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The receptor-ligand interaction evaluation is one important step in rational drug design.The databases that provide the structures of
the ligands are growing on a daily basis.Thismakes it impossible to test all the ligands for a target receptor. Hence, a ligand selection
before testing the ligands is needed. One possible approach is to evaluate a set of molecular descriptors. With the aim of describing
the characteristics of promising compounds for a specific receptor we introduce a data warehouse-based infrastructure to mine
molecular descriptors for virtual screening (VS). We performed experiments that consider as target the receptor HIV-1 protease
and different compounds for this protein. A set of 9 molecular descriptors are taken as the predictive attributes and the free energy
of binding is taken as a target attribute. By applying the J48 algorithm over the data we obtain decision tree models that achieved
up to 84% of accuracy. The models indicate which molecular descriptors and their respective values are relevant to influence good
FEB results. Using their rules we performed ligand selection on ZINC database. Our results show important reduction in ligands
selection to be applied in VS experiments; for instance, the best selection model picked only 0.21% of the total amount of drug-like
ligands.

1. Introduction

One of the most important steps in rational drug design
(RDD) is the receptor-ligand interaction evaluation at an
atomic level, which is achieved through molecular docking
simulations [1]. This is an in silico step that accelerates the
new drug discovery process. In these simulations a docking
algorithm predicts the best position and conformation of a
drug candidate (small molecule, compound or ligand) within
the constraints of a target receptor binding site in order to
correctly estimate their stability in terms of free energy of
binding scores [1, 2].

In the early stages of the drug discovery process
researchers can be interested not only in understanding the
interaction between one receptor-ligand but also in testing a
set of different drug candidates in a process defined as struc-
tured based virtual screening (VS) [3]. This VS technique for

identifying hit molecules is an important starting point in
the search for new inhibitors [3]. The ligands or compounds
can be obtained from different databases as ZINC [4] and
PubChem [5]. These repositories are growing daily at a high
rate, providing continuously more structures for improving
the quality of the VS experiments. However, this growth
makes it impossible to test all the available compounds
into a target receptor. Hence, it is essential to select the
most promising compounds before testing them in silico.
This selection can be performed with different approaches.
For instance, it may make use of molecular coordinates or
consider a set of molecular properties, also called molecular
descriptors.

With the aim to contribute to a more effective ligand
selection, in this workwe focus on a new strategy to easily and
efficiently describe important characteristics that indicate
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promising compounds to be investigated in VS experiments.
Initially we proposed data warehouse (DW) schemas which
are able to integrate molecular descriptors from different
databases and relate them with VS experimental data [6].
With this powerful infrastructure we are encouraged to
propose a methodology that makes use of the stored data
to perform mining experiments on molecular descriptors
characteristics. Such a methodology, which is based on
decision trees algorithm, aims at pointing out features related
to molecular descriptors that in turn will lead to good
free energy of binding (FEB) values on molecular docking
experiments.

To validate our proposed infrastructure, we performed
a VS case study using AutoDock4 [7] which considers as
target the receptor HIV-1 protease and 76 previously known
promising compounds for this protein (experiment 1). For
effectively extracting rules from the decision trees to select
ligands we performed another VS case study (experiment
2) considering 410 compounds and the same target protein.
Having these data stored in our data warehouse we could
generate the appropriate input data mining files. These data
sets obtained from our DW are composed by 9 molecular
descriptors and the free energy of binding (FEB). The FEB
is obtained from molecular docking experiments and is used
as target attribute.

Our approach to preprocess the input files is primordial
to achieve the expected data mining results. Over these input
files we applied the J48 decision tree algorithm achieving
up to 75% of accuracy in experiment 1 and up to 84% in
experiment 2. From the induced models of experiment 2 we
extracted rules used to effectively select ligands from ZINC
database.The rule that produced the smallest selection picked
only 0.21% of the total amount of drug-like ligands in ZINC,
while the rule that resulted in the largest selection picked
25% of this total. In face of this, our results show important
reduction in ligand selection to be applied in VS experiments.
Despite the stored data, ourDW is sufficiently generic to store
as many structures, molecular descriptors, and molecular
docking experiments as needed. Likewise, our data mining
methodology is generic enough to be applied over any data
stored in the proposed DW.

The remaining of this work is structured as follows.
Section 2 describes the material and methods including
the description of virtual screening and molecular docking
detailing the target receptor and ligands used on the case
study. Also on Section 2 we present the proposed infras-
tructure. In this infrastructure subsection we detailed the
considered molecular descriptors and the developed data
warehouse. Section 3 presents the results and discussion
including the two performed VS experiments and the ligand
selection step. Finally on Section 4we conclude the paper and
describe the future work.

2. Materials and Methods

2.1. Classification Task and Decision Trees. According to Tan
et al. [8] classification is a data mining task of assigning
objects to one of several predefined categories.The input data

for classification is a training set composed by a collection of
records characterized by a tuple (𝑥, 𝑦). In this tuple 𝑥 is a set
of predictive attributes and 𝑦 is the class label (also known as
target attribute or category).The learning step in classification
task builds a model 𝑓 where each attribute in 𝑥 is mapped to
one of the predefined discrete-valued and unordered target
attribute 𝑦 [8, 9]. There are many different classification
algorithms, for instance, support vector machines, neural
networks, naive Bayes, and the decision trees.

Decision trees output is a flowchart-like tree structure in
which the internal nodes denote a test on an attribute, each
branch represents an outcome of the test and each leaf node
is assigned a class label [9]. According to Freitas et al. [10]
this output graphically represents the discovered knowledge
being easily understandable by researchers from different
areas. Besides this kind of classification model points out to
the importance of the attributes used for prediction [10].

Decision trees can be used for classification since, given
a tuple 𝑥 for which the class label is unknown, the attribute
values of 𝑥 are tested against the decision tree and the path
traced defined the prediction class [11]. In doing so, we
decided to apply the C4.5 [12] classification decision tree
algorithm (WEKA J48 implementation [11]).

2.2. Virtual Screening and Molecular Docking. Rational drug
design [13] has been applied in order to accelerate the
drug discovery process. It is an important step because the
costs and time involved in the discovery of a new drug for
a specific target are constantly increasing [14]. The RDD
methodology can be based on the three-dimensional target
receptor structure. In this case, the starting point is to know
the target receptor structure and consequently its binding site.
Based on the binding or active site an inhibitor candidate (or
ligand) can be bounded to a stable complex.

Virtual screening (VS) is an in silico technique where a
set of large libraries of drug candidates are analyzed in order
to identify those structures which are most likely to bind
to a receptor target, typically a protein or an enzyme [15].
The structure-based virtual screening involves molecular
docking simulation of candidate ligands into a receptor target
applying a scoring function to estimate with which affinity
the ligand will bind to the receptor. This affinity is measured
by the free energy of binding (FEB), where the lower values
correspond to better receptor-ligand complexes. Then, the
best candidates are experimentally tested and the next steps
of a RDD process are performed.

To perform the experiments of thisworkwehad to choose
some tools and databases.There are manymolecular docking
softwares, for example, FlexE [16], Gold [17], and AutoDock
[7]. AutoDock is a popular and efficient docking tool that
we have used previously in docking experiments. For these
reasons we choose to consider this tool in our work.

Besides the molecular docking tool, the VS strategy
involves the use of ligand databases. As reviewed in [18] the
most important public compounds database is ChemBank
[19], ChemDB [20], NCI Database [21], PubChem [22], and
ZINC [4]. In this work we choose to use the ZINC database
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Figure 1: The three-dimensional structure of the HIV-1 protease
target receptor (PDB Code: 1HPV).

since it is a free database of commercially available com-
pounds that contains over 22million purchasable compounds
ready for molecular docking.

2.2.1. The Protein and the Ligands. In order to validate our
proposed methodology we performed a case study with two
experiments considering as the target receptor the protein
HIV-1 protease (PDB Code: 1HPV) [23], which is illustrated
in Figure 1. HIV-1 protease (HIV PR) is a retroviral protease
that is essential for the life cycle of HIV, the retrovirus
that causes immunodeficiency syndrome (AIDS) [23, 24].
The inhibition of the HIV-1 protease activity disrupts HIV-
1 ability to replicate and infect additional cells making this
protein inhibition the subject of innumerous pharmaceutical
research [24].

In the first case study (experiment 1) we have used 76
out of 100 ligands considered in [25] obtained from ZINC.
We decided not to use all the 100 ligands because for some
of them we have not found the corresponding ZINC entry
on ZINC database. Thus, to perform our VS experiments
we used AutoDock4 and the available scripts as described in
Lindstrom et al. [25]. Based on the characteristics of the best
molecular docking results of the first experiment we selected
a new set of 410 ligands also obtained from ZINC database.

2.3. Infrastructure. The proposed infrastructure applied
for mining molecular descriptors for virtual screening is
depicted in Figure 2. It is composed by 5 major interactive
modules: virtual screening, ligand databases, data warehouse,
mining, and ligand selection.

In the virtual screening module we collect both data
from ligands in public ligand databases and from proteins
structures in a PDB format. In these ligands and protein
we perform molecular docking simulations and hold the
respective results. From the diverse ligand databases we
collect the molecular descriptors for each ligand being used.
All data related to virtual screening and ligand databases
modules are properly processed and inserted into the DW
we have developed [6]. The stored data can then be pre-
processed so that we can start the mining experiments. To
achieve this we produce suitable input files for data mining
experiments creating models that indicate whether and how
a givenmolecular descriptor can have influence on good FEB
values in docking experiments. Based on the characteristics
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Figure 2: Infrastructure to mine molecular descriptors for virtual
screening. The structure is composed by 5 major interactive mod-
ules: virtual screening, ligand databases, data warehouse, mining,
and ligand selection.

identified on the data mining models we can perform ligand
selection on the ligand databases for new virtual screening
experiments.

2.3.1. Molecular Descriptors. In databases repositories of lig-
ands we can find different information about compounds and
such information can be very relevant for virtual screening.
A wide number of this type of repositories are available for
different research purposes. Among themwe canmention the
Cambridge StructuralDatabases (CSD) [26], ChemBank [19],
ChemDB [20], MMsINC Database [27], NCI Database [21],
PubChem [22], and ZINC [4]. Apart from CSD repository
which is private all the other repositories listed before are
public and do not hold a license charge.

All these databases store a different set of ligands. All
of them provide for the stored ligands both their spatial
coordinates and a set of properties or molecular descriptors.
These properties are encoded information from the molec-
ular structures where the molecular descriptors become
numerical values representing such information [28, 29].

In [18] it is possible to find a comparison among the public
ligand databases. A set of 10 features were evaluated for each
of the public ligand databases mentioned before, with the
aim identifying which of them is the most comprehensive
and suitable for VS. The authors pointed out ZINC as the
most suitable public ligand database in terms of features
availability. ZINC is a database made available since 2005
and currently stores over than 21 million molecules, with a
set of 9 molecular descriptors to describe them. Even though
other public molecular databases store molecular descriptors
in their own way, here we depict the 9 molecular descriptors
presented in ZINC and that are considered in experiment 1.
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Besides, we canmention that the first 5 molecular descriptors
listed below match with the ones in the 6 public ligand
databases cited before:

(i) molecular weight (MwT);
(ii) predicted octanol-water partition coefficient (log𝑃);
(iii) number of hydrogen bond donors (HBD);
(iv) number of hydrogen bond acceptors (HBA);
(v) number of rotatable bonds (NRB);
(vi) apolar desolvation energy (ADE);
(vii) polar desolvation energy (PDE);
(viii) total polar surface area (TPSA);
(ix) charge (Ch).

2.3.2. Data Warehouse. Data warehouse can be defined as
a repository holding information from multiple sources
[9]. This information is stored under a unified schema to
facilitate decision making and built in a way to satisfy a
multidimensional structure [30], also called analyticalmodel.
We have introduced aDWschema able to integratemolecular
descriptors from different public ligand databases as well as
able to relate them with virtual screening experiments data
[6]. The main idea of our DW is not only to provide a single
source capable of storing as many molecular descriptors as
the ones provided by different public liganddatabases but also
to provide historic records of virtual screening experiments
using molecular descriptors.

The mentioned DW [6] contains 6 dimension tables to
represent the subject we are modelling, around a central
fact table, called virtual screening. This DW schema can
provide data about characteristics appearing as relevant in a
virtual screening experiment, shared in the dimension tables
about the whole experiment; molecular descriptors; database
from with structures were collected; proteins; ligands and
atoms. All the dimension tables are structured around the
major term, the fact table, which here is represented by the
virtual screening result itself. That is, it holds all ID from
the dimensions, plus values that determine the quality of the
docking experiments: FEB and root mean square deviation
(RMSD) values. The different kinds of data format one can
retrieve from the DW allow us to build proper data sets for
mining experiments.

2.3.3. Data Sets. In order to validate our proposed method-
ology and DW we performed a case study considering the
HIV-1 protease receptor and 76 ligands as we described on
Section 2.2.1. This case study is experiment 1. For experiment
2 we performed the case study considering 410 ligands
described on Section 2.2.1. After preparing the receptor and
ligands entries we performed VS experiment using AD4 soft-
ware where we choose for both experiments the Lamarckian
genetic algorithm with the following parameters: 10 runs,
10 individuals in population, maximum number of energy
evaluations defined as 250,000, and maximum number of
generations set to 27,000.

Table 1: Example of data mining input file format. Column 1
represents the ligand identification (not used on data mining
experiments). Columns MwT, log𝑃, HBD, HBA, and so forth cor-
respond to the molecular descriptors for each ligand, our predictive
attributes. The last column is the target attribute FEB.

Ligand MwT log𝑃 HBD HBA ⋅ ⋅ ⋅ FEB
1 297.44 4.61 1 2 ⋅ ⋅ ⋅ −8.50

2 348.47 3.82 2 4 ⋅ ⋅ ⋅ −7.96

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑁 200.19 0.54 2 5 ⋅ ⋅ ⋅ −6.89

Following the previous steps the results were stored on
DW tables:

(i) Protein stores only the information about the HIV-1
protease receptor;

(ii) Mol descriptor, database, ligand, and atom save the
information about the 76 used ligands (considered in
experiment 1), comprising their structures, molecular
descriptors, and provenance data;

(iii) Mol descriptor, database, ligand, and atom save the
information about the 410 used ligands (considered in
experiment 2), comprising their structures,molecular
descriptors, and provenance data;

(iv) Experiments record the molecular docking simula-
tion results.

Thus, using the stored data in our DW we generated the
appropriate data mining inputs. In our case study of exper-
iments 1 and 2 our input considers as predictive attributes
the values of the 9 most suitable molecular descriptors
and as target attribute the value of FEB obtained from the
molecular docking simulation between the receptor and a
determined ligand. For experiment 2 our input considers as
predictive attributes the same 9 molecular descriptors which
are presented in Section 2.3.1. Table 1 illustrates our data
mining inputs.

In our case study we choose to apply the C4.5 [12] classifi-
cation decision tree algorithm using the J48 implementation
on WEKA package [11]. However, the J48 classification
algorithm requires a categorical target attribute instead of a
continuous one. Since the FEB value is continuous we need
to discretize its values. We discretize these values using two
different methodologies: by equal frequency (Method 1) and
by equal width (Method 2) [8]. Moreover, we split the FEB in
2 (Good and Bad), 3 (Good, Regular, and Bad), and 4 classes
(Excellent, Good, Regular, and Bad) for experiments 1 and 2.
Thus for each experiment in case study we generated 6 input
files: 3 files for each discretization method.

3. Results and Discussion

In order to validate the new strategy proposed we performed
two case studies: experiment 1 is applied to validate our
architecture and experiment 2 is used to generate a set of
interesting rules about the performed docking experiments
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Figure 3:Decision tree induced for theHIV-1 proteasewith 2 classes
considering 9 molecular descriptors.

considering as target receptor the protein HIV-1 protease
(PDB Code: 1HPV) [23].

From the mining results with the J48 algorithm we
evaluate the induced models by typical measures: the rate
of correctly classified instances, accuracy (higher values are
better), the size of the tree (good values are related to inter-
pretable trees), the root mean-squared error (RMSE), and
mean absolute error (MAE) (smaller values are expected).
We also considered the 𝐹-measure (FM), a rate related to the
precision, and recall where higher valuesmean bettermodels.
For experiment 2 we also analysed the induced decision trees
using the Ordinal Classification (OC) Index metric [31].

3.1. Experiment 1: Validating Our Infrastructure. As we men-
tioned before we induced 6 decision tree models using J48
algorithm with default parameters of execution: discretizing
the FEB value in 2, 3, and 4 classes and considering the two
discretization methods, by equal frequency (Method 1) and
by equal width (Method 2) for each case. Table 2 summarizes
the experiments’ results considering the 6 prepared input
files.

For discretization in 2 classes, we obtained the same
results for Methods 1 and 2 since they induced classes that
have about the same number of instances in the two cases.
These were the best models with an accuracy of 75% and
an interpretable final tree model. Observing the evaluation
measures of the 3 classes’ inputs, discretization of Method 2,
by equal width, obtained better results than discretization by
equal frequency. With respect to the 4 classes’ inputs, we can
see theworst accuracy values for both discretizationmethods.

The induced decision tree model with two classes is
depicted in Figure 3. By this figure we can say that there are
two rules to determine if a docking experiment is capable of
producing good estimated FEB value for the HIV-1 protease.

(i) The first rule indicates that ligands having the molec-
ular weight lower than 246 mole have chance to be

Table 2: Evaluation metric results of the first set of data mining
experiments for validating the proposed architecture. Columns 1
and 2 detail the decision tree experiment. Column 3 corresponds to
the accuracy value of the respective decision tree. Column 4 is the
size of the tree. Columns 5 and 6 are the RMSE and MAE metrics.
Column 7 is the 𝐹-measure obtained in each induced decision tree.

Classes Method Accuracy Size RMSE MAE FM

2 1 75 11 0.45 0.27 0.75
2 75 11 0.45 0.27 0.75

3 1 61.84 19 0.47 0.27 0.62
2 73.32 18 0.44 0.21 0.73

4 1 58.78 17 0.36 0.25 0.59
2 64.47 19 0.40 0.19 0.65

Table 3: Evaluation metric results of the second set of data mining
experiments for generating rules about the molecular descriptors.
Columns 1 and 2 are the definition of the decision tree experiment
characteristics. Columns 3–7 correspond to the resulted metrics for
each performed experiment: accuracy, size, RMSE, MAE, and 𝐹-
measure, respectively.

Classes Method Accuracy Size RMSE MAE FM

2 1 84.15 9 0.35 0.22 0.84
2 84.39 7 0.34 0.20 0.84

3 1 64.88 9 0.39 0.28 0.65
2 77.81 13 0.33 0.20 0.78

4 1 58.78 17 0.36 0.25 0.59
2 68.29 13 0.34 0.22 0.67

promising if they have over 2 hydrogen bonds donors
as well as present a positive charge.

(ii) In the other hand, if we look for bigger ligands, that
is, ligands with a molecular weight larger than 246
moles, it is necessary that they have a flexibility with
less than 4 numbers of rotatable bounds and an apolar
desolvation energy lower than 1.92 kcal/mol.

3.2. Experiment 2: Generating Ligand Selection Rules. In this
VS experiment we considered a new set of 410 ligands and the
same HIV-1 protease as receptor. We also prepared the same
6 input files as detailed on Table 3 and evaluate the induced
decision trees with the same metrics of experiment 1.

In order to better analyse the induced decision trees
we applied the metric Ordinal Classification (OC) Index
[31]. The OC metric is a form to evaluate a multiclass
classification for which there is an inherent order between the
classes but not a meaningful numeric difference [31]. This is
exactly what we have for FEB discretization. This alternative
OC measure considers the generated confusion matrix to
calculate an error coefficient that should capture how much
a result diverges from the ideal prediction and howmuch the
classifier is inconsistent about a relative order of the classes.
For instance, if we consider the following conditions: (i) the
input file with 3 discretized FEB values (Good, Regular, and
Bad); (ii) some instance has the value Good for the target
FEB attribute and (iii) the induced decision tree incorrectly
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Table 4: Evaluation of the obtained decision trees using the
metric Ordinal Classification Index. Columns 1 and 2 describe the
performed decision tree experiment and Column 3 describes the
value of OC for each experiment where lower values indicate better
confusion matrix result.

Classes Method OC

2 1 0.26375
2 0.26051

3 1 0.47436
2 0.31321

4 1 0.53126
2 0.37965

predicts the class of this instance. In this case it will be
better to classify the instance as Regular rather than as Bad.
Also, considering that the induced decision tree incorrectly
predicts the class of this instance it will be better to classify
it as Regular rather than as Bad. These are the errors that are
computed by the OC measure.

Analysing Tables 3 and 4 we can notice that the best
results for 2, 3, and 4 classes for both accuracy, 𝐹-measure,
and OC are obtained when considering the discretization
Method 2, by equal width. Between these results the best
one is for two classes of FEB: Good and Bad as detailed on
Figure 4.

Although the best results are obtained with 2 classes, it
is also important to analyze the rules related to Excellent FEB
values.Thus, we choose to extract rules form the decision tree
obtained with the four classes and discretizationMethod 2 by
equal width detailed on Figure 5.

Analysing the induced decision trees of experiment 2
and including the results with 3 classes we can see that the
molecular descriptors that are more frequent on these trees
are the molecular weight (MwT), log𝑃, number of rotatable
bonds (NRB), and charge.We can conclude that for this target
receptor thesemolecular characteristics are directly related to
Good and Excellent FEB values.

3.3. Ligands Selection. The main objective of this work is
to propose a methodology to select the most promising
ligands for a target receptor. In order to achieve that we use
molecular descriptors characteristics obtained from decision
trees induced frommolecular docking experiments results of
a small set of ligands. Following our proposed methodology
(Figure 2) the next step is the ligand selection using the rules
extracted from the obtained decision trees. We choose to
consider the rules obtained from experiment 2 considering
2 and 4 classes and the discretization Method 2.

First, to compare our selection results, we choose
the drug-like subset from ZINC database with 15,798,630
compounds in the August of 2013 (https://zinc.docking.
org/browse/subsets/).The rules used byZINC to generate this
subset [32] are detailed on Table 5.

We start our ligands selection from the subset detailed
on Table 5. We modify in these parameters only the values
indicated by the selected rules. In Table 6 we resume the
selected rules of Good and Excellent from the decision trees

MwT
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Bad

Bad Good
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≤277.369

≤232.239

≤3.76 >3.76

>232.239
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Figure 4: Experiment 2: decision tree induced for the HIV-1
protease with 2 classes, discretizing method by equal width.
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Figure 5: Experiment 2: decision tree induced for the HIV-1
protease with 4 classes, discretizing method by equal width.

Table 5: Molecular descriptors rules of the drug-like subset from
ZINC database. In Column 1 are the molecular descriptors and in
Columns 2 and 3 are the minimum and maximum values for each
descriptor.

Descriptor Minimum Maximum
Molecular weight (MwT) 150 500
log𝑃 −4 5
Number of HBD 0 10
Number of HBA 0 10
Number of rotatable bonds (NRB) 0 8
Apolar desolvation energy (ADE) −100 40
Polar desolvation energy (PDE) −400 1
Total polar surface area (TPSA) 0 150
Charge (Ch) −5 5

detailed on Figures 4 and 5. We performed the ligands
selection using the PubChem [22] interface but choosing only
the data from ZINC database [4].

https://zinc.docking.org/browse/subsets/
https://zinc.docking.org/browse/subsets/
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Table 6: Ligands selection results considering the rules induced
by decision trees. Column 1 describes the experiment that induced
the decision tree. Column 2 describes the extracted rules. Column
3 shows the respective class of each selected rule and Column 4
describes the total number of selected ligands according to each rule.

Tree Rules Class Selection

2 classes
Method 2

MwT > 232.239
and

log𝑃 > 3.76
Good 1,945,022

MwT > 277.369
and

log𝑃≤ 3.76
Good 4,003,380

4 classes
Method 2

MwT > 232.239,
MwT ≤ 277.369,

and
log𝑃 > 3.88

Good 33,211

MwT > 277.369
and

NBR ≤ 3
Good 947,028

MwT > 277.369,
MwT ≤ 319.313,

and
NBR > 3

Good 634,513

MwT > 319.316
and

NBR > 3
Excellent 1,043,884

From the results described on Table 6 we notice that the
best rule for ligand’s selection is MwT between 232.239 and
277.369 mole and log𝑃 greater than 3.88. This rule selected
33,211 drug-like molecules from ZINC. It corresponds to
0.21% of the total number of ligands in this database, being an
effective rule to reduce the number of ligands to be considered
on VS experiments for this target receptor.

The other rules for Good class selected from 4.02% (fifth
line on Table 6) to 25.34% (second line on Table 6) of the total
number of ligands in the drug-like subset database, also being
interesting rules to reduce the number of ligands to be used
on VS experiments for this target receptor. Considering the
unique rule for the class Excellent about 6.61% of the drug-
like ligands were selected. Although the number of selected
ligands for the rules is still high (from 33,211 to 4,003,380),
these initial induced rules effectively reduced set of ligands
to be explored in VS experiments validating our proposal
methodology.

4. Conclusions

Molecular docking simulations can be viewed as one of
the most important steps in RDD to accelerate the new
drugs discovery process. However, since ligands databases
are daily growing, it is in a way impossible to test all the
available compounds for a target receptor. In this context it
is essential to select the most promising compounds before
testing them in silico. Thus, in this article, we have presented

an approach to mine molecular descriptors data for virtual
screening, having a DW schema as support for providing
mining inputs. We presented a methodology that makes use
of ligands and protein data obtained from public databases,
relating the ligandsmolecular descriptors to virtual screening
experiments. These data were properly stored in a DW built
for this subject, which is able to produce suitable inputs for
the task of mining this kind of data.

To validate our proposal, we performed virtual screening
considering as a target receptor the HIV-1 protease and 76
known promising ligands for this protein. Our mining inputs
contain molecular descriptors as predictive attributes and
the estimated FEB value obtained from docking experiments
as the target one. We choose to apply the J48 decision tree
algorithm onWEKA [11]. However, this algorithm requires a
categorical target attribute instead of a continuous one. Thus
we discretized FEB values by equal frequency (Method 1) and
by equal width (Method 2). Moreover, we split the FEB in 2
(Good and Bad), 3 (Good, Regular, and Bad), and 4 classes
(Excellent, Good, Regular, and Bad).

Experiment 2 was performed to generate a set of inter-
esting rules about the performed docking experiments to
be used on ligand selection step. In this VS experiment we
considered a new set of 410 ligands and the same receptor
preparing the same input data mining files. Analysing the
results, we can notice that the best models are for discretiza-
tion Method 2 and FEB separated in two classes. Besides,
we can see that the most frequent molecular descriptors that
appear on trees are the MwT, log𝑃, NRB, and charge.

Following our proposed methodology, the next step was
the ligand selection using the rules extracted from the
obtained decision trees. We choose to consider the rules
obtained from experiment 2 considering 2 and 4 classes and
the discretization Method 2. We choose the drug-like subset
from ZINC database with more than 15 million compounds
to apply our selection rules using the PubChem [22] interface
but choose as source the ZINC database [4]. From the results
we notice that the best rule for ligand’s selection is selected
0.21% of the total number of ligands in this database, being an
effective rule to reduce the number of ligands to be considered
on VS experiments for this target receptor.

We intend to further perform VS experiments consid-
ering more ligands and refine the generated rules. Besides,
we are managing to apply this proposed methodology into
the selection of new promising compounds to be in silico
tested for different protein targets. For instance, we have
performed molecular docking simulations considering as
target the AcrB protein (PDB Code: 1IWG) present in the
plasmatic membrane [33]. Membrane transport proteins are
part of the drug efflux and are an important mechanism of
bacterial resistance to multiple antibiotics and biocides [34].
Thus it is very important to find promising drug candidates to
inhibit this protein. After the molecular docking simulation
we will be able to store these data in the proposed DW and
we will apply all the methodologies described in this work in
order to help to find a set of new promising ligands to be in
silico analyzed.
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Abbreviations

ACC: Accuracy
ADE: Apolar desolvation energy
AIDS: Acquired immunodeficiency syndrome
DW: Data warehouse
FEB: Free energy of binding
FM: 𝐹-measure
HBA: Number of hydrogen bond acceptors
HBD: Number of hydrogen bond donors
HIV: Human immunodeficiency virus
log𝑃: Predicted octanol-water partition coefficient
MAE: Mean absolute error
MwT: Molecular weight
NRB: Number of rotatable bonds
OC: Ordinal Classification Index
PDB: Protein Data Bank
PDE: Polar desolvation energy
RDD: Rational drug design
RMSD: Root mean square deviation
RMSE: Root mean squared error
TPSA: Total polar surface area
VS: Virtual screening.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

Thisworkwas supported in part by grants fromCNPq, Brazil,
485543/2013-3 to Adriano V. Werhli, from CNPq, Brazil,
476764/2013-0 to Ana T. Winck, and from CNPq, Brazil,
477462/2013-8 to Karina S. Machado. Vinicius Rosa Seus is
supported by a CNPq, Brazil, undergraduate scholarship.

References

[1] X.-Y. Meng, H.-X. Zhang, M. Mezei, and M. Cui, “Molecular
docking: a powerful approach for structure-based drug discov-
ery,”Current Computer-AidedDrugDesign, vol. 7, no. 2, pp. 146–
157, 2011.

[2] E. Yuriev and P. A. Ramsland, “Latest developments in molecu-
lar docking: 2010–2011 in review,” Journal of Molecular Recogni-
tion, vol. 26, no. 5, pp. 215–239, 2013.

[3] T. Cheng, Q. Li, Z. Zhou, Y.Wang, and S. H. Bryant, “Structure-
based virtual screening for drug discovery: a problem-centric
review,”The AAPS Journal, vol. 14, no. 1, pp. 133–141, 2012.

[4] J. J. Irwin, T. Sterling, M. M. Mysinger, E. S. Bolstad, and R. G.
Coleman, “Zinc: a free tool to discover chemistry for biology,”
Journal of Chemical Information andModeling, vol. 52, no. 7, pp.
1757–1768, 2012.

[5] E. E. Bolton, Y. Wang, P. A. Thiessen, and S. H. Bryant, “Pub-
Chem: integrated platform of small molecules and biological
activities,” Annual Reports in Computational Chemistry, vol. 4,
pp. 217–241, 2008.

[6] G. X. Perazzo, A. T. Winck, and K. S. Machado, “A data
warehouse as an infrastructure to mine molecular descriptors
for virtual screening,” in Proceedings of the 28th Annual ACM

Symposium on Applied Computing (SAC ’13), pp. 1335–1336,
Coimbra, Portugal, 2013.

[7] G. M. Morris, R. Huey, W. Lindstrom et al., “AutoDock4 and
AutoDockTools4: automated docking with selective receptor
flexibility,” Journal of Computational Chemistry, vol. 30, no. 16,
pp. 2785–2791, 2009.

[8] P. N. Tan, M. Steinbach, and V. Kumar, Introduction to Data
Mining, Addison-Wesley Longman, Boston, Mass, USA, 1st
edition, 2005.

[9] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and
Techniques, Morgan Kaufmann, San Francisco, Calif, USA, 3rd
edition, 2011.

[10] A. A. Freitas, D. C.Wieser, and R. Apweiler, “On the importance
of comprehensible classification models for protein function
prediction,” IEEE/ACM Transactions on Computational Biology
and Bioinformatics, vol. 7, no. 1, pp. 172–182, 2010.

[11] I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical
Machine Learning Tools and Techniques, Morgan Kaufmann,
Burlington, Mass, USA, 3rd edition, 2011.

[12] J. R. Quinlan, “Induction of decision trees,” Machine Learning,
vol. 1, no. 1, pp. 81–106, 1986.

[13] I. D. Kuntz, “Structure-based strategies for drug design and
discovery,” Science, vol. 257, no. 5073, pp. 1078–1082, 1992.

[14] C. P. Adams and V. V. Brantner, “Spending on new drug
development,”Health Economics, vol. 19, no. 2, pp. 130–141, 2010.

[15] P. D. Lyne, “Structure-based virtual screening: an overview,”
Drug Discovery Today, vol. 7, no. 20, pp. 1047–1055, 2002.

[16] H. Claußen, C. Buning, M. Rarey, and T. Lengauer, “FLEXE:
efficient molecular docking considering protein structure vari-
ations,” Journal ofMolecular Biology, vol. 308, no. 2, pp. 377–395,
2001.

[17] M. L. Verdonk, J. C. Cole, M. J. Hartshorn, C. W. Murray, and
R. D. Taylor, “Improved protein-ligand docking using GOLD,”
Proteins: Structure, Function and Genetics, vol. 52, no. 4, pp.
609–623, 2003.

[18] A. T.Winck, C. V. Quevedo, K. S. Machado, O. N. de Souza, and
D. D. Ruiz, “A comparative analysis of public ligand databases
based on molecular descriptors,” in Proceedings of the 7th
Brazilian Symposium on Bioinformatics (BSB ’12), vol. 7409, pp.
156–167, Campo Grande, Brazil, August 2012.

[19] K. P. Seiler, G. A. George,M. P.Happ et al., “ChemBank: a small-
molecule screening and cheminformatics resource database,”
Nucleic Acids Research, vol. 36, no. 1, pp. D351–D359, 2008.

[20] J. H. Chen, E. Linstead, S. J. Swamidass, D. Wang, and P. Baldi,
“ChemDB update: full-text search and virtual chemical space,”
Bioinformatics, vol. 23, no. 17, pp. 2348–2351, 2007.

[21] W.-D. Ihlenfeldt, J. H. Voigt, B. Bienfait, F. Oellien, and M.
C. Nicklaus, “Enhanced CACTVS browser of the open NCI
database,” Journal of Chemical Information and Computer Sci-
ences, vol. 42, no. 1, pp. 46–57, 2002.

[22] C. P. Austin, L. S. Brady, T. R. Insel, and F. S. Collins, “Molecular
biology: NIH molecular libraries initiative,” Science, vol. 306,
no. 5699, pp. 1138–1139, 2004.

[23] E. E. Kim, C. T. Baker, M. D. Dwyer et al., “Crystal structure
of HIV-1 protease in complex with VX-478, a potent and orally
bioavailable inhibitor of the enzyme,” Journal of the American
Chemical Society, vol. 117, no. 3, pp. 1181–1182, 1995.

[24] A. Brik andC.-H.Wong, “HIV-1 protease: mechanism and drug
discovery,” Organic & Biomolecular Chemistry, vol. 1, no. 1, pp.
5–14, 2003.



BioMed Research International 9

[25] W. Lindstrom, C. Weber, G. Morris, and R. Huey, Using
AutoDock forVirtual Screening,MolecularGraphics Laboratory,
the Scripps Research Institute, La Jolla, Calif, USA, 2008.

[26] F. H. Allen, “The cambridge structural database: a quarter of a
million crystal structures and rising,” Acta Crystallographica B:
Structural Science, vol. 58, no. 3, pp. 380–388, 2002.

[27] J.Masciocchi, G. Frau,M. Fanton et al., “MMsINC: a large-scale
chemoinformatics database,”Nucleic Acids Research, vol. 37, no.
1, pp. D284–D290, 2009.

[28] J. Portugal, “Evaluation of molecular descriptors for antitumor
drugs with respect to noncovalent binding toDNA and antipro-
liferative activity,” BMC Pharmacology, vol. 9, article 11, 2009.

[29] R. Todeschini andV.Consonni,Handbook ofMolecularDescrip-
tors, John Wiley & Sons, Weinheim, Germany, 2000.

[30] R. Kimball and M. Ross, The Data Warehouse Toolkit: The
Complete Guide to Dimensional Modeling, John Wiley & Sons,
New York, NY, USA, 2nd edition, 2002.

[31] J. S. Cardoso andR. Sousa, “Measuring the performance of ordi-
nal classification,” International Journal of Pattern Recognition
and Artificial Intelligence, vol. 25, no. 8, pp. 1173–1195, 2011.

[32] C. A. Lipinski, “Drug-like properties and the causes of poor
solubility and poor permeability,” Journal of Pharmacological
and Toxicological Methods, vol. 44, no. 1, pp. 235–249, 2000.

[33] S. Murakami, R. Nakashima, E. Yamashita, and A. Yamaguchi,
“Crystal structure of bacterial multidrug efflux transporter
AcrB,” Nature, vol. 419, no. 6907, pp. 587–593, 2002.

[34] C. F. Higgins, “Multiple molecular mechanisms for multidrug
resistance transporters,” Nature, vol. 446, no. 7137, pp. 749–757,
2007.


