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Abstract
This work is a review of the ways in which machine learning has been used in order to plan,
improve or aid the problem of moving patients through healthcare services. We decompose the
patient flow problem into four subcategories: prediction of demand on a healthcare institution,
prediction of the demand and resource required to transfer patients from the emergency
department to the hospital, prediction of potential resource required for the treatment and
movement of inpatients and prediction of length-of-stay and discharge timing. We argue that there
are benefits to both approaches of considering the healthcare institution as a whole as well as the
patient by patient case and that ideally a combination of these would be best for improving patient
flow through hospitals. We also argue that it is essential for there to be a shared dataset that will
allow researchers to benchmark their algorithms on and thereby allow future researchers to build
on that which has already been done. We conclude that machine learning for the improvement of
patient flow is still a young field with very few papers tailor-making machine learning methods for
the problem being considered. Future works should consider the need to transfer algorithms
trained on a dataset to multiple hospitals and allowing for dynamic algorithms which will allow
real-time decision-making to help clinical staff on the shop floor.

1. Introduction

When a country’s population and average age increase every year, it is inevitable that a strain is placed upon
its healthcare system. This is due to the clinical attention that is generally required by older people and the
increasing size of the ageing population. This is the situation faced by many countries in the world today
(Andrews 2001, Tinker 2002, Oliver et al 2014). National media outlets can be particularly vocal about the
performance of healthcare systems which makes the desire for a solution to poor efficiency in healthcare
systems not only technically and economically desirable, but also politically important. The ability to cope
with the demand for efficient healthcare has recently further been compromised due to the coronavirus
pandemic that has swept the world which has shut down the normal operation of many healthcare
institutions and reduced their capacity to treat patients significantly in many cases (Chen et al 2020, Hick
et al 2020, Janbabai et al 2020). This has consequently increased the pressure placed on healthcare
institutions as well as extending the waiting times faced by patients (Propper et al 2020). Despite numerous
attempts by governments and hospitals to apply traditional management techniques and lean practices to
improve the throughput of patients through hospitals, very little has proven effective in the long-term
running of the hospital (Hall 2013, Rutman et al 2015). Even fewer techniques developed have proved easily
extendable to multiple hospitals as a simple solution to maximising flow throughput.

It is common today for hospitals today to have digital systems in which all patient data is recorded. These
are called the electronic health records and store information on the patients passing through the hospital as
well as the state of the hospital at a given time. With the abundance of this data, it has become increasingly
feasible to adopt algorithmic approaches to the running of hospitals. As a result, many researchers have
turned to utilising machine learning amongst other algorithmic approaches in order to tackle the issue of
maximising patient flow through hospitals. In using this algorithmic approach, researchers hope to create
solutions which can extend to any hospital which has an electronic health record system, thereby making
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their solutions ‘generalisable’ to the rest of the industry. In this review we aim to provide an understanding of
the landscape of research that has been developed in the field of machine learning applied to the patient flow
problem.

1.1. What is patient flow?
Patient Flow is a term used within healthcare services to refer to the way in which patients are moved
through a healthcare facility. It involves the medical care, resources, and internal systems needed to get
patients from admission to discharge while maintaining a standard of quality of care and satisfaction for the
patient (Hall 2013). Many works have shown that patient flow can be predictable using machine learning
techniques. These works aim to use these predictions to improve the flow of patients and resources in order
to provide a faster and better service to patients.

2. Motivation

Patient flow is a topic that has been studied extensively by various researchers of differing backgrounds. As a
result the literature associated with the improvement of patient flow is vast and a diverse range of techniques
from different disciplines are employed in an attempt to tackle the problem. In this review, we will primarily
focus on the history of how patient flow has been handled, as well as techniques that involve the use of
machine learning methods. This is, however, by no means an exhaustive review of all methods used for the
improvement of patient flow. It should also be noted that this review is not intended to summarise the
machine learning methods that have been applied to patient flow or the best performing models for each task
(as seen in Chen et al 2020) and so the performances of the models will not be included. Rather, it is to
provide some structure to the field of machine learning applied to patient flow, to allow researchers to see
how machine learning has already been applied to the patient flow problem and where there are (to the best
of our knowledge) gaps in the literature.

While some authors have attempted to tackle patient flow as a single system through a hospital, most
researchers break the problem into smaller constituent problems to tackle. These constituent parts are usually
associated with the key flow bottlenecks in hospitals and these are: (a) prediction of patient admissions and
demand on emergency departments (EDs), (b) prediction of flow through the emergency-to-inpatient
interface (i.e. handover from ED to the hospital), (c) prediction of movement of patients (and associated
resource) within the hospital and (d) prediction of length-of-stay. In this review we will discuss the work
published in all of these topics and how they have been used to improve patient flow through hospitals.

3. Outline

Figure 1 shows the process of hospitalisation for many hospitals with an ED (although many hospitals may
also receive patients from different EDs). Hospital visits can be decomposed into two overarching types of
admission: elective (planned) and emergency (unplanned). It is generally the unplanned emergency
admissions which cause the greatest disruptions to patient flow through hospitals (Tancrez et al 2009).

Elective admissions are planned prior to their admission. As a result, the resource for these patients has
been planned and there is bed space should it be needed. Elective patients have also been shown to have
consistent lengths of stay in hospitals meaning they cause minimal disruption to the flow of the hospital
(Kelly et al 2012).

Due to each emergency case being different there can be no estimate of the resource required or how long
each patient will stay in hospital prior to their arrival. These therefore have become popular topics for the use
of machine learning for prediction. Should these patients need hospitalisation, there is again little warning
and so adapting the planning of the hospital becomes difficult.

In the following sections we will look at the work that has been carried out in applying machine learning
to all of these sections of the hospitalisation process, the techniques that have been used and where we believe
researchers should focus their attention on in the future to further improve patient flow.

4. How patient flow is currently managed

The effect of poor resource management on patient flow within the hospital is well known. Conceptually,
high patient flow can be achieved by the effective balance of supply and demand within the system. If the
supply of beds, staff and equipment is readily available to meet the needs of patients arriving at the door,
then few perceivable barriers exist to prevent their immediate usage. However, studies of waiting lists
have long shown that increasing supply in fact leads to a proportional stimulation of demand,
highlighting the inadequacies of using relative need for services solely for the basis of resource provision
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Figure 1. A visualisation of the process of hospitalisation and the main considerations at each stage from a patient flow
perspective.

(Feldstein and Severson 1964). If increasing supply cannot satiate demand, the optimisation of existing
resources is an obvious and necessary strategy. Oredsson et al (2011) reviewed modern triage-based
interventions designed to improve patient flow in emergency departments, demonstrating that the most
significant improvements are observed through the use of fast-track and team triage approaches, indicating
the importance of casemix as a fundamental consideration.

Current approaches to the management of patient flow in hospitals are typically driven by the need to
report and improve upon key performance objectives. Within the United Kingdom National Health Service
(NHS), the introduction of the Patient’s Charter allowed providers greater flexibility to curate local
operational policies, whilst imposing stricter performance and reporting structures across the system (NHS
England 2015). By specifying the metrics required to deliver an adequate level of care, the identification and
treatment of bottlenecks in the system naturally become a focus of attention. Such metrics are often objective
and time-based, such as the time taken for acute arrivals to be admitted or discharged. Perhaps the most
significant of these targets introduced within the NHS was that of the 4 h waiting limit for ED arrivals,
stipulating the need to admit, transfer or discharge a patient within this timeframe (Stevens 2004). The most
widely used approach to fulfil this target in the UK is the use of the ‘See and Treat’ framework, which
encourages rapid on-arrival assessment of the patients needs by an individual clinician, and allows full
autonomy to that clinician to decide the treatments, referrals and investigations necessary to facilitate their
care, or be discharged as appropriate. Saint Lamont (2005) discussed the benefits and limitations of this
approach, including the barriers to adoption observed when additional resources or suitably trained staff are
unavailable.

Anecdotally, a lack of efficiency and poor patient flow is typically perceived to correlate with a reduction
in staff availability. This observation is particularly valid where patient satisfaction is concerned. A study by
Thompson et al (1996) showed positive overall satisfaction was associated with the perception of short
waiting times and accurate information delivery, rather than actual waiting times. Whilst increasing staff
within the emergency department may improve turnaround times for rapid triage and discharge of
non-urgent cases, it is less likely to result in an improvement for patients requiring admission, as shown by
Bucheli and Martina (2004), indicating that the true bottlenecks exist further in the pathway beyond the
emergency department. This fact has been clearly recognised in recent guidance, where the focus on enabling
patient flow has shifted away from the performance of the ED and towards acute networks and support
services (Ham 2017). At the one end, Clinical Streaming has been introduced as the process by which
patients are assigned to one of several parallel pathways, according to their care requirements, allowing for
more structured and reliable coordination of support services within the hospital. At the other, Discharge to
Assess (D2A) models emphasise the need to address unnecessary delays in discharging clinically optimised
patients from hospital, due to a lack of funding or support within the community (Hyslop 2020).
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5. Machine learning for patient admissions

5.1. Prediction of emergency admissions
The number of patient admissions to the hospital is arguably one of the most important aspects of patient
flow. This determines the demand that is placed upon the hospital and therefore affects how patients can be
treated. The importance of predicting patient admissions is reflected by the number of publications in this
area. However, with little information on patients prior to their arrival it is also one of the most difficult areas
of patient flow to create accurate predictions.

Boyle et al (2008, 2012) and Batal et al (2001) predict the number of emergency admissions using
multiple regression. They frame the problem such that they forecast for daily admissions as well as weekly
and monthly admissions. The use of regression is for interpretability of the predictions as well as the
development of a simple model to improve the chance of being able to generalise to other hospitals. As
mentioned previously, due to limited information on these patients prior to arrival, the authors use the days
of the week and national holidays as features.

Whereas the aforementioned studies approach the problem as a static prediction (i.e. using information
from a snapshot in time to make predictions), Tandberg and Qualls (1994), Au-Yeung et al (2009), and
Schweigler et al (2009) treat the problem as a time-series. They use autoregressive models to account for the
trajectory of the numbers of patients. This approach is more likely to be successful than a static approach due
to the incorporation of data close to the event of interest. However, the benefit of a static approach (if the
model is accurate) is that a prediction can be made at an early stage and action can be taken based on that
prediction without needing to wait for the time-series to unfold. These time-series approaches also perform
regressions to predict patient volumes in the coming days, weeks and months.

While the seasonal features such as weather and time of the year have been shown to be helpful with
predicting patient numbers, they are not patient-specific and therefore are limited in their use for predicting
when a patient will be admitted to hospital. As a result, LaMantia et al (2010) and Artetxe et al (2020)
consider predicting patient readmissions to the ED instead of predicting any given admission. In doing so
they are able to utilise the wealth of data already recorded by the hospitals on individual patients and identify
markers that indicate high risk of readmission in an emergency. Hosseinzadeh et al (2013) use Naive Bayes
and a decision tree in order to classify patients who are going to be readmitted to hospital using their health
records as features. These works generally pose the readmission problem as predicting readmission within
the next 30 d as this has the most impact on the health and welfare of the patient, as well as the scheduling of
the hospital (Leppin et al 2014).

A problem that can arise due to these readmission predictions is that patients can be readmitted for
various issues (for example a patient who was hospitalised for cardiac issues might need rehospitalisation for
breaking their leg). Considering this type of readmission is not very useful for the hospital or the patient, as it
is not indicative of an underlying condition and so the health records of the patient will not be useful for this
prediction. To get around this issue, many authors have conditioned their prediction of admission on subsets
of patients with certain underlying conditions. Shameer et al (2017) use a naive Bayes classifier to predict
readmission and only considers a subset of patients with heart failure. They only consider a readmission to
be valid if the patients are readmitted with heart failure within 30 d. Kalagara et al (2018) also condition their
problem on a subset of patients who have had a neurosurgical procedure carried out and compare the
performance of their model (trained used gradient boosted trees) using features available during the patients
stay versus features that were obtained after the patients discharge. Naturally the model with access to
features after the patient discharge performed better, however it is very difficult in most situations to obtain
features post-discharge. Min et al (2019) carry out a similar study but consider patients suffering from
COPD. They investigate various machine learning methods and find that gradient boosted trees offer the
best prediction of readmission accuracy for their dataset. They also utilise recurrent neural networks in order
to treat the problem as a time-series problem but the performance is significantly worse. In fact there are very
few works that treat the prediction of readmission as a time-series due to the difficulty of obtaining data on
patients post-discharge (Arora et al 2010).

5.2. Scheduling instead of admissions
The ultimate aim of all of the works mentioned in section 5.1 is to provide the hospital with an understanding
of the volumes of patients that may be attending the ED. By forecasting this (and if the model is accurate) the
hospitals may then plan the appropriate resource (including staff, tests and making equipment available) in
order to be able to cope with the demand placed on them. For low numbers forecast, hospitals may also then
reduce the required resource that is on standby which can lead to cost savings (Thungjaroenkul et al 2007).

Some authors however approach the problem from the scheduling perspective. This is different in that
whereas predicting admissions makes the assumption that resource can be altered to meet demand, the
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Figure 2. Visualisation of the studies that have been carried out regarding using machine learning to predict admissions and
scheduling in the ED. Dashed lines indicate some studies opt to use these features.

scheduling approach does not. With this approach authors assume that there is fixed resource and how it is
used can be optimised with varying patient numbers.

Rosemarin et al (2019) define the ED scheduling problem as needing to satisfy the following constraints:
the schedule must minimise the risk of adverse consequences, minimise patient waiting time, minimise
patient length-of-stay, minimise ED crowding and minimise interruption to caregivers. They use a mixture
of health record data of the patients and data on the status the ED to reconstruct the state of the ED when the
patients were there. They then use a mixed integer linear program to optimise these scenarios, maximising
throughput while being constrained by the aforementioned constraints. They then train a deep learning
architecture on this optimised data and use it as a ranking system to predict the optimal patient-caregiver
pair in the ED.

Some authors prefer to allow the machine learning algorithms to discover the optimal policies instead of
optimising the problem themselves to learn from. This is seen in Lee and Lee (2020a) where a deep Q
network (a reinforcement learning algorithm) is used to learn the optimal policy of treating patients in the
ED. In order to do this a simulation is made of the ED which will allow the agent to take exploratory moves
essential for reinforcement learning. The state of the model is defined as the distribution of acuity (sum of
patients at each acuity level) within the ED as well as the distribution of needed treatment type. The action of
the agent is to rank the next patient that needs to be seen meaning it is also a patient priority-ranking system.
Krämer et al (2019) also present a priority ranking system based on severity prediction, but go as far as
predicting whether patient presentations to the ED should be treated as elective visits given their low severity.
They do this using the primary diagnosis code of the patient, however there may be difficulties in expanding
this tool to other hospitals given that many hospitals assign diagnosis codes after the patient is discharged
from hospital and not at admission.

Yeh and Lin (2007) and Arisha and Abo-Hamad (2013) approach the scheduling problem slightly
differently in that instead of ranking the priority patients in the ED, they instead aim to design the staffing
schedules. They do this using genetic algorithms and allowing the staffing schedules to be updated and
‘evolve’ to a point where they are suitable for the demand placed on the ED. This approach makes the
assumption that should the staffing level be predicted accurately, then there will be no need to prioritise
patients in the ED as there will be enough staff (and resource) to process them.

Figure 2 shows the works that have been conducted so far on the prediction of admissions and scheduling
in the ED. This is by no means an exhaustive summary but we aim to provide some structure to help other
researchers understand what work has been conducted in the field of machine learning for patient flow
through the ED. Table 1 further outlines the problems that have readily available datasets for prediction, and
what models are popularly used to tackle the prediction problem in the literature. A lack of a readily
available dataset for priority ranking is due to priority generally not being recorded in hospital EHRs.
Readily available in this instance refers to existence in a typical hospital database and not that it is easily and
openly accessible.
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Table 1. Popularity of different methods and data availability for each of these problems.

ED-admission problem

Volume pred. Readmission pred. Priority rank Schedule

Labelled datatset readily available? ✓ ✓ 7 ✓
Regression methods popular? ✓ ✓ ✓ 7

Classification methods popular? ✓ ✓ ✓ ✓
Genetic methods popular? 7 7 7 ✓

5.3. Machine learning in elective admissions
We have primarily focused on machine learning applied to emergency admissions as this is the larger body of
research in the field. The stochastic nature of these admissions in terms of number and type of admission
means that these are the most disruptive to patient flow in a hospital. Elective patients are generally planned
for and so resource is available to treat them.

There are however studies that also apply machine learning to the admission of elective patients. In the
study conducted by Nelson et al (2019), the authors use machine learning to assess whether or not patients
will actually attend their scheduled appointments in hospital. Despite the resource being prepared for these
patients, a no-show will result in a waste of this resource and this work aims to provide a way to then
re-direct that resource. The authors use information on the history of the patient with a gradient boosting
machine to get a strong predictive accuracy. Srinivas and Ravindran (2018) carry out this same prediction of
no-shows to elective appointments, however they then leverage the risk of no-show in order to update the
scheduling system of the hospital.

With many health systems providing long waiting times for appointments (Xavier 2003, Dimakou 2013),
another important factor when it comes to elective patients is prioritising patients in the schedule. Yousefi
et al (2019) approach this by first using a clustering algorithm to group patients into different priority
categories. They then treat the schedule as a Markov decision process where waiting time for patients in the
high priority clusters is to be minimised.

These approaches can be difficult to validate due to their direct impact on the scheduling of
appointments. As a result, there is no chance to verify if the patients turn up or not once the schedule is
changed. They also rely on historical behavioural data (such as how many times a patient has missed an
appointment before) which are not stationary distributions and therefore limit how successful supervised
learning can be in this domain in the long term.

5.4. Summary
Overall, the application of machine learning to predicting emergency patient admissions and scheduling is
well-explored. Works are generally split between emergency and elective patients with further subdivisions
according to the data used, the models used and what is being predicted (see figure 2). Very few works
validate their models in hospitals in real-time, most using a retrospective test-set to assess performance.
Furthermore, some models are difficult to validate due to being designed to intervene in the admission and
scheduling process.

There is also very little connecting these studies. Most work is carried out with the data from the hospital
that the authors are associated with and built around that. Due to hospitals being different, that leaves little
scope for building on previous work or developing models that can be used universally. A public dataset that
could be held as the gold-standard for patient flow would aid in this significantly as a benchmark for
experiments.

6. The emergency-inpatient interface

The emergency-inpatient interface is an ill-defined area of many hospitals (Staib et al 2017). There is usually
a lack of clarity on the ownership of this space of the hospital and who should manage the handover of
patients from the ED to an inpatient setting. As a result of this lack of clarity, it should come as no surprise
that there is much published on making predictions across this gap in the hospital. While it may seem like an
obvious task to predict which patients need admission to hospital from the ED, it has been shown that this is
not a trivial task (Beardsell and Robinson 2011). Whereas the works discussed in section 5 aim to provide
predictions for planning (such as expected numbers or schedule planning), the predictions of the works
found in this section are primarily designed for decision-support.

A natural question that can be asked is if admission to the hospital from the ED can be predicted. Hong
et al (2018) and Graham et al (2018) show this can be done using multiple machine learning models

6



Prog. Biomed. Eng. 3 (2021) 022002 R El-Bouri et al

including a logistic regression, XGBoost and a deep fully-connected neural network. They show this is
possible using historic patient information as well as information from triage. This does however limit the
potential use to patients who already have electronic health records. Leegon et al (2005) and Raita et al
(2019) therefore also carried out this prediction but only using a few variables that are measured early in the
ED admission process and showed using a Bayesian network that admission to hospital can still be accurately
predicted. Sun et al (2011) echo this sentiment, setting up their classification such that the clinical staff may
predict the risk of whether an inpatient bed is needed or not as soon as triage is complete in the ED. This
prediction is then further augmented with the inclusion of using the free-text written by the triage clinical
staff as features to improve the performance of the model (Zhang et al 2017, Sterling et al 2019).

As was the case for prediction of admissions in section 5, many authors find it useful to consider certain
demographics of patients. An example is in Lucke et al (2018) where a multiple logistic regression is used to
predict hospital admission from the ED for a cohort of patients over 70 years old and another below. This is
due to older patients generally being more at risk of admission and so by creating a model conditioned on
age, they are able to better predict those most at risk of admission. In Mowbray et al (2020), elderly patients
are considered to be those aged 75 and over, however they also show that accurate predictions of admission
can be made for an elderly cohort of patients.

Another demographic that is often targeted for prediction is that of paediatric patients (Walsh et al 2004,
Marlais et al 2011). In these studies, logistic regressions are used to predict whether a paediatric subset of
patients will require admission to the hospital. Once again, by creating a separate cohort for these patients,
they can make predictions comparing patients to other similar patients, rather than comparing with older
patients who have different physiologies. This introduces a trade-off of improving model accuracy while
reducing how generally the model can be applied.

Further subsets of paediatric patients have been made for example by considering those patients suffering
from asthma exacerbation and predicting those most likely to be admitted to hospital for treatment (Patel
et al 2018).

To augment the performance of a model predicting paediatric admissions to hospital from the ED, the
textual data recorded during triage can also be used as features (Roquette et al 2020). Natural language
processing techniques have been used in order to extract useful information which has been shown to
improve predictability of admission.

6.1. Predicting inpatient resource utilisation
Many of the studies that are created in predicting admission to hospital focus on subsets of patients with
certain conditions. As these patients will require the same treatments and specialist staff to treat them, this
can be seen as resource prediction for patients being admitted to the hospital from the ED.

An example is in Ong et al (2012) where heart-rate variability in the ED is used alongside other
demographic information on the patient as input features to a support vector machine. This is then used to
create a score on the likeliness of cardiac arrest occurring in the next 72 h. While this is not strictly framed for
patient flow, this prediction allows clinicians to plan for resource in the cardiac department. Predicting
whether or not a patient is septic is also important for patient flow in terms of resource planning. As a result,
models predicting whether or not ED patients are suffering from sepsis have been developed (Horng et al
2017, McCoy et al 2017, Delahanty et al 2019). The authors use a mixture of information available at triage,
demographic information and free-text to make prediction of whether or not the patient is septic, which if
accurate, could allow planning of their treatment before the patient becomes critically ill.

In fact, there have been many such studies predicting whether or not a patient is suffering with a certain
condition in the ED which allows resource planning. These include predicting if a patient is suffering from
acute kidney injury (Martinez et al 2020), requires intensive care (Fernandes et al 2020, Finkelstein 2020), is
suffering from a urinary tract infection (Taylor et al 2018), have bacterial infections (Ramgopal et al 2020) as
well as predicting emergency hospitalisation of patients undergoing chemoradiation (Hong et al 2018).

While these predictions are useful for planning patient flow, they are not explicit predictions of
admission. A more explicit approach is seen in Luo et al (2019) where the classifier is trained to predict
admission to hospital of patients suffering from bronchiolitis.

While predicting admission to hospital from the ED is useful, a greater level of granularity, such as which
departments in the hospital the patient will be admitted to, is more useful to clinical staff. An example is seen
in Lee et al (2020) where rather than predicting admission, they predict the disposition of the admitted
patient, choosing out of intensive care units, telemetry units, general practice units and observation units. As
these ‘ward types’ tend to have separate resource, they are better able to adapt their resource according to the
predictions made. This approach is also seen in El-Bouri et al (2020) where the authors also classify into
‘ward types’ to provide a similar level of granularity to the hospital admission prediction problem. However,
in this case they use medical, cardiac, neuro, trauma, intensive care, surgical and general/obstetrics and
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Figure 3. A decision tree showing how the studies that have been conducted on predicting movement from the ED to hospital are
structured. Dashed lines indicate that these features are used in some works but not all.

gynaecology as their ward groupings. They develop a novel ‘interpretable’ layer for their deep neural network
to guide information collection at triage and train the model using curriculum learning. El-Bouri et al
(2020) further augment their model by using reinforcement learning to allow an agent to carry out the
curriculum learning that maximises the performance of predicting where in the hospital patients will be
admitted to. In order to make as general a model as possible, these studies of patient disposition do not
consider subsets of patients but rather the entire population of the ED to replicate daily working conditions.

Figure 3 shows the general structure of works that have been conducted on predicting flow from the ED
to hospital. It should be noted that as all of these works consider flow from the ED, all patients considered are
emergency patients. Table 2 shows how readily available labelled datasets are for the EDii prediction problems
and the popular approaches to tackling them. It should be noted that readily available here means data that
would generally be saved on a hospital EHR and not data that would be easily accessible on a public dataset.

6.2. Summary
We have seen in this section that the emergency-inpatient interface in hospitals, while being ill-defined in
practice, is well researched using machine learning. Authors predict admission from the ED in order to
provide information for clinical staff to prepare space should it be needed. To improve the performance of
the classifiers, many authors condition their models on the demographics of the patients (e.g. elderly or
young patients) or on the patient disease (patients suffering from the same ailment in the ED). In order to
provide greater granularity on which resource will be used in the hospital, some authors also predict which
‘ward type’ will be used by the patient to be admitted to the hospital.

However, once again there is little connecting these studies. None of the studies reviewed build off each
other or use the same dataset for comparison. Furthermore, the definitions used to categorise patients vary
by paper. As was seen when categorising elderly patients some studies use 70 and over and some use 75 and
over. Clearly it would be beneficial to have an agreed range to make models more comparable. This further
emphasises the need for a shared, publicly available dataset for use when creating machine learning models
for patient flow. All definitions of demographics should be included in the dataset so that researchers make
valid comparisons to models. It will also be beneficial in allowing researchers to compare their
methodologies and validate them on the same dataset as others as well as apply them to their own hospital’s
data. This will also make research more consistent, allowing researchers to build and improve upon each
others models instead of applying similar models to similar problems using different data.

7. Intra-hospital resource management

Once patients have been admitted to hospital, there is yet another layer of resource flows that need to be
considered. Patients can be transferred between wards, need tests carried out and must be moved to use
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Table 2. Popularity of different methods and data availability for each of these problems.

EDii problem

Hosp. admission Hosp. admission loc. Resource req’ment

Labelled datatset readily available? ✓ ✓ ✓
Regression methods popular? 7 7 7

Classification methods popular? ✓ ✓ ✓
Bayesian methods popular? ✓ 7 7

certain equipment such as MRI scanners. These all require staff to carry out the movements and therefore
place a demand on the resource of the hospital. As this resource is part of that needed to deliver the patients
through hospital to discharge, it is relevant to patient flow.

7.1. Ward transfer
The most common way in which machine learning is used to provide predictions for ‘inpatient flow’ is
through predicting if patients will be transferred to another ward. Note that while in section 6.1 we
considered studies which investigated patient degradation as a signal for resource preparation, we will not
consider degradation for inpatients as a signal for resource prediction. This is due to hospitalised patients
generally being admitted to wards that are capable of handling patients in their condition. It is also due to the
fact that using machine learning for the monitoring of inpatients for degradation has a very rich literature
and would require a review of it is own (Clifton et al 2015). As a result, we only focus on works that explicitly
predict admissions or transferrals of patients.

7.1.1. ICU transfer
By far the most popular type of prediction to make in the inpatient setting is predicting admission of a
patient to the ICU. This is due to the fact that the ICU is a resource intensive area of the hospital and any way
of informing the planning of this unit is beneficial to the running of the hospital (Skowronski 2001).

Wellner et al (2017) use a logistic regression to show that it can be predicted that a patient will need
admission to the ICU 16 h ahead of time. Furthermore they demonstrate this using data from three separate
institutions, helping validate their model. Desautels et al (2017) carry out the same investigation in a tertiary
care hospital but consider readmissions to the ICU in 48 h. This is also explored by Yoon et al (2016) who
develop a ‘Bayesian belief system’ to predict admission to the ICU, but this time 9 h before it is requested by
the clinician in charge. An NLP approach has also been investigated in Khattak et al (2019) where the online
messages of doctors and nurses to each other are used in order to predict transferral of a patient to ICU 3 d
prior to the event taking place. It should be noted that for all of these studies, the outcome being predicted is
different and so the studies cannot be compared.

Echoing the narrative presented in section 5, many researchers have also considered predicting
readmissions of inpatients to the ICU. This is seen in Rojas et al (2018) where the authors investigate which
patients, who were previously in the ICU, will be readmitted from their inpatient ward. To predict this they
use a gradient boosting machine with features derived from the electronic health record of the patient as well
as various blood tests that were taken. A time-series approach to this prediction was investigated by Lin et al
(2019) where an LSTM was used and trained on the ICD-9 embeddings of the patients who had previously
been admitted to the ICU, their demographics and the chart event features of the patients. They show a
strong prediction accuracy when considering if a patient will be readmitted to the ICU within 30 d of their
discharge.

Once again, conditioning the dataset on the demographic in question is utilised for the inpatient setting.
Rubin et al (2018) demonstrate using adaptive and gradient-tree boosting that they can predict the transfer
of a child to the paediatric ICU 8 h preceding the transfer. The prediction of transfer to paediatric ICU is also
carried out in Zhai et al (2014) where a logistic regression is used to predict their transfer within the first 24 h
of their inpatient status.

We again see works where the datasets (and therefore the models) are conditioned on the co-morbidities
of the patients. Lee et al (2019) condition their dataset on patients who have undergone cardiac surgery and
predict whether these patients will be readmitted to the ICU. They use a logistic regression with L1
regularisation to provide interpretability to their model, but also use a causal inference method to compare
their findings. They find that there is little agreement between the two methods of feature importance
ranking.
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Figure 4. Visualisation of the studies carried out on using machine learning to aid in the inpatient journey. Dashed lines indicate
some studies opt to use these features.

7.2. Resource management
During a patient’s stay in hospital, various tests may be requested to help clinicians gain a better
understanding of the patient’s condition. These tests are also an important part of the patient flow process
and timely testing helps to improve flow through the hospital. An example is seen in Molaei et al (2016)
where the authors investigate whether or not they can predict if inpatients with traumatic brain injury
require a CT scan using ‘cost sensitive’ random forests. In doing so, they aim to create a prioritisation system
for scanning, which will allow faster treatment of patients and therefore a better patient throughput.

Another way in which resource management has been tackled with machine learning is in the scheduling
of laboratory samples that need to be processed (Williams et al 2019). Again, by scheduling these samples in
an efficient way, this allows patients to be treated more quickly in the hospital, and in some cases prevents the
unnecessary hospitalisation of a patient.

These examples can be seen as assessing the risk of resource utilisation on a patient-by-patient basis. A
more high-level view is used in Vieira and Hollmén (2016) where all resource is pooled together (anything
including staff or use of machinery). Random forests are used to perform regression on the expected
resource use in the next 30 d. While this has limited use to clinical staff due to the lack of granularity, it may
be useful for budgeting purposes.

7.3. Hospital-wide flow
There are very few works that seek to predict the full patient journey through a hospital using machine
learning. This may be due to the fact that transfers of inpatients is generally quite rare due to most inpatients
being admitted to a ward that is capable of providing the appropriate care for them. Xu et al (2017) treat the
hospital journey as a point process. They use a generalised linear model to predict the next location a patient
will be transferred to as well as the dwell-time in that unit. They utilise the MIMIC-III dataset (Johnson et al
2016), which is an ICU based dataset and so the transitions they predict are between various types of
intensive care unit. However, in terms of predicting the inpatient journey, this is a promising direction.
Expanding to the entire hospital, it is possible to predict movement of patients between wards as well as for
the use of machinery. Also predicting the dwell-time will allow for better planning of the flow of patients.

7.4. Summary
Of the four parts of the hospitalisation process that we have defined, the inpatient setting is the one in which
machine learning has been used the least. The majority of studies investigate the transferral of inpatients to
the ICU due to the resource-intense nature of ICUs. There have also been limited attempts at utilising
machine learning to predict the expected resource that will be required by a hospital, either as a whole, or on
a patient-by-patient basis. Very few works again have attempted to predict the whole hospital journey using
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Table 3. Popularity of different methods and data availability for each of these problems.

Intra-hospital prediction problem

Ward (re)admission Transfers Resource forecast

Labelled datatset readily available? ✓ ✓ ✓
Regression methods popular? ✓ 7 ✓
Classification methods popular? 7 ✓ ✓
Point processes popular? 7 ✓ 7

Bayesian methods popular? ✓ 7 7

machine learning. A common inconsistency throughout the literature is the prediction lookahead time that
is considered. Standardising the lookahead time will allow studies to be more comparable and again,
crucially, build upon previous work to further improve and integrate the field.

As the vast majority of studies are conducted with a clinical need in mind, this may reflect that the
inpatient journey is not seen as a very important part of the patient flow problem. Figure 4 shows the
structure of the studies that have been carried out in this area of patient flow. Table 3 shows the data
availability for these prediction problems and popular methods used to tackle them.

8. Discharge prediction

The importance of discharging patients in a timely fashion for patient flow cannot be over-stated. Long
patient stays incur greater cost to the healthcare institution and reduce capacity for new patients to be
admitted (Rotter et al 2008, 2010). As a result, a standard metric of the quality of care being provided is the
patient length-of-stay (LOS) (Brasel et al 2007). Patients who are admitted for long periods of time (either
due to condition or due to having no appropriate discharge destination) are commonly referred to as
‘bed-blockers’ and can constitute a significant proportion of the hospital population (Coid and Crome 1986,
Styrborn and Thorslund 1993, Mustafee et al 2012). Early recognition of the patients likely to have a long
LOS should therefore allow for the planning of their treatment by the hospital, such as their admission to
long-stay wards and beginning preparations for their discharge.

It should therefore be unsurprising that many researchers have seeked to employ machine learning in
order to predict the LOS of patients in order to provide hospitals with a better idea of how much resource
will be required for patient stays. Note that the prediction of LOS or of discharge are essentially the same as
they both aim to predict when a patient is able to leave the hospital. We will refer to both types of prediction
simply as ‘discharge prediction’.

Discharge prediction can be separated into two separate subcategories for emergency and inpatient
settings. In the emergency context, predicting the LOS of patients helps to understand whether the ED is at
risk of overcrowding or not. In the inpatient setting, predicting the LOS is useful for the planning of patient
admissions and preparation of post-discharge care should it be needed.

8.1. Discharge in the emergency department
Discharge from ED has been treated as a classification as seen in Rahman et al (2020). The authors predict if a
patient will be in the ED for longer than 4 h or not. They use features that are available early in the ED process
to train a decision tree binary classifier. This approach is mimicked in Sariyer et al (2019) where various
learning algorithms are experimented with to classify patients according to their length of stay in the ED.
Azari et al (2015) acknowledge the large imbalance there tends to be in LOS datasets (with far fewer patients
having long LOS), and present an ensemble method combined with multiple logistic regression to overcome
this imbalance. However in this work they define a long stay as patients in the ED for longer than 14 h.

Rather than classify patients according to their likely LOS category, some authors prefer to use regression
to predict each patient’s LOS in the ED. Combes et al (2014) use linear regression model to predict the likely
LOS of each patient presented to the ED. Ding et al (2010) instead use quantile regression but once again for
the prediction of LOS in the ED. Feedforward neural networks have also been used for regressing the likely
LOS of patients (Gül and Güneri 2015). One advantage to this approach of regressing the probable LOS is
that there are no longer inconsistencies between studies on what is defined as a long-stay. However, this
approach is also more difficult to train and achieve an accurate model in practice.

8.2. The inpatient setting
Predicting the LOS of patients in the inpatient setting is significantly more popular as a research area than in
the emergency setting. This may be due to a prediction of LOS in the ED being less actionable than in the
hospital where preparations can be made to ready a patient for discharge.
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A hospital-wide approach is adopted in Pendharkar and Khurana (2014) where a regression tree is used
to predict the LOS of patients admitted to hospitals in Pennsylvania using data that is available at the time of
admission. This approach is also applied in Tanuja et al (2011), this time using a feedforward neural network
to regress the LOS. These predictions are carried out at the time of admission. An alternative approach is to
implement a classifier every day before discharge and predict the patients who can be prioritised for
discharge as seen in Barnes et al (2016). In framing the problem in this way the authors exploit a static model
for a dynamic problem by repeatedly applying the algorithm prior to discharge sessions at the hospital. They
use a classification decision tree to prioritise patients ready for discharge.

Predicting discharge has also been approached as a time-series problem. In McCoy et al (2018) an
autoregressive integrated moving average model is used to incorporate a time-series of seasonal data to
predict hospital discharge volume. They compare this with using Prophet (Taylor and Letham 2018), an
additive regression model developed by Facebook Research for forecasting seasonal trends, for the same task.
An NLP approach has also been used where the clinical notes from the ED are used in order to predict if a
patient will be admitted to the hospital for more than 2 d (Bacchi et al 2020).

As has been a common theme throughout this review, discharge predictions are also conditioned on
patient demographics. In other sections this is primarily to improve predictive performance amongst patient
subgroups. However, in discharge prediction this is due to certain patient subgroups being more likely to be
‘bed-blockers’ such as elderly patients (Launay et al 2018). To maximise clinical utility it is more effective to
condition the training dataset on these subgroups and apply the algorithms to these patients only. An
example is in Elbattah and Molloy (2016) where a regression forest is used to predict the LOS of elderly
patients in a hospital and a random forest is used to predict the location of discharge for these elderly
patients. These predictions are used in conjunction with a discrete-event simulation in order to simulate the
flow through an Irish hospital. Children are also a cohort of patients in which there can be great variability in
LOS. To address this, Castiñeira et al (2020) use a gradient boosted tree to classify whether or not a child will
be a long-stay patient in the paediatric ICU (with long-stay being defined as a stay of greater than 4 d). They
also use the static model for a dynamic problem approach by extracting features from the time-series of the
patient’s vital signs and repeatedly feeding these to the classifier. Note that this prediction concerns the LOS
within a ward and not the hospital stay as a whole.

As with conditioning on demographics, conditioning on co-morbidities is also done in discharge
prediction. In fact, this tends to be the most popular form of setting the problem due to patients with
different ailments and treatments generally requiring different recovery times.

One such prediction is carried out for patients with congestive heart failure in which the authors apply a
static cubist model (Quinlan 1998) dynamically as data is updated during the patient stay (Turgeman et al
2017). The model is used to regress the likely LOS in hospital of the patient.

Further discharge predictions have been carried out on patient cohorts who have suffered from stroke
(Al Taleb et al 2017), patients who have suffered hip-fracture (Elbattah and Molloy 2016), patients suffering
from schizophrenia (Kirchebner et al 2020), patients admitted for cardiac care (Daghistani et al 2019),
patients post-brain tumour surgery (Muhlestein et al 2019), patients who have undergone total
hip-arthroplasty (Ramkumar et al 2019) and patients who have undergone surgery due to colorectal cancer
(Stoean et al 2015). In all of these studies, there is no consensus for defining a ‘long-stay’ patient.

8.3. Summary
Discharge prediction is one of the more popular areas of patient flow for researchers to apply machine
learning. Discharge prediction has been carried out by either predicting whether a patient is likely to be
long-stay or by directly regressing the expected LOS of the patient. It has been applied to both emergency and
inpatient settings. In the inpatient setting, studies have conditioned their datasets according to demographic.
There have also been studies that condition their dataset according to the comorbidity or treatment that the
patients of interest have undergone.

A clear inconsistency between studies is the definition of a long-stay patient. Having a common dataset
with pre-defined long-stay patients will improve the ability of researchers to compare models and build upon
previous work. Figure 5 shows the structure of the literature published in this field. Table 4 shows data
availability and popular methods used to tackle the discharge problems. It should be noted that the difficulty
with a labelled dataset for discharge readiness is that generally it is not recorded when a patient is ready for
discharge but when they actually are discharged.

9. The future of machine learning in patient flow

The current research efforts in the discipline of machine learning in patient flow have demonstrated the
feasibility and potential of machine learning to optimise patient flow in all of the four subcategories outlined
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Figure 5. Visualisation of the studies carried out on discharge prediction. Dashed lines indicate some studies opt to use these
features.

Table 4. Popularity of different methods and data availability for each of these problems.

Discharge prediction problem

Hospital LOS Long-stay prediction Discharge ready

Labelled datatset readily available? ✓ ✓ 7

Regression methods popular? ✓ 7 7

Classification methods popular? ✓ ✓ ✓
Point processes popular? 7 7 ✓
Bayesian methods popular? 7 7 7

our study. However, due to the difficulty of expanding and scaling machine learning models across different
healthcare contexts and institutions, the current research efforts are still removed from delivering value in the
routine and daily management of patient flow in healthcare institutions. In this section, we outline the future
research opportunities to advance the applicability of machine learning in patient flow.

9.1. Priorities in patient flow
While all of the problems outlined in the above review are important for clinical practice, solving some of
these problems is more urgent than solving others. An example of a high-priority problem to solve is
predicting readiness for discharge. One of the greatest problems dealt with in patient flow is the ‘bed-blocker’
phenomenon whereby patients do not have appropriate destinations to be discharged to. Predictions of
readiness for discharge will not solve the lack of space in care homes, however it will allow for more effective
allocation of the time and attention of clinical staff.

An equally important task is the prediction of ED admissions. This represents the front-end of the
hospital with the discharge readiness representing the back-end. Being able to accurately predict patient
admissions numbers in the ED would allow for accurate planning of staffing rotas thereby reducing costs and
time wasted. It would also greatly improve the care provided for each individual patient.

Following on from this, should these predictions not be accurate enough, solving the ED-inpatient
interface problem would be the next most important. This prediction would prevent the filling up of the ED
due to inability to transfer patients into the hospital. Having an accurate model here would create a more
streamlined flow of patients into the hospital, but naturally would depend on there being enough flow out as
well.

Finally, the problem that should be least prioritised is inpatient transfer prediction. Despite being
important, inpatient transfers are generally quite rare due to patients being admitted to appropriate wards
from the outset. However, there is value in predicting resource flow and patient movement in order to plan
that resource.
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9.2. Current challenges
9.2.1. Data challenges
Throughout this review, we have emphasised the need for a common dataset that all researchers can use to
benchmark their models and experiments on, as well as have agreed definitions of what age ranges ‘elderly’
patient fit amongst other definitions. However, creating a publicly available dataset does not come without
its own challenges. The first issue is that of patient privacy. While there are many data anonymisation
methods that can be used to remove association of the data with individuals, prior information such as the
source hospital can be used to reconstruct the identities of the patients. There then exists a trade-off between
how much information is hidden and how useful the data is to machine learning practitioners. A potential
solution for this is sourcing data from multiple medical centres and compiling them together in a dataset.
This brings us onto the second challenge which is a lack of standardisation in the recording of health data. In
order to take advantage of the data from the EHRs from multiple hospitals, we must first stipulate that these
hospitals record data in an agreed fashion.

One example of a publicly available healthcare dataset used for benchmarking is MIMIC-III (Johnson
et al 2016). The success of this dataset can be seen through the volume of works that have used it for model
comparison. However, for the purposes of patient flow, this dataset is difficult to use due to its focus on
intensive care patients. It therefore does not include the data from the EHRs on the key resource utilisation
and patient flows in the hospital (unless they are between intensive care units). A dataset built in a similar
fashion to MIMIC-III but with the appropriate patient flow data would benefit the research community
greatly.

9.2.2. Technical challenges
Currently the majority of patient flow models use a specific dataset from a hospital that can be derived from
a certain subset of patients. The model is then applied to aid that hospital in prediction with very few
researchers extending their models beyond their own hospitals. This approach is limited due to the variable
and dynamic nature of healthcare datasets. Distributions from the same source hospital are subject to issues
such as covariate shift whereby the underlying distributions of the features change with time. Examples are
the changes to the distributions that can be found in the EHRs of hospitals during flu season or during the
COVID-19 pandemic that has swept the world.

Variability also exists across health care delivery institutions and organisations ranging from small
primary care centres to large tertiary hospitals. These organisations are different in their resources,
organisational structure, staff training, and culture. These differences create variability in healthcare delivery
practices, organisational processes, and patient flow across these different institutions as well as variability in
what data is recorded and in what format it is recorded.

Differences also exist in the distributions recorded by healthcare institutions due to the differences in
populations across the world. Examples include the prevalence of different diseases across different
communities and geographical contexts (e.g. the presence of type II diabetes mellitus can vary from 3.5% to
over 20% across different populations) (World Health Organization 2016, James et al 2018).

Another issue that is faced is the lack of complete information delivered by the majority of prediction
algorithms. While it is useful to know that a patient will be admitted to a certain location in the hospital,
having some knowledge of their severity or the likely medications that will be needed for them will further
help with the planning of their stay.

These issues faced during deployment create challenges in the applications of machine learning,
particularly in the generalisation of models to other hospitals and for their continual use over long periods of
time.

In the face of these challenges, we believe that certain research directions will aid future researchers to
prepare models that will better serve hospitals to improve patient flow. These research directions should
address the issues discussed above, as well as ensure that they integrate seamlessly into the running of the
hospital.

9.3. Feature engineering
The majority of studies discussed in this review take advantage of the fact that there exist EHR systems in
many modern hospitals which allow data extraction and dataset creation. However, there remain challenges
in terms of data collection for the different tasks at hand.

The ED admission prediction relies on seasonal information which can be correlated with admissions but
is generally a difficult prediction to make. Wearable sensors could benefit this prediction greatly, providing
more granular information to the hospital. The sensors could also be provided to patients who need them
most (and are most likely to be brought to the ED in an emergency such as elderly patients in care homes).
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We believe that further improvements to data collection could be made in the inpatient journey as well as
in discharge prediction. Currently, while scans in the hospital are logged on the EHR, the movement of
patients to scans are not and nor is the resource associated in moving that patient. These data would be very
helpful to provide a more complete picture of what resource each hospitalised patient utilises and thereby
helping machine learning scientists create more accurate predictions of the likely resource needed.

In discharge prediction, one of the challenges is that it is generally not recorded when a patient is
medically ready to leave the hospital but when they actually do. Augmenting a dataset with this information
could help predict when a patient is ready to leave hospital and in doing so, allow the team looking after them
to move their resource to more vital care, with a more generalised team looking after the patient thereafter
until discharge.

9.4. Multitask learning
The first research direction to be considered is multitask learning, a machine learning method that allows
multiple tasks to be learned at the same time. One of the aims is to exploit the learning signals generated by
training on one task to create an inductive bias in the model that will allow the effective learning of another
task by the same model (Caruana 1997).

Multitask learning can be applied to different problems across the four domains of patient flow to both
related (e.g. predicting risks of various in-hospital complications) or unrelated tasks (e.g. predicting length of
stay in the ED and predicting hospital admission destination). Once again this relates to the usefulness of
having more granular information for clinicians to work with. An example may be when predicting the
location of admission of a patient to hospital, also having some prediction of whether the patient is likely to
deteriorate or not. This gives better indications of the likely resource requirement of the patient as well as
their likely trajectory within the hospital. While this could be done using separate models for each
prediction, a single model that can embed an accurate representation of the patient will be more informative
and useful to clinical staff. As a result, a key component of this work will be in the development of
representation learning algorithms (Bengio et al 2013, Van Den Oord et al 2017) that are capable of
representing patient conditions upon presentation to the ED or admission to hospital.

Multitask learning has been applied in many healthcare applications to leverage the shared information
across different tasks. Huang and Dong (2018) have used multitask learning to predict major adverse cardiac
events, identifying each type of adverse event as a single task as opposed to having a multiclass classification.
Xia et al (2019) have also used this approach to predict prescription patterns for various drugs that are given
to similar patients. Multi-task learning has also been used in medical imaging. Khosravan et al (2019) have
used multitask learning in the detection of abnormal nodules on chest CT scans for lung cancer screening.
They jointly train their model to segmenting potential abnormalities and identify the presence of a nodule in
the region of interest. This is further evidence of how more granular information from the model can
provide clinicians with better insights into the condition of the patient.

9.5. Transfer learning
Transfer learning is based on the principle of knowledge transfer across different machine learning tasks and
models. It is based on the notion that knowledge gained by the algorithm when trained to solve a particular
problem can be stored and applied to solve another related problem, which means it is closely related to
multitask learning. This approach includes transferring knowledge from the source domain, DS, to the target
domain, DT , to help improve the learning of the target-domain task, TT .

Transfer learning can provide significant advantages in the applications of machine learning in patient
flow. It can enable (a) the transfer of knowledge across different tasks and (b) the transfer of knowledge
across different populations. The former can help overcome the lack of clinical data for certain problems. For
example, one of the barriers to developing effective machine learning tools for COVID-19 patients is the lack
of data on COVID-19 patients. A transfer learning approach can provide a solution by using a model that is
pretrained on a large non-COVID-19 dataset and adapting it to perform the task of interest in COVID-19
patients. Transfer learning has been used to overcome the lack of COVID-19 imaging data by Mahmud et al
(2020). They trained a convolutional neural network by using a pretrained a neural network (pretrained on a
dataset of bacterial and viral pneumonia chest x-ray scans) and fine-tuned this using scans from COVID-19
patients. This was done due to the scarce availability of chest x-rays from these patients.

Transfer learning can also help us transfer knowledge across different populations. This is valuable
clinically given the diversity and differences in the genetic predispositions, prevalence of diseases, lifestyles,
and risk factors across different populations. Mao et al (2018) used transfer learning to generalise their sepsis
prediction algorithm to a new healthcare setting. They trained their prediction model using data from the
MIMIC-III dataset (data from ICU patients) and transferred the model to a dataset from the University of
California, San Francisco (UCSF) Medical Centre (a dataset of in-hospital patients from a variety of specialty
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wards). Their transfer learning approach was based on adding incremental amounts of data from the UCSF
dataset to the MIMIC training dataset, resulting in better generalisation of the model to the dataset being
introduced.

Transfer learning represents an interesting target for future research in patient flow machine learning
applications. Transfer learning can be used to generalise models across different healthcare contexts and to
overcome a lack of recorded data.

9.6. Continual learning
Continual or lifelong learning refers to the ability to continually learn over time by accommodating new
knowledge while retaining previously learned experiences. This approach has the potential to enable machine
learning models in the healthcare space to adapt and adjust automatically to new context and settings like a
new healthcare context, new patient population, or a new and emerging disease. This has the potential to
enable the creation of dynamic clinical AI models that optimise clinical management decision in real time
and learn from the continuous influx of information in real world healthcare context. A continually learning
algorithm should be an adaptive algorithm capable of learning from a continuous stream of information,
with such information becoming progressively available over time. The accommodation of new information
should occur without catastrophic forgetting or interference (Parisi et al 2019).

However, continual learning represents a long-standing challenge due to the susceptibility of machine
learning models to catastrophic forgetting. This phenomenon refers to the decrease in model performance or
the complete overwriting of the previously learned information when new knowledge is introduced.

A paper published in the Lancet in 2020 (Lee and Lee 2020b) highlights the promise of continual learning
in revolutionising the applications of clinical AI and leveraging the continuous influx of clinical information
to improve patient care. Shah et al (2019) highlight that machine learning algorithms that are capable of
continuous learning are a critical future research and translational direction in healthcare AI. They also
report that the FDA is considering widening its regulatory framework to include AI-based Software as
Medical Device (SaMD) systems that are capable of continuously learning and optimising performance in
real-time to improve patient care.

Continual learning promises considerable value in patient flow as it would enable machine learning
models to adjust to different healthcare settings continuously and automatically. Therefore machine learning
algorithms would be able to absorb the variation across different healthcare institutions and patient
populations. Moreover, continual learning may enable machine learning algorithms to continuously learn
after deployment to clinical settings gradually improving their performance through use.

10. Conclusion

We have seen in this review that machine learning in patient flow is a vast if disjoint field. There are many
works published with the majority focused on the hospital associated with the authors and little by way of
comparison to other hospitals or works. We therefore propose the introduction of a publicly available dataset
based on the electronic health records of a given hospital. This should include enough information on all
four subcategories of the patient flow process (as highlighted previously) and crucially, must have strict
definitions for patient types. The dataset should include:

• Seasonal information such as the weather, national holidays and ideally EHR data from multiple hospitals.
• Strict definitions of what age ranges ‘elderly’ or ‘young’ patients fall into for reproducibility and model
validation.

• Pre-defined tasks such as ‘prediction of patient transfer in 3 h from time of measurement’. By creating these
pre-defined tasks we improve the ability of researchers to benchmark against each others work and develop
upon each others models.

• A standardised definition of co-morbidities in patients.

We believe that in creating this dataset, a culture of benchmarking on the dataset can be created thereby
encouraging researchers to compare their models, build more sophisticated models based on previously
published work and crucially provide some external validation to the trained models.
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Appendix. Models used for the prediction problems

In order to provide a more complete picture of the works that have been conducted in the space of machine
learning in patient flow we here provide flow charts including the models and datasets that have been used to
make the predictions. Figure A1 corresponds to ED admissions, figure A2 corresponds to the ED-inpatient
interface, figure A3 corresponds to inpatient transfers and figure A4 corresponds to discharge.
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Figure A1. A flowchart showing the models that have been used for the separate prediction problems for predicting ED
admissions. The top row shows the sources of data used, the row below shows the models that have been used in various different
works for the prediction problem, below this is the problem being tackled and below each of these problems is one of the datasets
used in a study to train the model.

Figure A2. A flowchart showing the models that have been used for the separate prediction problems for predicting ED to
inpatient admissions. The top row shows the sources of data used, the row below shows the models that have been used in various
different works for the prediction problem, below this is the problem being tackled and below each of these problems is one of the
datasets used in a study to train the model.
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Figure A3. A flowchart showing the models that have been used for the separate prediction problems for predicting inpatient
transfers. The top row shows the sources of data used, the row below shows the models that have been used in various different
works for the prediction problem, below this is the problem being tackled and below each of these problems is one of the datasets
used in a study to train the model.

Figure A4. A flowchart showing the models that have been used for the separate prediction problems for predicting discharges.
The top row shows the sources of data used, the row below shows the models that have been used in various different works for
the prediction problem, below this is the problem being tackled and below each of these problems is one of the datasets used in a
study to train the model.
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