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ABSTRACT

The accurate computational prediction of transcrip-
tion start sites (TSS) in vertebrate genomes is a dif-
ficult problem. The physicochemical properties of
DNA can be computed in various ways and a many
combinations of DNA features have been tested
in the past for use as predictors of transcription.
We looked in detail at melting temperature, which
measures the temperature, at which two strands
of DNA separate, considering the cooperative
nature of this process. We find that peaks in
melting temperature correspond closely to experi-
mentally determined transcription start sites in
human and mouse chromosomes. Using melting
temperature alone, and with simple thresholding,
we can predict TSS with accuracy that is competi-
tive with the most accurate state-of-the-art TSS pre-
diction methods. Accuracy is measured using both
experimentally and manually determined TSS. The
method works especially well with CpG island con-
taining promoters, but also works when CpG islands
are absent. This result is clear evidence of the
important role of the physical properties of DNA in
the process of transcription. It also points to the
importance for TSS prediction methods to include
melting temperature as prior information.

INTRODUCTION

Despite improvements in accuracy in recent years, the
prediction of vertebrate transcription start sites (TSS)
remains an open problem in computational biology.
Experimentally determined CAGE tags (1) have shown
that many start sites are not predicted with these
methods. Current methods use a mixture of motif,
compositional and structural features in conjunction
with various statistical and machine learning techniques.
There is growing evidence that structural parameters alone
may be sufficient, in some cases, for TSS prediction (2,3).

Specifically, the use of both base-stacking energies (3) and
DNA flexibility calculations (2) for successful predictions
underlines the importance of helix stability in the
promoter region for successful transcription. In this
paper we look at the use of one such stability measure,
DNA melting temperature, for TSS prediction.

In order for transcription and replication to take place,
the two strands of the DNA must be separated. This
process is known as melting, because the double-helix
unwinds with increasing temperature. This transition
from single to double-stranded DNA is a highly cooper-
ative process; consecutive base pairs behave like melting
domains, where all base pairs have the same melting tem-
perature. DNA melting profiles are normally described
using the temperature (Tm or Tm50) for each base pair,
at which there is a 50% chance of melting occurring i.e. a
50% chance of the nucleotide being unpaired. Melting
profiles are loosely correlated with GC-content (4), but
this correlation breaks down completely at resolutions
smaller than about 500 base pairs (5).

The Poland-Scheraga model enables calculation of
melting profiles computationally with quadratic time com-
plexity (6). Fixman and Freire introduced a linear-time
approximation of this algorithm (7), which enabled its
use on larger sequences. FORTRAN implementations of
this algorithm are available (8,9) an optimised version, of
which enabled for the first time the calculation of the
complete melting profile of the human genome (5).

Melting profiles have been used several times to predict
sequence features. Yeramian pioneered this work by pre-
dicting genes in several genomes using his quadratically
scaling SIMEX algorithm (4,10). In Plasmodium
falciparum, which is unusually AT-rich, he found an
almost perfect correlation between coding regions and
stable melting domains (11). The results for other
organisms were less clear. Other, more complex models
of DNA denaturation exist, such as Stress-Induced
Duplex Destabilization (SIDD) (12), which takes into
account torsional stress of the DNA double-helix.
Stress-Induced Duplex Destabilizations (SIDDs) have
been computed for the Escherichia coli and Bacillus
subtilis genomes to predict promoters using sliding
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window techniques (13). Promoters of stress response
genes were particularly well predicted by this technique
(14), suggesting that conformational changes in the helix
are involved in the regulation of these genes. Although
these analyses were restricted to prokaryotes, it has been
shown that eukaryotic promoters share certain structural
DNA features with their prokaryotic counterparts e.g.
lesser bendability and lower stability (15). A sophisticated
recent analysis (16) demonstrated that the ability to form
a transcription bubble is sufficient for transcription to
occur, even in the absence of transcription factors.

In this article, we show that the output of the
linear-time DNA melting algorithm of Liu et al. (5) has
applications in promoter prediction in mammalian
genomes. Peaks in the melting profile correspond to TSS
of both CpG island and non-CpG island associated
promoters, although in the case of non-CpG promoters,
the peaks are less distinct. Predictions derived from
these peaks achieve comparable accuracy to the current
state-of-the-art in promoter prediction. We name our
method Profisi—PROmoter Finding In SIlico (pro-
nounced ‘prophesy’). Our findings add to the growing
body of evidence that the topology and the physical
features of the DNA itself is an important factor in the
regulation of transcription.

MATERIALS AND METHODS

Methods

Our method consists of analysing profiles of melting tem-
perature, which have been computed along chromosomes,
and using peaks as potential TSS. Melting profiles of the
human ENCODE (17) regions have already been
computed and were downloaded from the human
genomic melting map website (5). The melting profile of
mouse chr19 was calculated using FORTRAN code
obtained from the same site. Portions of these profiles
(per-nucleotide plots of Tm) were uploaded to the UCSC
Genome Browser (18) as a custom track, and the
promoters of individual genes were examined.

To evaluate the performance of our method we
benchmarked it against a number of state-of-the-art
methods, described below.

High quality, experimentally determined transcription
start site data are available for both human and mouse.
We chose mouse chr19 as a representative chromosome
for the mouse genome, as it has an average gene density
and was small enough to calculate the full melting map on
a standard desktop machine. Although there is extensive
coding sequence similarity between these two species,
there are major differences in transcription regulation.
Crucially, mice have lost many CpG islands still present
in humans (19), leaving only 40% of mouse genes having
associated CpG islands, as opposed to 70% of human
genes.

Average melting profiles for CpG-associated promoters,
non-CpG associated promoters, and the ENCODE
regions as a whole were calculated. Locations of TSS
were taken from RIKEN CAGE (1) and CpG islands
from a UCSC Genome Browser track (20), determined

using standard criteria (21). Rare transcripts were
filtered out, with only TSS having two or more CAGE
tags considered.
The average Tm at the TSS for human ENCODE

promoters was 82.7�C for CpG promoters and 75.6�C
for non-CpG promoters. This is higher than 99.57 and
90.75%, respectively, of all nucleotides in general.
Because of these high values, we explored prediction by
thresholding, at various values between 79 and 82�C.
In Figure 1 we have shown the four different thresholds
we used for the human analysis. The great advantages
of thresholding are speed and simplicity compared to
machine learning or sliding window approaches. In the
results section we give the true and false positive rates
for all of these thresholds. Each continuous area above a
threshold is counted as a prediction, with the exact
location determined by the highest value within that
area. If there are multiple contiguous values (common
due to the relatively flat melting domains), the middle
value is used. Multiple predictions, less than 1000 base
pairs apart, were merged.
Supplementary Data, including a Java executable,

instructions to compile the FORTRAN code, and
downloadable predictions, is available at http://mlg.ucd
.ie/profisi

Evaluation rules

The EGASP promoter prediction review (22) examined
promoter predictions in the �30million base pairs of the
ENCODE regions of the human genome. The reference
set was a manual gene annotation from the HAVANA
group (23). Predictions within 1000 base pairs of the
start of the 50 UTR were counted as true positives. Only
predictions within transcribed areas were counted as false
positives. Subsequent promoter prediction programs
(2,24) have also followed these rules.
CAGE (Cap Analysis of Gene Expression) (25) uses cap

trapping to isolate the 50-ends of full-length transcripts,
and hence accurately determine both transcript levels
and exact TSS locations. The 50-end of each 20 bp
CAGE tag is normally considered to represent a single
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Figure 1. Histogram of melting temperatures in the human ENCODE
regions (�30million base pairs) showing the four cut-offs (79–81.5�)
used in our human TSS evaluation.
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transcription event. Isolated CAGE tags are scattered
throughout the genome, but are usually ignored for pre-
diction validation purposes (3,26). It is thought that these
isolated tags are often due to post-transcriptional modifi-
cation and recapping, rather than transcription (27).
Therefore, we only count tags when more than one tag
is present at an exact location. For the CAGE data, we
used a stricter tolerance of 100 base pairs.
pppBenchmark (28) is a promoter prediction evaluation

tool. It is a human promoter prediction evaluation tool,
evaluating predictions versus both gene and CAGE
references sets. It ranks predictions using a variety of
scoring systems. The most important scores given by
pppBenchmark are the 2A score—a distance-based vali-
dation protocol using CAGE data, and the PPP score, an
overall measure of predictive performance.

Alternative methods

There are many methods for TSS prediction. Most of
these have been extensively compared in (2) and (22).
We evaluated our method (Profisi), in detail, versus a
selection of the best performing methods from these
reviews (six in total) as well as versus thresholded GC
content. We ran these methods with as wide a range of
thresholds as the software would allow in order to
produce ROC-like curves so overall performance could
be better visualised. Where region predictions were
given, these were converted to appropriate point
predictions. In addition, the pppBenchmark evaluation
allowed us to compare performance versus a total of 17
methods.
EP3 (3) is a promoter prediction program based on

dinucleotide base-stacking energy. There is some correla-
tion between base-stacking energy and melting tempera-
ture, but unlike our approach, EP3 does not take into
account the cooperative nature of the denaturation
process. EP3 is available as both a Java Web Start appli-
cation and a standalone download. It can process an
entire chromosome in a few seconds. EP3 supplies range
predictions, but following consultation with the authors it
was decided to evaluate using point predictions, with
the point taken as the middle of the predicted region.
The thresholds we used for EP3 were 0 (the default), 0.1
and 0.2.
Eponine (29) relies on a mixture of Gaussian

distributions of position weight matrices which, together,
account for common promoter features such as CpG
enrichment and TATA boxes. It uses a relevance vector
machine (RVM) for classification (30). Compared to the
more common support vector machine (SVM), an RVM
has the advantage of not requiring parameters (such
as error penalty) that often require computationally inten-
sive cross-validation to determine. An RVM, however,
is not guaranteed to find a globally optimum solution.
The thresholds we used for Eponine were 0.999 (the
default), 0.9993 and 0.9996.
N-SCAN (31) attempts to model the entire structure

of a gene using hidden Markov models (HMMs).
It is thus a descendant of GENSCAN (32) and similar
methods. The start of the 50 UTR was considered the

TSS location. Whole-gene prediction is known to be
beneficial in promoter prediction in cutting down the
number of false positives in non-coding areas (22).
N-SCAN depends on homology between the species
being examined and an informant species. For human
gene prediction, N-SCAN uses mouse as the informant
species, and for mouse it uses human. N-SCAN predic-
tions for human and mouse with scores were downloaded
from http://mblab.wustl.edu/predictions/.

FirstEF (First Exon Finder) (33) predicts promoters
implicitly by predicting the whole first exon of a gene. It
predicts 50 exons using a decision tree that incorporates
both structural and compositional features. For promoter
recognition, it uses a mix of k-mer scores, GC content,
and CpG content. Predicted promoters are given as a
region with 500 bp upstream and 70 bp downstream.
It distinguishes between CpG-associated and non-CpG
promoters, using different models for each. The thresholds
we used for FirstEF were 0.9, 0.99 and 1.0 for human, and
0.99, 0.999, 0.9996, 0.999 and 1.0 for mouse.

ProSOM (24) uses a self-organising map (SOM) trained
with around 90 000 sequences, consisting of promoters,
transcripts and intergenic sequences. As with EP3, it is
based on a promoter having a characteristic base-
stacking energy profile. Also as with EP3, we converted
the range prediction to a point prediction following con-
sultation with the authors. The ProSOM web application
has SOMs trained for mouse and human. Our thresholds
for ProSOM were the default, 0.8 and 0.9.

ARTS (34) is a method, which relies on an SVM using a
custom kernel incorporating both sequence and structural
information. The thresholds we used for ARTS were 1.0,
1.1, 1.2, 1.3 and 1.4 for human, and 1.4, 1.5, 1.6, 1.7 and
1.8 for mouse.

The above programs (plus 11 other methods) have
previously been evaluated by pppBenchmark (28).

As GC-content is superficially correlated with melting
temperature, we thresholded and evaluated GC-content,
using a 100 base-pair window, in the same fashion as the
melting profiles.

RESULTS

Figure 2 shows the melting profile of the human RAD50
promoter. RAD50 is a gene involved in the repair of
double stranded DNA breaks. As is typical of CpG
island promoters, there are multiple transcription start
sites over a range of several hundred base pairs. There is
also some evidence of a low level of antisense transcrip-
tion. This is common in active promoters (35). The
majority of the TSS fall within a flat peak or plateau in
the melting profile, corresponding to an extremely stable
melting domain. We manually examined the promoter
regions of several other human genes (e.g. CFTR,
DECR2, PIK4CB, SH3GLB2 and TES) and all showed
similar TSS peaks, whether CpG-associated or not.

Figure 3 shows average melting profiles for both CpG
and non-CpG associated promoters versus the average
melting temperature for the ENCODE regions as a
whole. We examined 2000 base pairs either side of the
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TSS, using CAGE tags as the TSS reference. TSS with
more tags (higher levels of transcription) are weighted
more heavily i.e. each tag was counted separately. Both
types show a clear peak, which is centred on the TSS.
The profiles are asymmetrical; the downstream regions
are more stable than the upstream regions. The central

regions of CpG-associated promoters have much higher
melting temperatures than those of non-CpG promoters,
but both are in turn more stable than the surrounding
DNA. The melting average for the ENCODE regions
as a whole was 70.01�. The median 90% of base pairs
had melting temperatures of between 63.8� and 77.1�.

69

71

73

75

77

79

81

83

–2000 –1500 –1000 –500 0 500 1000 1500 2000

distance from TSS

CpG promoters

non-CpG promoters

ENCODE average

Figure 3. Average melting profiles of CpG and non-CpG associated promoters in human, relative to the transcription start site. As reference set, we
used RIKEN CAGE (2 tags or greater) for the human ENCODE regions. Nine thousand five hundred and sixty seven profiles were averaged for
CpG-associated promoters. Four thousand three hundred and sixty seven profiles were averaged for non-CpG-associated promoters. The average
melting temperature for the ENCODE regions as a whole is 70�C, indicated by the dotted line.

Figure 2. Melting profile of �4000 base pairs around the human RAD50 promoter, viewed using the UCSC genome browser. RAD50 is
a homologue of a yeast gene involved in double-stranded break repair. Like many human genes, RAD50 has a CpG island overlapping the
first exon. The annotation (RefSeq, HAVANA, CAGE) shows multiple transcription start sites, clustered around the area with the highest
melting temperature. The melting profile takes the form of multiple flat domains, due to cooperativity.
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Equivalent plots of GC-content for both types of
promoter were correlated with the equivalent melting tem-
perature plots, but noisier, with less distinct peaks.
The evaluation of Profisi versus other promoter predic-

tion methods is covered in Figures 4 and 5. These plot
true positives versus false positives in human (ENCODE
regions, HAVANA annotation) and mouse (chr19, CAGE
annotation). True positives are given as a percentage,
while false positives are given as a quantity, as any
number of false positives is possible. Broadly speaking,
the better predictions are closer to the top left corner of
the graph. It is clear, that, despite its great simplicity,
Profisi is competitive with existing, state-of-the-art predic-
tion methods. In fact, overall, it produces consistently
high quality results in a wide variety of situations.
Figure 4 shows the results on the HAVANA reference

set for the human ENCODE regions. The best performer
here was N-SCAN. This is consistent with the results
of the original program performance review (22). This is
unsurprising, as HAVANA is a gene, rather than start site
annotation, and N-SCAN is a gene prediction program.
N-SCAN performance was noticeably poorer, however,
on the mouse CAGE dataset (Figure 5). This may be
due to a reliance on prediction of downstream exons.
The improved performance of ProSOM on both
evaluations, versus EP3 (which also uses base stacking
energies) points to the improvements possible with use
of appropriate machine learning techniques. Profisi was

arguably the best performer on the CAGE evaluation in
mouse, and only comprehensively beaten by N-SCAN on
the HAVANA evaluation in human. Profisi clearly
outperforms the GC content method, despite using the
same thresholding and clustering algorithm, showing
that melting temperature is not merely a function of GC
content. Older methods such as FirstEF and Eponine
remained very competitive. On the pppBenchmark whole
human genome evaluation, Profisi scored 0.41 on the 2A
protocol (joint 4th) and 0.25 on the PPP score (5th) out of
18 total methods. The best performing method was
ARTS, with a 2A score of 0.47, and a PPP score of 0.34.

In Figure 6 we examine the distance of each TSS that is
predicted at 81�C to the nearest real TSS, as determined
by CAGE tags, in mouse. The results are striking. There
were 358 predictions. Forty-six percent of them are within
10 base pairs of the nearest CAGE tag. This makes
melting temperature a highly accurate measure for
locating the precise location of the TSS. The equivalent
figure for human is 31%.

To test the uniqueness of our predictions, and to see
whether we were merely detecting CpG islands, we
measured the overlap between Profisi, Eponine, and
a list of CpG islands for mouse chr19. As seen in
Figure 7, there were a significant number of predictions
that did not overlap between the three, suggesting both
that Profisi and Eponine are able to find also non-CpG
promoters, and that there is scope for improvement of
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performance by integrating predictions from multiple
programs.

DISCUSSION

The results of our three evaluations show that Profisi is
competitive with the leading promoter prediction
methods. On one test set, it was the best predictor and
overall, it gave consistently high results. Such testing is
complex to set up and the results depend on parameter
settings, sizes of training sets and on the benchmarks being
used. Nevertheless, it is clear that the method works. What
is surprising is that it is so simple to set up and use. Once
the melting temperature maps have been calculated, the
method is almost instant to use to make predictions. These
maps have already been calculated for the entire human
genome and are freely available (5). Our Tm calculations

for Mouse chromosome 19 (61million base pairs) took
�5–10min to calculate on a standard desktop PC.
Other groups have looked closely at the potential

importance of the physical properties of DNA in
explaining promoter action (16) and in promoter predic-
tion (24). Abeel et al. (3) examined DNA denaturation
profiles among other properties in the EP3 method. One
difference between Tm and other measures of DNA stabil-
ity is the notion of ‘co-operativity’. The melting tempera-
ture is not just a simple additive or ‘sliding window’ based
function of the base composition or their stacking energy.
It takes into account the cooperative physics of the
melting process, where bases form a single domain with
well defined boundaries, which unzip in one go. This
is ignored by many programs for melting temperature
prediction e.g. EMBOSS’ dan [as explained in (5)].
The possible uses of Tm in exon prediction have been
examined in the past, (11) but not using a full benchmark
test set like we have done, and not focussing specifically on
TSS prediction, which is the equivalent of predicting the
start of the first exon.
Why should TSS be more stable than non TSS? Naively,

one might expect TSS and core promoters to be less
stable so as to easily allow a transcription bubble to
form. In fact, transcription can proceed automatically
from unstable DNA regions, where such bubbles form
spontaneously (16). However, the stability of mammalian
promoter DNA has been highlighted in the past (3,29). In
contrast, promoter regions of genomes from many other
taxa including bacteria, plants and fungi are less stable
than the regions surrounding them (15). Taking into
account the cooperative behaviour of the melting
process, one can see that the TSS forms a separate
melting domain. By not melting as a single domain as
soon as a transcription bubble forms, it might allow for
sophisticated control during transcription initiation.
The melting algorithm that our method relies on does

not take into account the methylation state of individual
cell lines (5). Methylated DNA is known to have a lower
Tm than unmethylated DNA (36), and is associated with
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repression of transcription. Hence, our Tm values for
methylated DNA are too high, and may contribute to
the rate of false positives. Unfortunately, Liu et al.’s
source of stability parameters (37) does not include data
for methylated cytosine. Whole genome human DNA
methylation maps are available (38), but it is unclear
how to incorporate data from multiple cell lines into a
global prediction approach.
During the course of this work, we also investigated the

use of Tm to predict TSS in other eukaryotic species.
Our method requires gap-free chromosome assemblies
to calculate accurate melting profiles, and obviously high
quality test sets are needed for evaluation. These are not
readily available for vertebrates other than human and
mouse. Preliminary examination of partial profiles from
chicken look like TSS prediction using Profisi may be
possible in that species but it is too early to tell precisely.
With zebrafish, the profiles look very flat with few peaks.
This corresponds to a relative lack of heterogeneity of
G+C content across the zebrafish genome (39). In
Saccharomyces cerevisiae, Drosophila melanogaster and
Caenorhabditis elegans, the correlation between Tm and
TSS location is not clear.
In the long run, we do not expect to see Tm thresholds

alone being used to predict TSS. It makes most sense to
use a combination of sources of information and inference
methods, including Tm. It also makes sense to test the
method carefully on different kinds of promoters. In this
paper, we can see a difference in performance between
CpG island and non-CpG island promoters. The method
works in the absence of CpG islands but the thresholds are
less discriminating. Nonetheless, the results are so clear-
cut that it makes sense to use Tm profiles as prior infor-
mation. In Figure 2, we can also see an asymmetry in the
averaged profiles across all genes. The downstream
regions of TSS seem more stable than the upstream
regions. This might also be used to help predict direction
of transcription.

ACKNOWLEDGEMENTS

The authors wish to thank Paul McGettigan, Derek
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