting drug AZD6738 (Checkley et al. 2015). Figure
4 shows monolayer simulation results, specifically the percentage of DNA damaged
(γH2AX-positive) cells over time (left) and the total cell count over time (right). In
the simulations, AZD6738 drugs are given at 0 hours, when the cell population has
reached a size of approximately 1000 cells. Simulated response curves for six different
drug concentrations, including the zero-drug concentration control case, are shown.
Also shown in Fig. 4 are in vitro data and results from the mathematical compartment-
ODE model presented by Checkley et al. (2015) describing the same experimental
scenario. Using a minimal-parameter modelling approach, the mathematical frame-
work is calibrated to fit in vitro data points without introducing any variable model
parameters. This calibration process is described in Supplementary Material S2.

Our results demonstrate that, post-in vitro monolayer parameterisation, our math-
ematical framework is able to capture the qualitative nature of in vitro monolayer
LoVo cell population growth and drug (AZD6738) responses. The model qualitatively
reproduces the asymptotic fraction of DNA damaged cells in the system but fails to
match early data points (Fig. 4, left). The sensitivity analysis (SupplementaryMaterial
S9) demonstrates that the treatment timing (in relation to the overall cell cycle phase

Fig. 4 Simulated monolayer drug response curves are compared to in vitro data and mathematical results
from a previously published compartment-ODE model by Checkley et al. (2015). LoVo cells are exposed
to drug (AZD6738) at 0 hours. Left: The percentage of γH2AX-positive (DNA-damaged) cells in the
system over time. Right: Cell count over time. ABM simulated mean values and standard deviations for
100 in silico runs are shown with solid lines and shaded ribbons, respectively. In vitro data in form of mean
values and standard deviations are demonstrated with centre points and error bars (Checkley et al. 2015).
Compartment-ODE model results are represented by dotted lines (Colour figure online)
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Fig. 5 Cell cycle state-specific monolayer cell counts. Each subplot shows the number of cells in the G1,
S, D-S, G2/M state, as well as the total cell count, for a specific drug dose. Mean values and standard
deviations for 100 in silico runs are shown with solid lines and shaded ribbons, respectively (Colour figure
online)

composition of the cancer cell population) notably influences treatment responses in
terms of percentage of γH2AX-positive cells. The model parameter calibration pro-
cess selects for a strong cell cycle synchronisation amongst cancer cells, determined by
the model parameter σ (Table 1). This strong synchronisation gives rise to oscillatory
cell cycle state compositions, as can be seen in Fig. 5 where cell cycle-specific cell
counts are plotted over time in response to different drug doses. This strong synchroni-
sation also yields the step-wise growth curves seen in Fig. 4 (right). The experimental
error bars in this figure and the numerical cell count data available in Table S1 (Sup-
plementary Material S1) demonstrate that the doubling time of the cell population
drastically decreased towards the end of the in vitro experiment and, consequently,
our agent-based model was not able to replicate cell count data at 72 hours as the
modelling rules and parameters are not updated over time.

The ABM model and Checkley et al.’s (2015) compartment-ODE model are also
compared to each other and in vitro data in residual plots available in Supplementary
Material S7. In an effort to quantify how well the two mathematical models match
the data, the Root Mean Square Errors (RMSEs) are computed between N simulation
mean values and data mean values so that RMSE=

( ∑N
i=1(simi − datai )2/N

)1/2.
When comparing DNA damage simulation results to data, the ABM model yields an
RMSE of 11.6 percent units, whilst the compartment-ODE model yields an RMSE of
14.6 percent units. When comparing cell count simulation results to data, however,
the ABM RMSE is 644 cells whilst the compartment-ODE RMSE is 495 cells.
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Fig. 6 Simulated spheroid drug response curves are compared to in vivo xenograft data. In both the spheroid
simulation and the in vivo experiment, LoVo xenografts are exposed to drug (AZD6738) once daily for 14
days. Left: The percentage of γH2AX-positive (DNA-damaged) cells in the spheroid/xenograft over time.
Right: Spheroid/xenograft volume over time. Simulated (spheroid) mean values and standard deviations
for 100 in silico runs are shown with solid lines and shaded ribbons, respectively. In vivo data in form of
mean values and standard errors are demonstrated with centre points and error bars (Checkley et al. 2015)
(Colour figure online)

3.2 Simulating Spheroid Experiments

Post-in vitro monolayer calibration, the mathematical framework is used to simulate
spheroid experiments, that are compared to the in vivo experiments performed by
Checkley et al. (2015) in which LoVo xenografts, that are injected in mice flanks, are
treated with AZD6738 once daily for 14 days. The results in Fig. 6 show AZD6738
drug responses in terms of the percentage of DNA damaged (γH2AX-positive) cells
(left) and spheroid/tumour volume (right) over time. Simulated response curves to
three different drug doses (0, 25 and 50 mg/kg) and in vivo data are provided in Fig. 6.

Figure 6 (right) demonstrates that our simulated spheroid results qualitatively agree
with the in vivo results reported by Checkley et al. (2015) for approximately 12 days
post-tumour injection for control case tumours and for approximately 8 days post-
tumour injection for tumours subjected to drugs. This can be explained by the fact that
the behaviour of the agents in our current model does not change over time, when in
fact tumours are highly adaptable and responsive to external pressures. It follows that
details pertaining to tumour growth and drug sensitivity may vary over time, and in the
future work, the agent-based model used in this study can be updated to incorporate
variable modelling rules and parameters. Residual plots, comparing ABM simulation
results to in vivo data (Checkley et al. 2015) are available in Supplementary Material
S7 for DNA damage and spheroid/tumour volume evaluations. The RMSE for DNA
results is 3.57 percent units. For the spheroid/tumour volume simulation results, the
RMSE is 0.038 cm3 up to and including 8 days, but 0.16 cm3 for the full 14-day
simulations.

4 Discussion

Simulation results obtained in this study were compared to in vitro and in vivo data
and, furthermore, to previous mathematical modelling results produced by Check-
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ley et al. (2015). In their study, Checkley et al. (2015) modelled tumour responses
to AZD6738 using coupled ordinary differential equations, where a pharmacoki-
netic/pharmacodynamic (PK/PD) model of tumour growth was integrated with a
mechanistic cell cycle model. Their model is predictive of in vivo xenograft stud-
ies and is being used to quantitatively predict dose and scheduling responses in a
clinical Phase I trial design (Checkley et al. 2015). Our modelling results qualitatively
agree with those produced by Checkley et al. (2015), although two different modelling
approaches have been taken: Checkley et al. (2015) regard the tumour as one entity
with different compartments whilst we here use a bottom-up modelling approach and
regard the tumour as consisting of multiple, distinct agents. Since AZD6738 specif-
ically targets cells that are in the damaged S cell cycle state, we included cell cycle
phase resolution into the ABM. Although this modelling approach makes parameter
calibration more difficult (compared to more phenomenological models in which the
drug acts on all cells), it provides an opportunity to study details about the biological
system in silico that are not easily observable in vitro or in vivo. Cell cycle phase
details will furthermore be of importance in the future work in which the model will
be extended to include combination treatments, as many anti-cancer treatments are
cell cycle phase specific (Mills et al. 2018).

Moving drug-response investigations from in vitro to in vivo settings is a key step
involved in the process of moving a drug from bench-to-bedside. However, in vivo
data are often sparse, as gathering in vivo data is associated with practical, finan-
cial and ethical constraints. Plentiful and adaptable in silico data are, on the other
hand, easy to produce, and can thus be used as epistemic complements to sparse in
vivo data. Well-formulated in silico tools can be extended to investigate various dose-
schedule scenarios in order to guide in vitro and in vivo experiments. Such in silico
experiments may provide a testbed for simulating various mono and combination
therapies. In this study we aimed to capture treatment responses in tumour spheroids
(with dynamic drug delivery and the removal of dead cells) using monolayer data
and modelling rules that are based on chosen ‘fundamental’ principles that describe
how cancer cells in a system behave. Although our spheroid simulations were able to
qualitatively mimic the dynamics of in vivo xenografts at early time-points (up to 8
days) post-tumour injection, the model did not match data at later time points. This is
to be expected, as the effects of certain biological processes that are present in vivo,
but not in vitro (e.g. angiogenesis), do not impact the tumour volume instantly after
tumour injection. Thus the spheroidmodel can, in the futurework, be extended tomore
accurately simulate in vivo scenarios. For example, stromal tumours cells, angiogen-
esis and metastasis can be included in the model. Moreover, further heterogeneity
amongst cancer cells can be incorporated, pertaining to, e.g. drug resistance-related
variables. In order to account for mechanical aspects of tumour growth, the approxi-
mated cancer cell population/tumour growth model, which allows for daughter agents
being placed on non-adjacent lattice point of the parental agent, can be updated to a
more realistic proliferation model. Pharmacokinetic details, drug uptake and receptor
dynamics can be included in order to make the drug model more detailed. In order to
realistically simulate in vivo tumours, effects of the host’s immune system can further-
more be incorporated in the model. The observation that anti-cancer drug responses
vary between in vitro monolayer, in vitro spheroid and in vivo models has also been
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addressed in amathematical study byWallace et al., who usedODEmodels to simulate
neuroblastoma treated with 15-Deoxy-PGJ2 in monolayers and spheroids (Wallace
et al. 2016). Similar to our modelling approach (Fig. 1), the authors used in vitro
data to calibrate a monolayer model, and thereafter extended the model to incorporate
spheroid features in order to simulate spheroid dynamics.

The ABM considered in this study is an extension of a mathematical model that has
previously beenused to study tumour growth and treatment responses to chemotherapy,
radiotherapy, hyperthermia and hypoxia-activated prodrugs (Powathil et al. 2012b;
Hamis et al. 2020a; Powathil et al. 2015;Hamis et al. 2018, 2019;Bruningk et al. 2018).
In recent years, several ABMs have been developed for the purpose of describing
various aspects of cancer dynamics (Metzcar et al. 2019), and it should be noted that
themodelling approach proposed in Fig. 1 is not conceptually limited to usagewith the
ABMdescribed in this study. The choice of ABM should be influenced by the research
question at hand, the desired level of model details and the available data. Examples
of data-driven ABMs are available in a recent review article by Chamseddine and
Rejniak (2020) discussing hybrid models, and hybrid modelling techniques, used in
the field of mathematical oncology today.

Data-driven modelling, exploitation of existing data and proof-of-concept studies
are important steps involved in current and future procedure for enablingmathematical
modelling in systems medicine, as argued in a report by Wolkenhauer et al. (2014). A
pipeline for predicting therapy outcomes using data-driven mathematical modelling
is proposed by Brady and Enderling (2019) in a recent publication. Despite the fact
that mathematical modelling is becoming increasingly popular in the pharmaceutical
industry, there are not that manyABMs present in the pharmaceutical scene (Cosgrove
et al. 2015). We argue that this is a missed opportunity in the context of oncology,
as ABMs naturally capture the heterogeneous nature of tumours, which is known to
complicate treatments. As multiscale ABMs organically enable the integration of data
across various scales in time and space, it follows that they are useful to the interdis-
ciplinary team that wishes to combine data and knowledge from its team members.
Following interdisciplinary collaborations between clinicians, biologists and math-
ematicians, mathematical modelling may be used to enable in silico informed drug
development.
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