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ABSTRACT
Antibiotic and herbicide resistance genes are the most common marker genes for
plant transformation to improve crop yield and food quality. However, there is public
concern about the use of resistance marker genes in food crops due to the risk of
potential gene flow from transgenic plants to compatible weedy relatives, leading to
the possible development of ‘‘superweeds’’ and antibiotic resistance. Several selectable
marker genes such as aph, nptII, aaC3, aadA, pat, bar, epsp and gat, which have been
synthesized to generate transgenic plants by genetic transformation, have shown
some limitations. These marker genes, which confer antibiotic or herbicide resistance
and are introduced into crops along with economically valuable genes, have three
main problems: selective agents have negative effects on plant cell proliferation and
differentiation, uncertainty about the environmental effects of many selectable marker
genes, and difficulty in performing recurrent transformations with the same selectable
marker to pyramid desired genes. Recently, a simple, novel, and affordable method
was presented for plant cells to convert non-metabolizable phosphite (Phi) to an
important phosphate (Pi) for developing cells by gene expression encoding a phosphite
oxidoreductase (PTXD) enzyme. The ptxD gene, in combination with a selection
medium containing Phi as the sole phosphorus (P) source, can serve as an effective
and efficient system for selecting transformed cells. The selection system adds nutrients
to transgenic plants without potential risks to the environment. The ptxD/Phi system
has been shown to be a promising transgenic selection system with several advantages
in cost and safety compared to other antibiotic-based selection systems. In this review,
we have summarized the development of selection markers for genetic transformation
and the potential use of the ptxD/Phi scheme as an alternative selection marker system
to minimize the future use of antibiotic and herbicide marker genes.
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INTRODUCTION
In genetic transformation, cells undergo a transformation treatment to introduce a
foreign (exogenous) gene into the host genome. Transformation events are extremely
low, so it is important to use efficient selectable marker genes along with the foreign
gene of interest, which encode proteins that confer selection gain to transformed cells
(Rosellini, 2012; Yang, Peng & Pan, 2019). A selectable marker gene has the properties for
maximum selection of independent transformation events, minimum non-transformers
or outliers, and easy detection of the marker gene and wide application in the plant
species (Penna & Ganapathi, 2010). Usually, the selectable marker gene is positioned
in the DNA vector construct along with the desired gene. In plant transformation,
dominant selectable marker genes are developed based on genes that confer resistance
to antibiotics or herbicides or have the ability to digest non-metabolizable substances (Miki
& McHugh, 2004; Ravanfar et al., 2017). Resistance genes for antibiotics (hygromycin and
kanamycin) and herbicides (bialaphos, glyphosate and the bar) have been used extensively
as selection tools (Pandeya et al., 2018). However, many plant species are naturally resistant
to antibiotics; for example, orchids are naturally resistant to antibiotics (Setiari et al., 2018).
The sensitivity of various plant species to herbicides such as bialaphos and glyphosate cannot
be overstated. Many commercially available genetically modified (GM) crops are bialaphos
resistant (LibertyLink R©), glyphosate resistant (Roundup Ready R©), or have bar genes
that confer resistance to the herbicide Basta (Breyer, Kopertekh & Reheul, 2014; Brown &
Wernegreen, 2019). Herbicide-resistant genes show higher efficacy in performing plant
transformation, but their use is limited by intellectual property restrictions and public
perception (Nahampun et al., 2016). According to Ramessar et al. (2007) and (Molina-
Márquez et al., 2019), there is a possibility of horizontal gene transfer associated with
herbicide resistance traits in plant transformation processes, which draws the attention
of researchers to search for an alternative selectable marker gene system. Public concern
about herbicide-resistant markers, i.e., bar genes, is based on pollen flows from transgenic
crops to compatible wild relatives, leading to the emergence of superweeds (Lal et al., 2020;
Miki & McHugh, 2004; Pontiroli et al., 2007).

The use of antibiotic-resistant marker genes has been rejected by European Union (EU)
and some other countries in both Asia and Africa because of the potential risk of horizontal
gene transfer from plants to soil and gut microbes, which would lead to a large unintended
spread of antibiotic-resistant genes (Pandeya et al., 2017). As a result, only a few thousand
hectares (∼0.03% of world production) of genetically modified crops are grown in the
EU (Brandt, 2003), likely reflecting European resistance to the technology. In contrast,
food derived from GM crops is ubiquitous in the United States of America. In contrast,
most animal feed used in Europe comes from imported plant material containing GM
products. Similarly, GM cotton is used extensively as a raw material for the manufacture
of clothing and related products (Key, Ma & Drake, 2008). Penna, Sági & Swennen (2002)
pointed out that a major disadvantage of antibiotic resistant genes is that the selection
scheme is based on the principle of negative selection, i.e., all non-transformed cells, which
are muchmore numerous than the transformed cells, are successfully killed by the selection
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agent. Consequently, the majority of transformed cells cannot regenerate because dying or
dead untransformed cells release growth inhibitors and lethal substances that interfere with
the uptake of important elements from the growth medium by transformed cells. It has
also been observed that some selection systems are more efficient than others for certain
plant species and regeneration systems, simply because plants are sensitive to selection
agents that are largely variable between plant species and tissues due to selection pressure
(López-Arredondo & Herrera-Estrella, 2013; Wang et al., 2020). Therefore, an ideal marker
system is needed that allows resistance to a lethal substance and, at the same time, can be
converted into a substance essential for optimal growth and differentiation of cells in many
plant species. The selection system allows to minimize or eliminate the risk of negative
selection, as well as to recover false-positive clones that have escaped the selection system.
In this scenario, it is important to design innovative and universally acceptable marker
gene systems with higher transformation frequency. This can be achieved by stacking
desirable genes to minimize both negative selection and the number of false-positive clones
(Eckerstorfer et al., 2019; Pandeya et al., 2017).

The ptxD gene from Pseudomonas stutzeriWM88 encodes a NAD-dependent phosphite
oxidoreductase (PTXD) (Costas, White & Metcalf, 2001). This enzyme is capable of
catalyzing the oxidation of phosphite (Phi) to phosphate (Pi) and, in combination with
Phi selection, offers the best option of a selection scheme for producing transgenic plants
without the use of antibiotic- or herbicide-resistant genes, thus providing an innovative
non-herbicidal mechanism for weed control (Changko et al., 2020; López-Arredondo &
Herrera-Estrella, 2012; López-Arredondo & Herrera-Estrella, 2013). All plant cells require
phosphorus (P) for reproduction, and cells harboring the ptxD are able to convert a
nonmetabolizable P source (Phi) into a form of the compound (Pi) that they can readily
incorporate into their metabolism. Selection of these cells should be easy over non-
transformed cells that are unable to assimilate Phi as a P source. This unique property
suggests the ptxD/Phi system as a possible general selection scheme to obtain efficient
transgenic plants (González-Morales et al., 2020; López-Arredondo & Herrera-Estrella,
2013). In recent years, the ptxD/Phi system has been described as an effective selection
marker in some important model organisms and crops such as Arabidopsis and tobacco
(López-Arredondo & Herrera-Estrella, 2013), yeast (Kanda et al., 2014), sorghum (Che et
al., 2018), cotton (Pandeya et al., 2017), rice (Manna et al., 2016), and maize Nahampun
et al., 2016). It has been argued that this selection system is more beneficial than existing
antibiotic and herbicide selection markers due to cost-effectiveness, efficiency and safety.
This review summarizes the need for selectable marker genes for genetic transformation
and the potential use of ptxD/Phi as an alternative selectable system to reduce the use of
antibiotic and herbicide selectable marker genes in the future.

SURVEY METHODOLOGY
We focused on developments in the link between biosafety concerns and genetically
modified crops. We conducted a literature search using PubMed (https://www.
ncbi.nlm.nih.gov/PubMed), Google scholar (scholar.google.cn), and Science web
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(http://www.webofknowledge.com). Keywords such as genetic engineering, gene
transformation, ptxD/Phi selection system, selectable marker genes and non-selectable
marker genes, food safety and biosafety concerns, effects of phosphite and phosphate
on weeds and plant growth were used while related articles were extracted to categorize
and summarize the potential effects of genetically modified crops on living organisms
and their environment. Based on the checklist and database of PRISMA guidelines for
systematic reviews (Liberati et al., 2009), among others, three hundred literature sources
were screened as appropriate data sources after an initial data search, identification and
removal of duplicates. Included in this review study were publications comprising 171
reviews, 85 research articles and 44 book titles and conference proceedings. The search
was further restricted to references that included molecular breeding, molecular genetics,
biotechnology, plant science, and agronomy. The main focus was on concerns about the
biosafety of genetically modified (GM) crops, the use of novel molecular markers and
alternative selectable markers for genetic transformation to produce GM crops. The GM
crops may be better able to withstand biotic and abiotic stresses and also ensure food
security and a safe environment.

Need for marker gene selectable systems
Despite advances in gene transfer technology, transformation efficiency is very low, so that
usually only a small proportion of transformed cells carry foreign DNA. Therefore, it is
recommended to perform selection among the transformed cells or tissues frommany non-
transformed cells to regenerate genetically transformed plants (Penna & Ganapathi, 2010;
Uddain & Subramaniam, 2020). Selectable marker genes aremainly genes used to recognize
the transformed tissues or cells. These marker genes display a feature suitable for artificial
selection of transformed tissues over non-transformed ones in a medium (Jekayinoluwa et
al., 2020). Selectable marker genes are classified into many categories as they confer either
positive or negative selection and selection is conditional or nonconditional depending on
the presence of external substrates (Esland et al., 2018). According to Sundar & Sakthivel
(2008), positive selection markers are used for genetic transformation to allow only
transgenic cells to grow and develop and are necessary for efficient transformation, while
negative selection marker genes lead to the death of transformed tissue. Depending on
the functions of positive selection schemes, they can be categorized as conditional and
non-conditional positive selection schemes (Esland et al., 2018). In conditional positive
selection, a gene encodes a specific protein that confers resistance to a particular substrate
that can be lethal to non-transformed plant cells or that only allows the development and
differentiation of transformed tissues (García-Almodóvar et al., 2014). The conditional
positive selection scheme includes antibiotics, herbicides, toxic and non-toxic chemicals,
or a carbon source.

On the other hand, nonconditional positive selection schemes do not require external
substrates but promote developmental selection and differentiation of transformed cells
(Miki & McHugh, 2004; Rosellini, 2012). A typical example is the ipt gene, which promotes
shoot growth by endogenously altering hormone levels in the plant. Babwah &Waddell
(2000) and González-Morales et al. (2020) stated that once the selection technique does
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Table 1 Selectable markers for crop transformation. Some markers that have been used for GM crops
over the years are summarized in this review. Details comprise the conferred phenotype, and examples of
organisms for which the use of the marker has been described.

Gene Phenotype Organism Reference

merA Mercuric chloride Peanut Yang et al. (2003)
pflp Erwinia chloride Sweet pepper You et al. (2003)
atlD Arabital Rice LaFayette et al. (2005)
OASAID 5-methyltryptophan (5-MT) Rice LaFayette et al. (2005)
xylA Xylose Maize Guo et al. (2007)
ALS Bispyribac sodium Wheat Ogawa et al. (2008)
dhlA 1,2-dichloroethene Rice Moore & Srivastava (2008)
ALS Bispyribac sodium Soybean Tougou et al. (2009)
pmi Mannose Sorghum Gurel et al. (2009)
pmi Mannose Lettuce Briza et al. (2010)
aadA Streptomycin & Stectinomycin Egg plant Singh et al. (2011)
dadA D-serine Maize Lai et al. (2011)
tflA Toxoflavin Rice Koh et al. (2011)
Bar Phosphinothricin Soybean Li et al. (2017)
Epsps Hygromycin B phosphotransferase Potato Bakhsh et al. (2020)
nptII Kanamycin Potato Bakhsh et al. (2020)

not depend on the substrate, it is called a nonconditional negative selection system. For
example, the manifestation of a lethal protein such as a ribonuclease to remove certain cell
types (Ma, 2005).When toxic gene activity requires a substrate to show toxicity, themethod
is called a conditional negative system (Babwah &Waddell, 2000; Wu et al., 2019a). Some
examples of widely used positive selectable marker genes are phosphomannose isomerase
(manA) and xylose isomerase (xylA) (Penna, Sági & Swennen, 2002; Zhang et al., 2019).
Since these selectable marker genes regularly alter cell division and differentiation, there
is a significant change in the development, morphology, and physiology of the transgenic
plant (Table 1). Therefore, various tactics are necessary to reduce marker expression
by using derivable promoters or generating plants without markers (Pandey et al., 2020;
Penna, Sági & Swennen, 2002). The production of transgenic plants takes a long time,
is labor intensive, expensive and obviously not an efficient process (Miki & McHugh,
2004; Tanner et al., 2020). This is the situation when dealing with important agricultural
crops. The use of selectable marker genes speeds up the techniques of transformation and
allows relatively early recovery of transgenic events (Lepais et al., 2020; Stoger et al., 2002).
Selectable and visible marker reporter genes have little effect on the desired trait and also
provide a valuable tool to determine the performance of transformed cells for the desired
gene (Srivastava, 2019; Tuteja et al., 2012).

Non-selectable marker genes in plants transformation
Non-selectable marker genes, also called reporter genes, encodemolecules that are available
visually or through biochemical controls and promote information about the cells or tissues
that translate the inserted protein (Breyer, Kopertekh & Reheul, 2014; Olorunniji, Rosser &
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Stark, 2016). These genes are often used as ‘‘reporters’’ for gene expression by linking to
other genes or promoters in GM products to express in the same manner as the linked gene
or promoter (Lanigan, Kopera & Saunders, 2020; Miki & McHugh, 2004). They contain
nontoxic proteins in plant materials and promote their physical assembly or controlled
plant expression. The reporter genes uidA (gus) and gfp are commonly used to detect the
activity of even a weak promoter (Cerezo et al., 2019). The uidA (gusA, or gus) gene is
derived from E. coli, which converts the enzyme β-glucuronidase as a carbon and energy
source (Elder et al., 2018; Porto et al., 2014). Expression of GUS from the inserted uidA
gene can be detected in GM plant material using a GUS enzyme that produces a colored
product when cleaved by GUS (Neumann, Kumar & Imani, 2020; Shrawat & Armstrong,
2018). The use of different growth media does not allow the sizing of the amount of
protein available nor the visualization of the form of expression or distribution in the plant
material (Banchi et al., 2019; Porto et al., 2014). The uidA gene with its associated protein
is found in a wide variety of organisms, including E. coli and several other microbes,
including other microorganisms of the digestive tract and soil bacteria (Porto et al., 2014;
Riva et al., 2020). The work of GUS is common in all vertebrate tissues, with high activity
in the kidney, liver and spleen (Xu et al., 2020). In turn, the activity of GUS is found in
invertebrates such as mollusks, insects, and nematodes (Christiaens et al., 2018; Kumar et
al., 2012). Moreover, low activity of GUS has been reported in more than forty different
plant species and human food sources such as carrots, tomatoes and parsley etc (Mortensen
et al., 2019). The gfp gene originates from the jellyfish (Aequorea victoria), which encodes
green fluorescent protein (GFP) (Keutgen, Tomaszewska-Sowa & Keutgen, 2020) and emits
a green light when exposed to blue or ultraviolet light. Zimmer (2002) revealed the main
contribution of GFP helpers in bioluminescence of jellyfish. The green fluorescent protein
is required as a gene expression marker for both GM animal and plant cells (Hoffman,
2015). Its expression in living tissue can be visualized by irradiation with ultraviolet or blue
light without damaging the tissue. This allows observation of the intracellular location and
mobility of related proteins in living cells (Franco-Bocanegra et al., 2019; Hanson & Köhler,
2001). Spontaneous modifications of the GFP gene sequence led to the emergence of a
large number of variants with valuable properties (Su et al., 2019; Zimmer, 2002).

Marker-free strategies or systems
Transformation without selectable marker genes (SMGs) is a suitable approach to obtain
marker-free transgenic plants that increase consumer acceptance (Breyer, Kopertekh &
Reheul, 2014). The development of GM plants without the use of SMGs has been reported
in; Arabidopsis, barley, cassava, lime, potato, groundnut, tobacco, triticale (Chong-Pérez &
Angenon, 2013; Manimaran et al., 2011; Schaart et al., 2011), alfalfa (Ferradini et al., 2011),
apple (Malnoy et al., 2010), Prunus (Petri et al., 2011), orange (Ballester, Cervera & Pena,
2010), tomato (Xin & Guo, 2012) and wheat (Liu et al., 2011), (Table 2). Polymerase Chain
Reaction (PCR) has been used in most cases to study the putative transformed events to
detect the transgene (Breyer, Kopertekh & Reheul, 2014). Transformants selection can also
be enhanced by the expression of a screenable marker: the uidA (GUS) or GFP gene, which
makes the putative transformants a phenotypic asset associated with the gene expression
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Table 2 Examples of marker free crop plants detailing molecular techniques employed, marker genes used and crop species transformed are
summarized in this review.

Molecular techniques Marker genes Crop species References

Co-transformation Hpt and uidA Wheat Permingeat et al. (2003)
Inducible site-specific recombination sys. Hpt, npt, codA, GUS Strawberry Schaart et al. (2004)
Two-border binary vector Epsps-cp4, Epsp Maize Huang et al. (2004)
Co-transformation Psy & phytoene Rice Parkhi et al. (2005)
R/Rs recombination system CodA-npt II Potato Kondrak et al. (2006)
Cre/lox site specific recombination GUS, npt II & gft Tobacco Jia et al. (2006)
Cre/lox P Hpt, GUS & Gat Soybean Li et al. (2007)
Marker-free binary vector Ipt Potato Bukovinszki et al. (2007)
MAT system Ipt & npt II Cassava Saelim et al. (2009)
Marker-free binary vectors Zmpsy or chitinase Peanut Bhatnagar et al. (2010)
Co-bombardment Cry1B-Aa & hpt Rice Kumar, Arul & Talwar (2010)
MAT system Ipt & wd Rice Khan et al. (2011)
Co-transformation chi II, ap24, GUS & hpt Rice Rao et al. (2011)
Marker-free binary vector At-CBF1 & npt II Tomato Singh et al. (2011)
Cre/lox site-specific recombination Hph, gus & npt Rice Akbudak & Srivastava (2011)
Cre/lox site-specific recombination Npt & GUS Rice Khattri et al. (2011)
Ipt-type MAT vector GUS, ipt & chic Potato Khan et al. (2011)
Marker-free & vector free cassette Acol Melon Hao et al. (2011)
Ipt-type MAT vector Ipt and wd Tomato Khan et al. (2011)
CRISPR-Cas9 ZmTMS5 Maize Chen et al. (2018)
CRISPR-Cas9 ARGOS8 Maize Shi et al. (2017)
MFTID Lox & bar Wheat Cao et al. (2020)
Co-transformation Bar & GUS Wheat Liu et al. (2020)
Marker steroid-inducible recombinase Npt II, gft & trfA Banana Kleidon (2019)

of interest (GOI) (Bai et al., 2009), or it can be a direct screening of a product for the
desired gene expression (Rukavtsova et al., 2013). Most studies on marker-free systems
of experimental refinements have been used to improve some crucial factors, including
the efficacy of DNA delivery technique and plant regeneration mechanism, for successful
implementation of this process (Breyer, Kopertekh & Reheul, 2014). The refinements consist
of improving treatment conditions to promote Agrobacterium-mediated transformation,
e.g., vortex-mediated transformation of cold-treated seedlings (Rosellini & Veronesi, 2007;
Weeks, Ye & Rommens, 2008), using A. tumefaciens strains that exhibit extremely high
transformation efficiency (De Vetten et al. 2003). Most of these refinements take advantage
of recent advances in identifying plant proteins and other factors within the transformation
process and characterizing the molecular mechanism for successful T-DNA incorporation
Anand, Vaghchhipawala & Mysore (2010); Barampuram & Zhang (2011).

In the development of genetically modified organisms (GMOs), many techniques have
been elucidated to improve marker-free transgenic plants via the pollen tube pathway. This
technique is widely practiced in China and effectively used in many crops such as maize,
rice, wheat and cotton (Yang et al., 2009), melon (Hao et al., 2011) and soybean (Yang et
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al., 2011). The ovary-drip technique has also been used to achieve higher transformation in
maize (Yang, Su & An, 2009). Marker-free production of GM products could be achieved
via biolistic introduction of genes that bring unicellular microspores to pollen maturity
and then use them for pollination (Aziz & Machray, 2003). Tuteja et al. (2012) reviewed
several techniques or strategies that exclude marker-free product selection genes in
transgenic development such as co-transformation, site-specific recombination, multi-auto
transformation vector, systemof transposition, and homologous recombination by (Puchta,
2000) and (Zubko, Scutt & Meyer, 2000). Among these techniques, co-transformation is
the most widely used. Despite the continuous improvement of marker-free transgenes, the
range of rescue of transformed events without the use of selectable marker genes remains
highly susceptible to change and at least twofold or less than the use of antibiotic resistance
marker genes (Breyer, Kopertekh & Reheul, 2014). In marker-free genetically transformed
plants, selection events require a large number of GM transformants harboring the gene
of interest (Bhatnagar et al., 2010). Another problem could be chimeric plants with only
partially genetically transformed tissues due to lack of selection agents (Eckerstorfer et al.,
2019; Li, Xie & Qiu, 2009; Joshi et al., 2009).

Technique for the co-transformation and segregation of marker genes
Co-transformation is a simple technique for obtaining transgenic products without marker
genes (Breyer, Kopertekh & Reheul, 2014; Manimaran et al., 2011; Tuteja et al., 2012; Woo,
Suh & Cho, 2011; Yau & Stewart, 2013). It involves the simultaneous transformation of a
selectable marker gene and a desired gene from different T-DNAs into the genome prior
to gene segregation in successive sexual generations. Four different approaches can be
used in the co-transformation technique: (i) use of two different T-DNAs carrying two
different plasmids in an Agrobacterium culture (Bahramnejad et al., 2019;McCormac et al.,
2001; Sripriya, Raghupathy & Veluthambi, 2008); (ii) within an Agrobacterium culture, two
different T-DNAs are placed on the same plasmid (Matthews et al., 2001; McCormac et al.,
2001; Miller et al., 2002; Philips et al., 2019); (iii) the use of two T-DNAs in two different
Agrobacterium groups (Quispe-Huamanquispe et al., 2019; Sripriya et al., 2011), and (iv)
the two plasmids in one and identical biolistic delivery (Joyce & Sun, 2020; Kumar, Arul
& Talwar, 2010; Prakash et al., 2009) (Fig. 1). The co-transformation technique involves
the insertion of two T-DNAs into different genomic loci for segregation (Confalonieri &
Sparvoli, 2019; Kausch et al., 2019; RamanaRao & Veluthambi, 2010). This technique offers
unique advantages for the production of transgenic plants, i.e., it allows the simultaneous
insertion of multiple genes of interest into a plant genome without many selectable marker
genes, regardless of gene sequence (Miki & McHugh, 2004). In this technique, two to
thirteen transgenes have been successfully incorporated simultaneously using biolistic gene
gun (Low et al., 2018; Wu, 2007). The widespread use of biolistic methods may be critical
to control multiple genetic traits using cloned genes, but extraction of marker genes from
GM plants will be difficult (Ansari et al., 2020; Miki & McHugh, 2004).

Progress of GM plants without markers by co-transformation with Agrobacterium has
been widely reported (Darbani et al., 2007; Manimaran et al., 2011; Narancio et al., 2020;
Tuteja et al., 2012). This has been successfully used in crops like maize, rice, soybean
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Figure 1 A scheme of genetic transformation procedure to produce marker free transgenic plants. (A)
Two T-DNA sections physical diagram, showing desired gene and marker gene. (B) Putative transformed
calli with the desired gene and marker gene. (C) Desired gene and marker gene harbored by T0 putative
transgenic plant. (D) Segregating two different plants; T1: Potentially harboring the desired target gene
and other T2 with only marker gene.

Full-size DOI: 10.7717/peerj.11809/fig-1

and oilseeds. The method has also been used to develop first generation golden rice
without hygromycin resistance marker gene (Al-Babili & Beyer, 2005). More recently,
Holme et al. (2012) found that co-transformation has been used to generate cis-genic
barley without markers. Theoretically, the technique appears to be simple and safe to
generate non-marker GM plants compared to other techniques because it does not
involve residual DNA sequences in GM products (Breyer, Kopertekh & Reheul, 2014). As an
advantage of co-transformation by Agrobacterium compared to biolistic transformation, it
is reported that the genes co-transformed by Agrobacterium are usually incorporated into
the plant genome at different loci. Thus, different marker genes can be easily separated
from the desired genes, which facilitates the generation of transgenic plants without
markers (Ebinuma et al., 2001). Essentially, the co-transformation associated with the
removal of selectable marker genes only applies to sexually reproducing species, but not
to asexually propagated plants such as potato, date palm, sugarcane, and some woody
plant species (Darbani et al., 2007; Manimaran et al., 2011; Parray, Mir & Shameem, 2019;
Tuteja et al., 2012). Breyer and colleagues emphasized that the use of non-selectable
marker genes seems to be the easier way to produce GM crop with reduced presence of
introduced DNA sequence and associated biosafety issues (Breyer, Kopertekh & Reheul,
2014). This protocol has been successfully applied to the production of Bt cotton using the
pollen tube pathway technique or the genetically transformed potato AV43-6-G7 through
agrobacteria-mediated transformation. However, the main disadvantages of non-marker
transformation techniques are the poor recovery rate of transformants, high labor, time
and cost requirements, and the use of a large number of regenerated plants for PCR
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analysis (Breyer, Kopertekh & Reheul, 2014; Confalonieri & Sparvoli, 2019). In addition, this
technique requires high transformation and regeneration efficiencies that are typically
genotype-based, limiting its application to very limited organisms. The technique is not
feasible on a commercial scale for generating crops with desired genes and agronomic traits,
except that the efficiency of transformation protocols is significantly increased (Jansing et
al., 2019; Tuteja et al., 2012).

Bio-safety concerns related to GM crops
The influence of GM plants on production and cropping patterns of agricultural species
worldwide is becoming increasingly popular in modern times (Kadoić Balaško et al., 2020).
However, the widespread adoption of GM plant varieties and their cultivation have raised
notable concerns about biosafety issues in some parts of the world (Luna & Dowd-Uribe,
2020; Stewart, 2001). The most common biosafety concerns relate to the direct or indirect
flow of toxic origin transgenes to non-target species; the possibility of unforeseen effects
in transgene-environment interactions and leakage of transgenes from GM plant varieties
into their weedy relatives is the most intense debate worldwide (Beacham, Sweet & Allen,
2017; Lu & Snow, 2005; O’Callaghan et al., 2005; Oliveira et al., 2007; Souza et al., 2019).
In line with these concerns about GM products, the Food and Agriculture Organization
(FAO), the World Health Organization (WHO), and the Organization for Economic
Cooperation and Development (OECD) and other nations, through expert consultations,
have accepted the following relevant health requirements that should be considered when
reviewing a novel food (Krebs, 2000). These include: (i) the modified host organism should
be described, including information on the composition of nutrients (antibiotics, toxins
and allergenic potential, and other important changes during usual processing.); (ii) the
organism used as a donor should be well described, with information on possible toxicity
and related allergens, and the genes used and their products should be free of any public
health risk; (iii) molecular description of the genetic transformation, with description
of the modification process; (iv) documentation of the primary and any secondary gene
products described, with an explanation of the foreign gene characteristics; (v) evaluation
of the safety of the anticipated novel substances in food, with an assessment of any toxins
formed directly by the modification; (vi) evaluation of novel food allergy possibilities; and
(vii) evaluation of unintended effects on dietary composition and assessment of changes
in nutrient enrichment. Considering the regulatory concerns of various countries around
the globe towards GMOs, it is imperative to develop new and widely accepted marker gene
systems to introduce more desirable genes for the production of the future GM crops.
Therefore, the selectable markers i.e., ptxD/Phi are proposed as an alternative scheme for
genetic transformation to develop safer crops.

The ptxD/Phi; alternative selectable marker for crops genetic trans-
formation
To minimize the use of antibiotic or herbicide resistance genes, several alternative
transformation systems have been proposed by bioscientists (Hu et al., 2016; Miki &
McHugh, 2004; Patterson et al., 2019). Some of these markers are easily identified by the
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human eye and have been used as alternatives to antibiotic or herbicide markers (Boscaiu
et al., 2019; Naing et al., 2015). For example, the anthocyanin gene is used as a substitute
for strawberry, apple, and potato transformation selection of kanamycin (Anwar et al.,
2018; Kortstee et al., 2011), mainly because anthocyanin is known to be an anti-cancer
agent that may also provide health benefits (Breyer, Kopertekh & Reheul, 2014; Diaconeasa
et al., 2020). The other most commonly used positive marker genes are the xylA gene from
Streptomyces rubiginosus (Barampuram & Zhang, 2011; Tran et al., 2020) and Thermo-
anaerobacterium thermosulfurogenes (Shrawat & Lörz, 2006), Xylose isomerase catalyzes the
isomerization of xylose to d-xylulose, which can be used as a carbohydrate base in plant cells.
These genes have been successfully used to develop transgenic potato, tobacco and tomato.
However, d-xylose produces carbon, which is toxic to plant cells, so selection requires
culture on a precise mixture of sucrose as well as d-xylose (Ghazanfar & Irfan, 2020;
Haldrup, Noerremark & Okkels, 2001). Another positive marker gene, Phosphomannose
isomerase (PMI), is considered credible and has been extensively studied (Penna, Sági &
Swennen, 2002; Singh et al., 2019). Plant cells contain endogenous hexokinase that can
convert mannose to mannose-6-phosphate. Therefore, cells expressing PMI can convert
mannose-6-phosphate to fructose-6-phosphate, which can be used as a carbohydrate
source in the plant (Penna, Sági & Swennen, 2002; Singh et al., 2019). Selection on the
PMI /mannose scheme has been reported in the transformation of sugarcane, sorghum,
sugar beet, rice, andmaize (Penna, Sági & Swennen, 2002; Shi et al., 2020;Wu et al., 2019a).
According to Lynch et al. (2019), this selection system is based on alternative carbon origin
using mannose as a selection agent, where a specific mannose mixture is cultivated with
one of the other sugars, which must be adapted to both the selection stage and the plant
species to achieve optimal transformation efficiency.

Recently, the phosphite oxidoreductase (ptxD) gene, a unique dominant marker for
selection in transformation of plants and other organisms, has been reported (Heuer et
al., 2017b; Hirota, Motomura & Kuroda, 2019; López-Arredondo & Herrera-Estrella, 2013).
For example, the rice Actin2 promoter (OsAct2P) and terminator (OsAct2T ) were used to
clone the ptxD expression cassette, which was then incorporated into the pMDC99 vector
for rice transformation (Manna et al., 2016). The constitutive promoter (rice actin2) was
selected for a higher level of transgene expression, allowing rapid oxidation of Phi after it is
absorbed by Pi transporters in the plant. Overall development, chlorophyll assembly, root
development, PS-II activity, and Phi and Pi assembly were comparable in Phi-metabolizing
transgenic plants developed in Phi media as the major P fertilizer compared with plants
fed Pi. Phi-mediated growth inhibition has been observed in a variety of plant species in
previous studies (Carswell, Grant & Plaxton, 1997; Hirosse et al., 2012; Thao et al., 2008a;
Ticconi, Delatorre & Abel, 2001). For instance, application of Phi severely restricted root
development of onion (Allium cepa) (Sukarno, Smith & Scott, 1993) and Brassica nigra
(Carswell, Grant & Plaxton, 1997). In spinach, a decrease in the phosphate:phosphite ratio
resulted in a decrease in shoot dry weight (Thao et al., 2008a). Similar results were observed
in Brassica napus var Peruviridis (Thao et al., 2008b). Development, length and dry weight
of sweetpotato plants were reduced with increasing Phi treatment (Hirosse et al., 2012).
In addition, rice root and shoot biomass, root hair formation, and chlorophyll formation
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decreased when Phi concentrations in the media were increased (Manna et al., 2015).
Ticconi, Delatorre & Abel (2001) observed similar results in Arabidopsis. However, López-
Arredondo & Herrera-Estrella (2012) observed that Phi metabolizing transgenic Arabidopsis
and tobacco plants expressing the bacterial ptxD gene resulted in improved phenotype and
physiology in terms of biomass accumulation, yield as well as Phi build-up. This finding
supported the hypothesis of Manna et al. (2016) that when rice plants evolved the ability
to utilize Phi, there was a significant increase in growth, phenotype and physiology of rice
seedlings, with better Pi build-up and lower Phi accumulation compared to wild rice plants
grown in related Phi concentrations.

Furthermore, Che et al. (2018) evaluated PTXD/Phi in a ternary vector with pPHP70444
containing the ptxD gene driven by a maize ubiquitin promoter and intron. PTXD/Phi
selection was imposed, resulting in more stringent selection and healthy callus growth.
This resulted in transformation performance of up to 6% with no detectable outliers
and a level of quality events of 47%. A novel non-antibiotic and non-herbicidal sorghum
transformation scheme was developed using PTXD as a selectable gene. Despite the lower
transformation frequency in sorghum, the PTXD/Phi selection scheme is a promising
transformation system that can further increase the efficiency of selection in crops through
codon optimization of the ptxD gene in monocotyledons (Che et al., 2018).

A similar study on cotton transformation using the same selection method showed that
the ptxD/phosphite selection system provides a high-quality, effective, and simple method
to produce GM cotton plants and addresses several concerns regarding the use of antibiotic-
and herbicide-resistant genes in the development of transgenic organisms (Pandeya et al.,
2017). The ptxD gene can be used to select transformed cells and produce transgenic cotton
plants using a selection medium with Phi as the main source of P (Pandeya et al., 2017).
A total of 3.43% transgenic events were obtained with the ptxD/Phi selection scheme,
compared to only 0.41% with bar/phosphinothricin (PPT) selection. The nptII /kanamycin
and hpt /hygromycin systems had event recovery rates of 2.88 and 2.47%, respectively
(Pandeya et al., 2017). These results indicate that ‘‘clean’’ ptxD-expressing callus genotypes
can be obtained by replicating subcultures and selecting the most evolving cultures without
the use of visible, screenable marker genes. The selection mechanism under ptxD/Phi
compared to selection based on the use of antibiotic and herbicide resistance genes in
cotton transformation showed that ptxD/Phi selection produced a higher percentage
(97%) of transformants compared to nptII /kanamycin and hpt /hygromycin using PCR
analysis of putative transformants of regenerated events harboring the ptxD gene (Pandeya
et al., 2017). It was observed that while Phi selection does not completely kill cultures
lacking either the ptxD transgene or its expression, it does increase the growth of cells
expressing the gene for selection (Nahampun et al., 2016; Pandeya et al., 2017). These
results are in agreement with those of (López-Arredondo & Herrera-Estrella, 2012), who
conducted a study to investigate the ability of medium containing Phi (1 mM) in the
selection of ptxD-expressing organogenic shoots regenerating from leaf disks of tobacco
after Agrobacterium- mediated transformation. Nahampun et al. (2016) transformed two
maize genotypes: type I and Type II callus cultures separately with the same bacterial ptxD
gene, and the transformants were subsequently selected on medium containing KH2PO3.
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The novelty of ptxD/Phi selection is that the system allows the conversion of a toxic
compound (Phi) into a valuable compound (Pi) for optimal plant growth. In this selection
system, escape events are minimal and the nutritional value for the plant is also provided
(López-Arredondo & Herrera-Estrella, 2012; López-Arredondo & Herrera-Estrella, 2013;
Pandeya et al., 2018). The ptxD/Phi scaffold offers several advantages over currently used
systems: (i) the Phi salts contain sodium and potassium, which are affordable and easily
available from different companies, (ii) the phosphite salt is harmless to humans and
animals, therefore no special precautions are required for its use, (iii) the phosphite salts
are well soluble in thermal water and photostable, which makes them constant selection
agents in tissue culture and greenhouses, and (iv) the ptxD/Phi method is suitable as
a selection system in the greenhouse using inert substrates or different low-Pi soils by
adding Phi in the soil or fertilizing to promote high-density experiments (Achary et
al., 2017; López-Arredondo & Herrera-Estrella, 2012; López-Arredondo & Herrera-Estrella,
2013). Comparing the ptxD/Phi selection scheme to other selection systems, only the Pi
ion in the culture medium needs to be replaced with a Phi ion to efficiently select cells
expressing the ptxD gene, thereby eliminating all steps to modify the gene. In this scenario,
the ptxD/Phi framework is considered to be a precise and beneficial addition to the plant
transformation toolbox, eliminating the dependence on antibiotic and herbicide resistance
genes, making it easier to overcome some problems related to the introduction of GM
plants. Moreover, ptxD/Phi technology symbolizes one of the most exciting transforming
selection systems of today, which not only provides an efficient way to generate transgenic
plants, but also helps to address a number of concerns related to the use of antibiotic and
herbicide resistance genes, as well as biosafety concerns in transgenic development.

However, plants treated with phosphite (Phi) rapidly accumulate Phi within their cells
(McDonald, Grant & Plaxton, 2001). Phosphite is phloem mobile and accumulates in sink
tissues (Leong, Lu & Chiou, 2018). Since Phi is not metabolized by plants, it remains in
tissues for a long time and consequently disrupts the signal transduction chain that allows
plants to detect and respond to Pi deficiency at the molecular level, thereby amplifying
the negative effects of Phi (Mehta et al., 2021; Trejo-Téllez et al., 2019). In Pi-deficient
tomato plants cultured in the presence of Phi, the expression of Phi-inducible genes
such as PT1 and PT2 (high-affinity Pi transporters), PS2, and TPSI1 (novel genes) was
strongly repressed. Moreover, Phi accumulates massively in the cytosol and blocks Pi efflux
from the vacuole, while subsequent uptake of Pi into cells triggers an enormous transfer
(Gómez-Merino & Trejo-Téllez, 2016). Phi is transported from the cytosol to the vacuole. Pi
deficiency symptoms can be exacerbated by this suppression of Pi efflux from the vacuole,
leading to increased programmed cell death in Pi-deficient or ptxD non-transgenic plants
(Gómez-Merino & Trejo-Téllez, 2015).

The ptxD/Phi technology; a novel strategy for weeds control
To meet the food needs of the ever-growing population, the focus is on increasing crop
productivity under challenging conditions (Catalá & Salinas, 2018). The main problem for
farmers in this situation is to ensure optimal nutrient levels in the soil and control weeds
(Catalá & Salinas, 2018). Typical weed control measures are tedious practices such as hand
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weeding, hoeing or ecologically aggressivemethods such as tillage. The earlier discovery and
application of herbicides such as 2,4-dichlorophenoxyacetic acid and Roundup eradicated
most weeds growing in the soil (Armengot et al., 2015; Troyer, 2001). The overuse of these
herbicides has led to the emergence of numerous herbicide-resistant weeds in fields. There
are previous reports of 254 herbicide-resistant weed species, of which 41 are resistant to
glyphosate Heap (2018). This worrisome condition has called for persistent research to
find new strategies to control weeds in cereal fields. According to Pandeya et al. (2018),
selective fertilization of transgenic plants carrying ptxD gene with Phi is an effective means
to control the growth of weeds. The ptxD transgenic plants are able to metabolize Phi by
converting it to Pi, a mechanism that enables the transgenic plants to outcompete many
dicotyledonous and monocotyledonous weed species in both natural soils and substrates.
More importantly, ptxD/Phi technology suppressed the growth of Amaranthus palmeri,
a glyphosate-resistant weed that has devastating effects on many crops (Smith, Baker &
Steele, 2000). In a study conducted on artificial inert soils and natural soils, Phi fertilization
processes severely hindered A. palmeri emergence (Pandeya et al., 2018).

The ptxD/Phi system for weed control has been previously validated for other plant
species, such as tobacco, which harbors the gene and effectively suppresses many weeds
such as B. distachyon, I. purpurea, Brachiaria plantaginea, and Amaranthus hybridus when
Phiwas used instead of Pi (López-Arredondo & Herrera-Estrella, 2012). The ptxD/Phi system
proved to be an efficient weed control tool in trials conducted under field conditions in
Argentina (Heuer et al., 2017a). In another recent study on rice, Phi showed a positive
effect against Amaranthus spinosus as a selective pre-emergence weed control (Manna et
al., 2016). In addition, foliar application of Phi wasmore efficient in controlling widespread
weeds such as Phyllanthus niruri, Euphorbia hirta, Portulaca oleracea and Chloris barbata, a
monocot plant. The ptxD/Phi mechanism for weed control was not only effective but also
provided an innovative molecular approach to reduce the overdependence on phosphate as
a P source for current agriculture by expressing the ptxD gene in tobacco and Arabidopsis
(López-Arredondo & Herrera-Estrella, 2012). The data confirmed that ptxD transgenic
plants required 30–50% less phosphorus in greenhouse situations when supplemented in
the form of Phi instead of Pi to achieve a biomass equivalent to the wild form fertilized
by Pi (López-Arredondo & Herrera-Estrella, 2012). Other advantages include the lower
fixation of Phi in the soil compared to Pi and the fact that few microbes can use Phi as a
source of P (Heuer et al., 2017a; Lopez-Arredondo et al., 2014; McDonald, Grant & Plaxton,
2001). In addition, soil microbes, including algae, cannot utilize Phi as a major source of
P. When phosphite is released from fields into water bodies, algal species cannot utilize
it as a source of P, minimizing the effect of P fertilization to promote toxic algal blooms
(Loera-Quezada et al., 2016) (Fig. 2). The effects of water eutrophication and toxic algal
blooms have resulted in more than 400 lethal zones in many parts of the world’s oceans,
covering more than 250,000 square kilometers of ocean surface (Hardy et al., 2016; Schmale
et al., 2019). For this reason, the ptxD/Phi scheme can offer important ecological gains by
reducing eutrophication of water bodies as well as hypoxia due to Pi and N fertilizer runoff
into river bodies. Finally, it should be noted that Phi poses no risk to human or animal
health and is massively used as an efficient fungicide in crop production (Achary et al.,

Dormatey et al. (2021), PeerJ, DOI 10.7717/peerj.11809 14/37

https://peerj.com
http://dx.doi.org/10.7717/peerj.11809


2017). Thus, phosphite has a direct effect on phytopathogenic fungi by inhibiting mycelial
proliferation and reducing conidiogenesis of Fusarium sp. isolated from the rhizosphere
of plants (Solis-Palacios et al., 2021). In addition, Phi can act indirectly by activating the
innate defense mechanisms of plants to limit pathogen growth (Cerqueira et al., 2017). Phi
can also activate host defense genes, which helps plants ward off disease (Rampersad, 2020)
and directly suppress the growth of pathogens such as Phytophthora (Huang et al., 2018).
Phi is expected to interfere with the metabolic mechanisms of Phytophthora associated
with phosphorus uptake. Phosphite accumulates around root tips in the area colonized
by mycorrhizal fungi, which is transmitted through the phloem (Hunter, 2018). When
phosphite accumulates in the system, it can induce necrosis causing damage to fine roots,
resulting in the loss of ectomycorrhizal and arbuscular mycorrhizal production sites in
plant species that form symbiotic interactions with mycorrhizal fungi (Plaxton & Carswell,
2018). Application of this Phi may damage the mycorrhizal interface because mycorrhizal
fungi extend the lifespan of fine roots and active fine roots serve as a metabolic sink
for photosynthates (and thus phosphite). Furthermore, any damage to immature roots
would alter the pattern of root exudates and may lead to changes in the soil microbiota
(Jorgensen, 2014), which may indirectly affect mycorrhizae (Jorgensen, 2014). Wu et al.
(2019b) hypothesized that Phi treatment significantly increases isoflavonoid production,
which explains why Phi-treated plants are more tolerant to various biotic stressors.
Nevertheless, the expected expansive implementation of the ptxD/Phi program in the
near future would require further studies to assess the likely and potential environmental
impacts of Phi operation.

The transgenic plants carrying the ptxD gene can use phosphite (Phi) as the sole source
of phosphorus (P) by converting Phi to phosphate (Pi) to achieve optimal growth and
development, which can lead to higher yields (Fig. 2). Plants, soil and aquatic microbes
cannot metabolize phosphite, so weeds cannot compete with crops for available nutrients,
nor can aquatic life. Phosphite moves in water bodies and has no significant growth effect
on aquatic microorganisms. Studies have shown that aquatic microorganisms such as algae,
Ulva lactuca, Chlamydomonas reinhardtii, Botryococcus braunii, and Ettlia oleoabundans are
unable to use Phi as a source of P and therefore have no negative effects on aquatic life (Lee
et al., 2005; Loera-Quezada et al., 2015). However, accumulation of significant amounts of
Pi in water bodies triggers algal blooms. This compound is leached from croplands that
are heavily loaded with phosphate fertilizers. Rain is a means of washing these leachable
compounds from the soil surface into water bodies, which eventually end up in large
reservoirs such as lakes and oceans. Drainage systems discharge these nutrient components
into rivers, and untreated raw sewage flows into water bodies and induces algal blooms.

Much attention needs to be paid to measuring phosphate levels and monitoring
water quality, as well as regulating algal phytoplankton dynamics against long-term
environmental impacts. Phosphate enrichment of algae has been widely studied to
determine their beneficial uses (De-Bashan & Bashan, 2004). The consequences of algal
blooms (Mallin & Cahoon, 2020) include threats to human health/life: algal blooms contain
toxins that reduce the suitability of water for human consumption. This claim is based on
the fact that algal blooms in water contribute to rapid contamination of water, which poses
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Figure 2 The graphical illustration to display the safety of ptxD/Phi selection system on different or-
ganisms and the environment, and showing the added advantages to enhance transgenic plants growth.
(A) Phosphate (Pi) fertilizer (B) Phosphite (Phi).

Full-size DOI: 10.7717/peerj.11809/fig-2

a threat to human health and leads to severe irritation, itching and skin diseases when
such contaminated water comes into contact with human skin. Fish and other aquatic life
depend on dissolved oxygen in water. However, in the case of plants, heavy reproduction
and dense growth in a very short period of time leads to increased competition for oxygen,
resulting in an imbalance in the aquatic environment and suffocation of aquatic animals
such as fish. Fertilizer contamination can lead to dead zones with little or no oxygen in
the water, a scenario that makes it difficult for aquatic life to survive. This condition is
called hypoxia. Oxygen-depleting algae blooms cause these dead zones as they die and
decompose, which can lead to a large death of aquatic life, making the algae bloom region
a dead zone with dead animals and plants. The resulting foul odor can affect the remaining
aquatic life and drive them away further. Phosphate fertilization allows weeds to compete
with crops such as cotton, cowpea, and other crops for the available phosphorus source,
limiting their growth and development. Much of Pi is metabolized by microbes in the soil,
making it unavailable to plants. Importantly, the soil microbiota and aquatic microbes
cannot metabolize Phi, which greatly increases its availability to plants, which in turn
reduces the risk of eutrophication of water bodies.

ptxD /Phi as selectable marker system in microorganisms for
biological contamination control in cultivation systems
Mineral nutrient availability is a major limiting factor for microalgal culture production
and conservation (Juneja, Ceballos & Murthy, 2013). Researchers and private companies
have considered transgenic microalgae and cyanobacteria as highly potent green cell
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factories for the production of valuable bioproducts (Ng, Keskin & Tan, 2020). Therefore,
the promoter (Pccg6) has been used to stimulate the expression of the bacterial phosphite
oxidoreductase PTXD, which allows Trichoderma atroviride phosphite (Phi) as a major
phosphorus source (Carreras-Villase nor et al., 2020). Recent research has shown that
PTXD expression in both plants andmicroorganisms enables a very challenging climate that
promotes the production of genetically modified organisms while limiting the production
of diverse, weedy combinations of organisms (plants, fungi, microalgae, and bacteria)
that are unable to metabolize Phi (Heuer et al., 2017a; Loera-Quezada et al., 2016; López-
Arredondo & Herrera-Estrella, 2012; Pandeya et al., 2018). Trichoderma ptxD transgenes
containing constructs of the ccg6OPT or pki1OPT genes showed positive phenotype
developmental traits. Thus, the transgenic strain exhibits comparable growth kinetics on Pi
and Phi containing media, suggesting that PTXD expressions in Trichoderma do not have
destructive effects on its physiology (Carreras-Villase nor et al., 2020).

The use of PTXD/Phi has been shown to be an effective technique to control
contaminating species (e.g., Kluyveromyces marxianus CBS 6556, S. cerevisiae Ethanol Red)
in the fermentation of a number of S. cerevisiae and Y. lipolytica strains that metabolize
phosphite using favorable raw materials (Shaw, Twilton & MacMillan, 2016). According
to Silverman (2001), Trichoderma development or its biological properties are not affected
by PTXD expression, resulting in a useful and observable phenotype for assessing the
transcriptional function of the regulatory sequence. The metabolism of Phi gave T.
atroviride a strategic advantage in overgrowth of harmful bacteria (Carreras-Villase nor et
al., 2020). The phenotype remains vigorous and constant as transformants grow well even
at high concentrations of Phi (Silverman, 2001). PTXD implements a simple enzymatic
reaction involving the direct conversion of Phi to Pi using NAD + as a cofactor (Esland et
al., 2018). The overall picture presented here can help in the development of fertilization
strategies that maximize nutrient utilization, especially of P, while avoiding oversupply,
which could reduce eutrophication of water bodies in case of wastewater discharge. This
could be achieved by exploiting the physicochemical properties of Phi as Phi-metabolizing
organisms (López-Arredondo & Herrera-Estrella, 2012). As a result, ptxD/Phi systems have
the potential to minimize the cost of enzyme production using Trichoderma, as antibiotics
and reactor sterilization are more expensive than Phi salts. The ptxD/Phi approach offers
a more stable and cost-effective substitute for contamination control in the industrial
development of Trichoderma and possibly other filamentous fungi, since Phi is FDA-
approved for use as an agricultural fungicide and food additive (Carreras-Villase nor et al.,
2020).

In addition, ptxD/Phi has been used for chloroplast transformation in Chlamydomonas
reinhardtii and for the regulation of biological contaminants, expressing heterologous
proteins in algal chloroplasts without affecting culture efficiency (Zhang, Wang &
Wang, 2020). Consequently, ptxD/Phi selection can be used as a universal marker
to transform C. reinhardtii wild-type microorganisms on medium containing Phi as
a major source of P (Changko et al., 2020; Kanda et al., 2014). Combining phosphite
fertilization with expression of the nuclear transgene ptxD provided an ideal substitute
for herbicides in controlling weeds and pollution of algal cultures (Cutolo et al., 2020).
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Chloroplast expression of ptxD in Chlamydomonas reinhardtii has been proposed as a more
environmentally friendly substitute for antibiotic resistance genes in plastid transformation
(Day & Goldschmidt-Clermont, 2011). Transplastomic genotypes expressing the mutant
PTXD type utilized NADP+ and NAD + to convert Phi to Pi more efficiently and evolved
more rapidly than those expressing the wild-type protein (Cutolo et al., 2020). Loera-
Quezada et al. (2016) reported that the production of genetically engineered microalgae
capable of metabolizing Phi is a viable approach for developing a successful scheme for
managing biological contaminants in microalgal development that can be combined with
established biological andmolecular strategies. The phosphite-based technique is important
for closed photobioreactors in that one of the main advantages for Phi-metabolizing strains
is that it eliminates the need for a sterile phase, which is the most expensive aspect of
operating large photobioreactors (Loera-Quezada et al., 2016).

In addition, contamination by biological contaminants is a major obstacle to
commercial microalgal processing using open culture systems (Lam et al., 2018). Due
to low maintenance costs and relative ease of operation, Phi-based culture systems are
ideal to meet the requirements of large-scale algal biomass production (Grobbelaar,
2012). Photosynthesis-dependent, phosphate-requiring CO2 metabolism could be more
effectively maintained (Johnson & Alric, 2013), resulting in greater sugar and starch
accumulation than the restricted wild-type enzyme, ultimately supporting more rapid
selective development of algae in phi nutrient media. C. reinhardtii cells with mutant
PTXD in their chloroplasts develop faster in phosphite media than cells expressing WT
PTXD (Esland et al., 2018). As a result, Phi-based engineering will address contamination
concerns in open pond systems and expand its application beyond microalgal species
that can develop in harsh environments. Engineering Phi metabolism has biological
consequences for current microalgal culture techniques, including: (i) the technique
should allow closed photobioreactors to be operated at lower cost by removing the burden
of sterilizing the media and reactor; (ii) the system should allow racecourse ponds to
be used extensively for the development of microalgal biomass and derivatives; and (iii)
the Phi scheme should allow the development of metabolic engineering in a variety of
microalgal species.

CONCLUSIONS
Plant transformation methods rely on the use of selection agents due to the low efficiencies
of transformation. Traditionally, these selection agents usually contain antibiotic-resistant
and herbicide-resistant genes, which have raised increasing public concern about the
use of antibiotic-resistant and herbicide-selectable marker genes from a food safety and
environmental perspective. This raises concern when genetically modified crops and their
products become known to the public. In this scenario, concerted efforts have beenmade to
search for alternative selection systems that are safe and reliable to produce transgenic crops
to address public perception about the acceptability of GM crops and their products. In
recent years, alternative selection markers, such as positively selectable markers containing
either non-antibiotic resistance or native plant genes, have been evaluated for plant
transformation. Such markers have been successfully used in a variety of plant species.
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In addition, several other techniques such as co-transformation, site-specific
recombination, intra-chromosomal homologous recombination, and transposon-based
techniques have been used to develop transgenic plants to satisfy public concerns and
to address other biosafety issues. However, the processes involved in these techniques
are tedious, time consuming and not well understood. In the present scenario, ptxD/Phi
could serve as a very successful scheme to suppress weeds under natural, low-phosphorus
soils, even those resistant to the herbicide glyphosate, while allowing plants with ptxD
expression to develop optimally due to reduced competition from incapacitated weeds.
Production of genetically engineered microalgae and other microorganisms capable
of metabolizing Phi is also a viable approach for managing biological contaminants.
Therefore, ptxD transformants could be evaluated in soils with low phosphorus levels
using Phi as herbicide. As a selective agent, ptxD/Phi is less toxic to untransformed cells
compared to antibiotics, herbicides, or drugs and therefore appears to produce greater
frequencies for transformation. The ptxD/Phi technology offers one of the most favorable
techniques for transforming crops and other organisms with desired genes and ensures that
various issues related to biosafety of GM products are minimized. Ultimately, it remains
to be determined whether it can provide greater safety than the selectable marker genes
already in use.
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