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Institutions can provide incentives to enhance
cooperation in a population where this behaviour
is infrequent. This process is costly, and it is thus
important to optimize the overall spending. This
problem can be mathematically formulated as a
multi-objective optimization problem where one
wishes to minimize the cost of providing incentives
while ensuring a minimum level of cooperation,
sustained over time. Prior works that consider this
question usually omit the stochastic effects that drive
population dynamics. In this paper, we provide a
rigorous analysis of this optimization problem, in a
finite population and stochastic setting, studying both
pairwise and multi-player cooperation dilemmas.
We prove the regularity of the cost functions for
providing incentives over time, characterize their
asymptotic limits (infinite population size, weak
selection and large selection) and show exactly
when reward or punishment is more cost efficient.
We show that these cost functions exhibit a phase
transition phenomenon when the intensity of selection
varies. By determining the critical threshold of this
phase transition, we provide exact calculations for
the optimal cost of the incentive, for any given
intensity of selection. Numerical simulations are also
provided to demonstrate analytical observations.
Overall, our analysis provides for the first time a
selection-dependent calculation of the optimal cost
of institutional incentives (for both reward and
punishment) that guarantees a minimum level of
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cooperation over time. It is of crucial importance for real-world applications of institutional
incentives since the intensity of selection is often found to be non-extreme and specific for a
given population.

1. Introduction
The problem of promoting the evolution of cooperative behaviour within populations of self-
regarding individuals has been intensively investigated across diverse fields of behavioural, social
and computational sciences [1–5]. Various mechanisms responsible for promoting the emergence
and stability of cooperative behaviours among such individuals have been proposed. They
include kin and group selection [6,7], direct and indirect reciprocities [8–12], spatial networks
[13–16], reward and punishment [17–22] and pre-commitments [23–27]. Institutional incentives,
namely rewards for cooperation and punishment for wrongdoing, are among the most important
ones [22,28–36]. Different from other mechanisms, in order to carry out institutional incentives,
it is assumed that there exists an external decision maker (e.g. institutions such as the United
Nations and the European Union) that has a budget to interfere in the population to achieve
a desirable outcome. Institutional enforcement mechanisms are crucial for enabling large-scale
cooperation. Most modern societies implement certain forms of institutions for governing and
promoting collective behaviours, including cooperation, coordination and technology innovation
[37–42].

Providing incentives is costly and it is therefore important to minimize the cost while ensuring
a sustained level of cooperation over time [28,31,41]. Despite its paramount importance, so far
there have been only a few works exploring this question. In particular, Wang et al. [35] use
optimal control theory to provide an analytical solution for cost optimization of institutional
incentives assuming deterministic evolution and infinite population sizes (modelled using
replicator dynamics). This work therefore does not take into account various stochastic effects
of evolutionary dynamics such as mutation and non-deterministic behavioural update [4,43,44].
In a deterministic system consisting of cooperators and defectors, once the latter disappear (for
instance through strong institutional punishment), there is no further change to the system
and thus no further interference in it is required. When mutation is present, this behaviour
can however recur and become abundant over time, requiring institutions to spend more of
their budget on providing further incentives. Moreover, a key factor of behavioural update, the
intensity of selection [4]—which determines how strongly an individual bases their decision
to copy another individual’s strategy on their fitness difference—might strongly impact an
institutional incentives strategy and its cost efficiency. Its value is usually found to be specific for
a given population [45–48] and thus should be taken into account when designing suitable cost-
efficient incentives. For instance, when selection is weak such that behavioural update is close to
a random process (i.e. an imitation decision is independent of how large the fitness difference is),
providing incentives would make little difference to cause behavioural change, however strong it
is. When selection is strong, incentives that ensure a minimum fitness advantage to cooperators
would ensure a positive behavioural change.

In a stochastic, finite-population context, so far this problem has been investigated
primarily using agent-based and numerical simulations [28,31,49–52]. Results demonstrate
several interesting phenomena, such as the significant influence of the intensity of selection
on incentive strategies and optimal costs. However, there is no satisfactory rigorous analysis
available at present that allows one to determine the optimal way of providing incentives. This
is a challenging problem because of the large but finite population size and the complexity of
stochastic processes governing the population dynamics.

In this paper, we provide exactly such a rigorous analysis. We study cooperation dilemmas
in both pairwise (the Donation game (DG)) and multi-player (the Public Goods game (PGG))
settings [4]. They are among the most well-studied models for investigating the evolution of
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cooperative behaviour where individual defection is always preferred over cooperation while
mutual cooperation is the preferred collective outcome for the population as a whole. Adopting
a popular stochastic evolutionary game approach for analysing well-mixed finite populations
[53–55], we derive the total expected costs of providing institutional reward or punishment,
characterize their asymptotic limits (namely, for an infinite population, weak selection and strong
selection) and show the existence of a phase transition phenomenon in the optimization problem
when the intensity of selection varies. We calculate the critical threshold of phase transitions and
study the minimization problem when the selection is less than and greater than the critical value.
We furthermore provide numerical simulations to demonstrate the analytical results.

The rest of the paper is organized as follows. In §2, we introduce the models and methods,
deriving mathematical optimization problems that will be studied. The main results of the paper
are presented in §3. In §4, we discuss possible extensions for future work. Finally, detailed
computations, technical lemmas and proofs of the main results are provided in the electronic
supplementary material.

2. Models and methods

(a) Cooperation dilemmas
We consider a well-mixed, finite population of N self-regarding individuals or players, who
interact with each other using one of the following one-shot (i.e. non-repeated) cooperation
dilemmas: the DG or its multi-player version, the PGG. In these games, a player can choose either
to cooperate (i.e. a cooperator or C player) or to defect (i.e. a defector, or D player).

Let ΠC(i) and ΠD(i) be the average pay-offs of a C player and a D player in a population with
i C players and N − i D players, respectively (see also §2.3 for more details). We show below that
the difference δ = ΠC(i) − ΠD(i) does not depend on i. For cooperation dilemmas, it is always the
case that δ < 0.

(i) Donation game

The pay-off matrix of the DG (for a row player) is given as follows:

( C D

C b − c −c
D b 0

)
,

where c and b represent the cost and benefit of cooperation, where b > c. DG is a special version
of the Prisoner’s Dilemma (PD) game.

Denoting πX,Y as the pay-off of a strategist X when playing with strategist Y from the pay-off
matrix above, we obtain

ΠC(i) = (i − 1)πC,C + (N − i)πC,D

N − 1
= (i − 1)(b − c) + (N − i)(−c)

N − 1

and

ΠD(i) = iπD,C + (N − i − 1)πD,D

N − 1
= ib

N − 1
.

Thus,

δ = ΠC(i) − ΠD(i) = −
(

c + b
N − 1

)
.

(ii) Public Goods game

In a PGG, players interact in a group of size n, where they decide to cooperate, contributing
an amount c > 0 to a common pool, or to defect, contributing nothing to the pool. The total
contribution in a group will be multiplied by a factor r, where 1 < r < n (for the PGG to be a
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social dilemma), which is then shared equally among all members of the group, regardless of
their strategy.

We obtain [56]

ΠC(i) =
n−1∑
j=0

(
i − 1

j

)(
N − i

n − 1 − j

)
(

N − 1
n − 1

) (
(j + 1)rc

n
− c

)
= rc

n

(
1 + (i − 1)

n − 1
N − 1

)
− c

and

ΠD(i) =
n−1∑
j=0

(
i
j

)(
N − 1 − i
n − 1 − j

)
(

N − 1
n − 1

) jrc
n

= rc(n − 1)
n(N − 1)

i.

Thus,

δ = ΠC(i) − ΠD(i) = −c
(

1 − r(N − n)
n(N − 1)

)
.

(b) Cost of institutional reward and punishment
To reward a cooperator (respectively, punish a defector), the institution has to pay an amount θ/a
(resp., θ/b) so that the cooperator’s (defector’s) pay-off increases (decreases) by θ , where a, b > 0
are constants representing the efficiency ratios of providing the corresponding incentive. As we
study reward and punishment separately, without losing generality, we set a = b = 1 [22,28]. Thus,
the key question here is: What is the optimal value of the individual incentive cost θ that ensures a
sufficient desired level of cooperation in the population (in the long run) while minimizing the total cost
spent by the institution?

(i) Deriving the expected cost of providing institutional incentives

We adopt here the finite population dynamics with the Fermi strategy update rule [44], stating
that a player A with fitness fA adopts the strategy of another player B with fitness fB with a
probability given by PA,B = (1 + e−β(fB−fA))−1, where β represents the intensity of selection (see
details in §2c). We compute the expected number of times the population contains i C players,
1 ≤ i ≤ N − 1. For that, we consider an absorbing Markov chain of (N + 1) states, {S0, . . . , SN},
where Si represents a population with i C players. S0 and SN are absorbing states. Let U = {uij}N−1

i,j=1
denote the transition matrix between the N − 1 transient states, {S1, . . . , SN−1}. The transition
probabilities can be defined as follows, for 1 ≤ i ≤ N − 1:

ui,i±j = 0 for all j ≥ 2,

ui,i±1 = N − i
N

i
N

(1 + e∓β[ΠC(i)−ΠD(i)+θ])−1

and ui,i = 1 − ui,i+1 − ui,i−1.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.1)

The entries nij of the so-called fundamental matrix N = (nij)
N−1
i,j=1 = (I − U)−1 of the absorbing

Markov chain give the expected number of times the population is in the state Sj if it starts in the
transient state Si [57]. As a mutant can randomly occur at either S0 or SN , the expected number of
visits at state Si is, thus, 1

2 (n1i + nN−1,i).
The total cost per generation is

θi =
{

i × θ in the case of institutional reward,

(N − i) × θ in the case of institutional punishment.
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Hence, the expected total costs of interference for institutional reward and institutional
punishment are, respectively,

Er(θ ) = θ

2

N−1∑
i=1

(n1i + nN−1,i)i and Ep(θ ) = θ

2

N−1∑
i=1

(n1i + nN−1,i) (N − i). (2.2)

(ii) Cooperation frequency

Since the population consists of only two strategies, the fixation probabilities of a C (D) player
in a homogeneous population of D (C) players when the interference scheme is carried out are,
respectively,

ρD,C =
⎛
⎝1 +

N−1∑
i=1

i∏
k=1

1 + eβ(ΠC(k)−ΠD(k)+θ)

1 + e−β(ΠC(k)−ΠD(k)+θ)

⎞
⎠

−1

and

ρC,D =
⎛
⎝1 +

N−1∑
i=1

i∏
k=1

1 + eβ(ΠD(k)−ΠC(k)−θ)

1 + e−β(ΠD(k)−ΠC(k)−θ)

⎞
⎠

−1

.

Computing the stationary distribution using these fixation probabilities, we obtain the frequency
of cooperation (see §2.3),

ρD,C

ρD,C + ρC,D
.

Hence, this frequency of cooperation can be maximized by maximizing

max
θ

(ρD,C/ρC,D). (2.3)

The fraction in equation (2.3) can be simplified as follows [54]:

ρD,C

ρC,D
=

N−1∏
k=1

T−(k)
T+(k)

=
N−1∏
k=1

1 + eβ[ΠC(k)−ΠD(k)+θ]

1 + e−β[ΠC(k)−ΠD(k)+θ]

= eβ
∑N−1

k=1 (ΠC(k)−ΠD(k)+θ)

= eβ(N−1)(δ+θ). (2.4)

In the above transformation, T−(k) and T+(k) are the probabilities of decreasing or increasing the
number of C players (i.e. k) by one in each time step, respectively.

We consider non-neutral selection, i.e. β > 0 (under neutral selection, there is no need to use
incentives). Assuming that we desire to obtain at least an ω ∈ [0, 1] fraction of cooperation, i.e.
ρD,C/(ρD,C + ρC,D) ≥ ω, it therefore follows from equation (2.4) that

θ ≥ θ0(ω) = 1
(N − 1)β

log
(

ω

1 − ω

)
− δ. (2.5)

Therefore, it is guaranteed that, if θ ≥ θ0(ω), at least an ω fraction of cooperation can be expected.
This condition implies that the lower bound of θ monotonically depends on β. Namely, when
ω ≥ 0.5 it increases with β, while when ω < 0.5 it decreases with β.

(iii) Optimization problems

Bringing all these factors together, we obtain the following cost-optimization problems of
institutional incentives in stochastic finite populations:

min
θ≥θ0(ω)

E(θ ), (2.6)

where E is either Er or Ep, defined in (2.2), which respectively corresponds to institutional reward
or punishment. We show in the electronic supplementary material that θ �→ E(θ ) is a smooth
function on R.
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(c) Methods: evolutionary dynamics in finite populations
We adopt in our analysis the evolutionary game theory (EGT) methods for finite populations
[53–55]. Herein, individuals’ pay-offs represent their fitness or social success, and evolutionary
dynamics is shaped by social learning [4,43], whereby the most successful players will tend to
be imitated more often by the other players. Here, social learning is modelled using the pairwise
comparison rule [44], that is, a player A with fitness fA adopts the strategy of another player B
with fitness fB with probability given by the Fermi function,

PA,B = (1 + e−β(fB−fA))−1,

where β conveniently describes the selection intensity (β = 0 represents neutral drift while β → ∞
represents increasingly deterministic selection).

In the absence of mutations or exploration, the end states of evolution are inevitably
monomorphic: once such a state is reached, it cannot be escaped through social learning. We
assume that, with a certain mutation probability, an individual switches randomly to a different
strategy without imitating another individual. In addition, we assume here the small mutation
limit [53,55,58]. Thus, at most two strategies are present in the population at a time. The
evolutionary dynamics can be described by a Markov chain, where each state represents a
homogeneous population and the transition probabilities between any two states are given by
the fixation probability of a single mutant [53,55,58]. The resulting Markov chain has a stationary
distribution, which describes the average time the population spends in an end state. The small
mutation limit allows us to obtain an analytical form of the frequency of cooperation (see below).
It is noteworthy that, although we focus here on the small mutation limit, this approach has been
shown to be widely applicable to scenarios which go well beyond the strict limit of very small
mutation rates [45,46,48,59].

The fixation probability of a single mutant A taking over a whole population with (N − 1) B
players is as follows (see [44,55,60] for details)

ρB,A =
⎛
⎝1 +

N−1∑
i=1

i∏
j=1

T−(j)
T+(j)

⎞
⎠

−1

,

where T±(k) = ((N − k)/N)(k/N)[1 + e∓β[ΠA(k)−ΠB(k)]]−1 describes the probability of changing the
number of A players by ± one in a time step. Specifically, when β = 0, ρB,A = 1/N, representing
the transition probability at the neutral limit.

Considering the set of two strategies C and D (see [53,58] for the calculation for any number of
strategies). Their stationary distribution is given by the normalized eigenvector associated with
the eigenvalue 1 of the transpose of a matrix [53,58]

M =
(

1 − ρC,D ρC,D
ρD,C 1 − ρD,C

)
,

which is {ρD,C/(ρD,C + ρC,D), ρC,D/(ρD,C + ρC,D)}. The first term is the frequency of cooperation
and the second one is that of defection.

3. Main results
The present paper provides a rigorous analysis of the expected total cost of providing an
institutional incentive (2.2) and the associated optimization problem (2.6). In this section, we state
our main analytical results, theorems 3.1–3.4, and provide numerical simulations to illustrate
the analytical results. The proofs of these results, which require a delicate analysis of the cost
functions, are presented in the electronic supplementary material.
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In the following theorems, E denotes the cost function for either institutional reward, Er, or
institutional punishment, Ep, as obtained in (2.2). Also, HN denotes the well-known harmonic
number

HN :=
N−1∑
j=1

1
j

. (3.1)

Our first main result provides qualitative properties and asymptotic limits of E.

Theorem 3.1 (qualitative properties and asymptotic limits of total cost functions).

(I) (finite population estimates) The expected total cost of providing an incentive satisfies the following
estimates for all finite populations of size N:

N2θ

2

(
HN + 1

N − 1

)
≤ E(θ ) ≤ N(N − 1)θ (HN + 1). (3.2)

(II) (infinite population limit) The expected total cost of providing an incentive satisfies the following
asymptotic behaviour when the population size N tends to +∞:

lim
N→+∞

E(θ )
N2θ

2 (ln N + γ )
=
{

1 + e−β|θ−c| for DG,

1 + e−β|θ−c|eβc r
n for PGG,

(3.3)

where γ = 0.5772 · · · is the Euler–Mascheroni constant.
(III) (weak selection limit) The expected total cost of providing an incentive satisfies the following

asymptotic limit when the selection strength β tends to 0:

lim
β→0

E(θ ) = N2θHN . (3.4)

(IV) (strong selection limit) The expected total cost of providing an incentive satisfies the following
asymptotic limit when the selection strength β tends to +∞:

lim
β→+∞

Er(θ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

N2

2
θ

(
1

N − 1
+ HN

)
for θ < −δ,

N2θHN for θ = −δ,

N2

2
θ (1 + HN) for θ > −δ

(3.5)

and

lim
β→+∞

Ep(θ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

N2θ

2
(1 + HN) for θ < −δ,

N2θHN for θ = −δ,

N2θ

2

(
HN + 1

N − 1

)
for θ > −δ.

(3.6)

The lower and upper bounds obtained in part (I) of the theorem suggest that the total expected
cost function E for both reward and punishment behaves asymptotically in the order of (N2HN) ×
θ for sufficiently large N. This is confirmed in part (II), noting that HN ∼ ln N. We also show
that the leading asymptotic coefficient of E depends on the game (i.e. DG or PGG) and its
parameters. Hence, it is important to adopt a precise optimal value of θ (e.g. obtained by solving
the optimization problem (2.6)), as a small increase in this individual incentive cost can lead to
a significant increase in E, especially when the population size is large. Figure 1 numerically
demonstrates this asymptotic limit.

Parts (III) and (IV) of the theorem provide theoretical estimations of E under the weak (β → 0)
and strong (β → +∞) selection limits. For the weak selection limit, the expected total costs are the
same for reward and punishment, i.e. Er(θ ) = Ep(θ ). For the strong selection limit, Er is smaller
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Figure 1. Largepopulation size limit.We calculatenumerically the expected total cost of incentive E for rewardandpunishment,
varying population size N, for different values of θ and β . The dashed lines represent the corresponding theoretical limiting
values obtained in theorem 3.1 for the large population size limit, N → +∞. We observe that numerical results are in close
accordance with those obtained theoretically. Results are obtained for DG with b= 2, c = 1. (Online version in colour.)
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Figure 2. Weak and strong selection limits. We calculate numerically the total expected cost of incentive E for reward and
punishment, by varying the intensity of selection, for different values ofN andβ . The dashed lines represent the corresponding
theoretical limiting values obtained in theorem 3.1 for weak and strong selection limits. We observe that numerical results are
in close accordance with those obtained theoretically. Results are obtained for DG with b= 2, c = 1. (Online version in colour.)

than, equal to or greater than Ep, depending on whether θ is smaller than, equal to or greater
than −δ. Figure 2 provides numerical validation of the theoretical weak and strong selection
asymptotic behaviours of E, for different population sizes N. We can observe that, for a given
individual incentive cost θ , the range of E increases significantly for larger N.

Our second main result concerns the optimization problem (2.6). We show that the cost
function E exhibits a phase transition when the selection intensity β varies.
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Theorem 3.2 (optimization problems and phase transition phenomenon).

(I) (phase transition phenomena and behaviour under the threshold) Define

F∗ =
{

min{F(u) : P(u) > 0} in the reward case,

min{F̂(u) : P̂(u) > 0} in the punishment case,

where P(u) and F(u) as well as P̂ and F̂ are defined in the electronic supplementary material (see
§§1 and 2 there, respectively). There exists a threshold value β∗ given by

β∗ = −F∗

δ
> 0,

such that θ �→ E(θ ) is non-decreasing for all β ≤ β∗ and is non-monotonic when β > β∗. As a
consequence, for β ≤ β∗

min
θ≥θ0

E(θ ) = E(θ0). (3.7)

(II) (behaviour above the threshold value) For β > β∗, the number of changes of the sign of E′(θ ) is
at least two for all N and there exists an N0 such that the number of changes is exactly two for
N ≤ N0. As a consequence, for N ≤ N0, there exist θ1 < θ2 such that, for β > β∗, E(θ ) is increasing
when θ < θ1, decreasing when θ1 < θ < θ2 and increasing when θ > θ2. Thus, for N ≤ N0,

min
θ≥θ0

E(θ ) = min{E(θ0), E(θ2)}.

The proofs of theorems 3.1 and 3.2 for the cases of reward and punishment are given in §§1 and
2 in the electronic supplementary material, respectively. We also provide explicit computations
for N = 3 and N = 4 to illustrate these theorems in §3 in the electronic supplementary material.
Based on numerical simulations, we conjecture that the requirement N ≤ N0 could be removed
and theorem 3.2 is true for all finite N. In electronic supplementary material, figure S2, using
numerical calculation we have shown that N0 = 100 satisfies the conjecture, ensuring the validity
of the numerical examples below. Theorem 3.2 gives rise to the following algorithm to determine
the optimal value θ∗ for N ≤ N0.

Algorithm 3.3 (finding optimal cost of incentive θ
). Inputs: (i) N ≤ N0: population size, (ii) β:
intensity of selection, (iii) game and parameters: PD (c and b) or PGG (c, r and n), and (iv) ω: minimum
desired cooperation level.

(1) Compute δ {in PD: δ = −(c + (b/(N − 1))); in PGG: δ = −c(1 − ((r(N − n))/(n(N − 1))))}.
(2) Compute θ0 = (1/(N − 1)β) log(ω/(1 − ω)) − δ.
(3) Compute

F∗ =
{

min{F(u) : P(u) > 0} in the reward case,

min{F̂(u) : P̂(u) > 0} in the punishment case,

where P(u) and F(u), as well as P̂ and F̂, are defined in the electronic supplementary material.
(4) Compute β∗ = −(F∗/δ).
(5) If β ≤ β∗:

θ∗ = θ0, min E(θ ) = E(θ0).

(6) Otherwise (i.e. if β > β∗)

(a) Compute u2 that is the largest root of the equation F(u) + βδ = 0 for the reward case or that
of F̂(u) + βδ = 0 for the punishment case.

(b) Compute θ2 = ((log u2)/β) − δ:

— if θ2 ≤ θ0: θ∗ = θ0, min E(θ ) = E(θ0).
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Figure 3. Weuse algorithm3.3 to find optimalθ thatminimizes E(θ ) (for institutional reward)while ensuring aminimum level
of cooperationω. We also use as examples a small population size (N = 3(a)) and a larger one (N = 50(b)), for DG (b= 1.8,
c = 1). (Online version in colour.)

— Otherwise (if θ2 > θ0):

— if E(θ0) ≤ E(θ2): θ∗ = θ0, min E(θ ) = E(θ0);
— if E(θ2) < E(θ0): θ∗ = θ2, min E(θ ) = E(θ2).

Output: θ∗ and E(θ∗).

To illustrate theorem 3.2 and algorithm 3.3, we focus on the case of reward. Figure 3 shows
the cost function Er as a function of θ , for different values of N, β and ω to illustrate the phase
transition when varying β, in a DG. We can see that, in all cases, these numerical observations
are in close accordance with theoretical results. For example, with N = 3 (figure 3a), we found
β
 = f 
/δ = 10.9291/1.9 = 5.752. For β < β
, E(θ ) are increasing functions of θ . Thus, the optimal
cost of incentive θ
 = θ0, for a given required minimum level of cooperation ω. For example, with
N = 3, for β = 1 to ensure at least 70% of cooperation (ω = 0.7), then θ
 = θ0 = 2.32. When β ≥ β


one needs to compare E(θ0) and E(θ2). For example, with N = 3, β = 10: for ω = 0.25 (black dashed
line), then E(θ0) = 23.602 < 25.6124 = EC(θ2), so θ
 = θ0 = 1.845; for ω = 0.7 (green dashed line),
then E(θ0) = 26.446 > 25.6124 = EC(θ2), so θ
 = θ2 = 2.16 (red solid line); for ω = 0.999999 (blue
dashed line), since θ2 < θ0, θ
 = θ0 = 2.59078.

Similarly, with a larger population size (N = 50; see figure S1 in the electronic supplementary
material, bottom row), we obtained β
 = 3.15/1.03673 = 3.039. In general, similar observations are
obtained as in the case of a small population size N = 3. Except that, when N is large, the values of
θ0 for different non-extreme values of minimum required cooperation ω (say, ω ∈ (0.01, 0.99)) are
very small (given the log scale of ω/(1 − ω) in the formula of ω0). This value is also smaller than θ0,
with a cost E(θ0) > E(θ2), making θ2 the optimal cost of incentive. Similar results are obtained for
PGG (figure 4). When ω is extremely high (i.e. greater than 1 − 10−k, for a large k) (we do not look
at extremely low values since we would like to ensure at least a sufficient level of cooperation),
then we can also see other scenarios where the optimal cost is θ0 (see figure S1 in the electronic
supplementary material, bottom row). We thus can observe that for ω ∈ (0.01, 0.99), for sufficiently
large population size N and large enough β (β > β
 + a bit more), then the optimal value of ω is
always θ2. Otherwise, θ0 is the optimal cost.

Our last result provides a comparison of the expected total costs for providing institutional
reward and punishment, for different individual incentive costs θ .



11

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210568

..........................................................

q q q

PGG: N = 50,   b * = 7.016

q2 = 0.59

E(q) E(q) E(q) q0 for w = 0.25, 0.7, 0.999999q0 = 0.45 for w = 0.7q0 = 0.47 for w = 0.7

b = 10b = 6b = 1

0.5 1.0 1.5 2.0

5000

10 000

15 000

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0

2000
4000
6000
8000

10 000
12 000
14 000

2000
4000
6000
8000

10 000
12 000
14 000

Figure 4. We use algorithm 3.3 to find optimal θ that minimizes E(θ ) while ensuring a minimum level of cooperationω, for
PGG (r = 3, n= 5, c = 1) with N = 50. Similar observations to those for DG are obtained. (Online version in colour.)
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Figure 5. Comparison of the total costs E for reward and punishment as a function of θ , for different values of N and β .
Reward is less costly than punishment (Er < Ep) for small θ , and vice versa. The threshold of θ for this change was obtained
analytically (see theorem 3.1), which is exactly equal to −δ. Results are obtained for DG with b= 2, c = 1. (Online version
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Theorem 3.4 (reward versus punishment costs). The difference between the expected total costs of
reward and punishment is given by

(Er − Ep)(θ ) =

⎧⎪⎪⎨
⎪⎪⎩

< 0, for θ < −δ,

= 0, for θ = −δ,

> 0, for θ > −δ.

(3.8)

As a consequence, when β ≤ min{β∗
r , β∗

p } we have

E∗
r = Er(θ0) and E∗

p = Ep(θ0).

In this case,

(E∗
r − E∗

p) = Er(θ0) − Ep(θ0) =

⎧⎪⎪⎨
⎪⎪⎩

< 0 for ω < 0.5,

= 0 for ω = 0.5,

> 0 for ω > 0.5.

(3.9)

The proof of theorem 3.4 is given in §3 in the electronic supplementary material. Numerical
calculation in figure 5 shows the expected total costs for reward and punishment (DG), for
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cost efficientwhenω is larger. In both cases, the threshold is aroundω = 0.5. Other parameters:β = 1, DGwith b= 2, c = 1.
(Online version in colour.)

varying θ . We observe that reward is less costly than punishment (Er < Ep) for θ < −δ and vice
versa when θ > −δ. It is exactly as shown analytically in theorem 3.4. This analytical result is
confirmed here for different population size N and intensity of selection β. Figure 6 also confirms
the second part of the theorem, where for small β, if one can choose the type of incentive to use,
either reward or punishment, then the former can provide a lower cost when requiring less than
50% cooperation at minimum and the latter otherwise. This is in line with previous work showing
that reward mechanisms work very well to promote cooperation in environments in which it is
rare, while punishment mechanisms are better at maintaining high levels of cooperation (e.g.
[28,35,52]).

4. Discussion
Institutional incentives such as punishment and reward provide an effective tool for promoting
the evolution of cooperation in social dilemmas. Both theoretical and experimental analysis
has been carried out [29,36,37,52,61–63]. However, past research usually ignores the question
of how institutions’ overall spending, i.e. the total cost of providing these incentives, can be
minimized, while at the same time guaranteeing a minimum desired level of cooperation over
time. Answering this question allows one to estimate exactly how incentives should be provided,
that is, how much to reward a cooperator and how severely to punish a wrongdoer. Existing
works that consider this question usually omit the stochastic effects that drive population
dynamics, namely when the intensity of selection varies.

Resorting to a stochastic evolutionary game approach for finite, well-mixed populations, we
have provided theoretical results for the optimal cost of incentives that ensure a desired level of
cooperation while minimizing the total budget, for a given intensity of selection, β. We show that
this cost strongly depends on the value of β, owing to the existence of a phase transition in the
cost functions when β varies. This behaviour is missing in works that consider a deterministic
evolutionary approach [35]. The intensity of selection plays an important role in evolutionary
processes. Its value differs depending on the pay-off structure (i.e. scaling game pay-off matrix by
a factor is equivalent to dividing β by that factor) and is usually found to be specific for a given
population, which can be estimated through behavioural experiments [45–48]. Thus, our analysis
provides a way to calculate the optimal incentive cost for a given population and game pay-off
matrix at hand.

With regard to theoretical importance, we characterized asymptotic behaviours of the total
cost functions for both reward and punishment (namely, in the limits of a large population, weak
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selection and strong selection) and compared these functions for the two types of incentive. We
showed that punishment is always more costly for a small (individual) incentive cost (θ ) but less
so when this cost is above a certain threshold. We provided an exact formula for this threshold.
This result provides insights into the choice of which type of incentives to use.

In the context of institutional incentives modelling, a crucial issue is the question of how to
maintain the budget for providing incentives [59,64]. The problem of who pays or contributes
to the budget is a social dilemma in itself, and how to escape this dilemma is a critical research
question. In this work, we focus on the question of how to optimize the budget used for the
provided incentives.

There are several simplifications made for the theoretical analysis to be possible. First, in order
to derive the analytical formula for the frequency of cooperation, we assumed the small mutation
limit. Despite the simplified assumption, this small mutation limit approach has been shown to be
widely applicable to scenarios which go well beyond the strict limit of very small mutation rates
[46,48,59]. Relaxing this assumption would make the derivation of a close form for the frequency
of cooperation intractable.

Second, we focused in this paper on two important cooperation dilemmas, the DG and the
PGG. They have in common a useful property that the difference in (average) pay-off between
a cooperator and a defector, δ = ΠC(i) − ΠD(i), does not depend on i, the number of cooperators
in the population. This property allows us to simplify the fundamental matrix to a tridiagonal
form and apply the techniques of matrix analysis to obtain a close form of its inverse matrix
(see electronic supplementary material). In games with more complex pay-off matrices such as
the PD in its general form and the collective risk game [65], the difference δ depends on i and
the technique in this paper cannot be directly applied. We might consider other approaches to
approximate the inverse matrix, exploiting its block structure.
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