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Abstract
Background The microbiota in the sputum of people with bronchiectasis has repeatedly been investigated
in cohorts of different geographic origin, but so far has not been studied to the species level in comparison
to control populations including healthy adults and smokers without lung disease.
Methods The microbial metagenome from sputa of 101 European Bronchiectasis Registry (EMBARC)
study participants was examined by using whole-genome shotgun sequencing.
Results Our analysis of the metagenome of people with bronchiectasis revealed four clusters characterised
by a predominance of Haemophilus influenzae, Pseudomonas aeruginosa or polymicrobial communities
with varying compositions of nonpathogenic commensals and opportunistic pathogens. The metagenomes
of the severely affected patients showed individual profiles characterised by low alpha diversity.
Importantly, nearly 50% of patients with severe disease were grouped in a cluster characterised by
commensals. Comparisons with the sputum metagenomes of healthy smokers and healthy nonsmokers
revealed a gradient of depletion of taxa in bronchiectasis, most often Neisseria subflava, Fusobacterium
periodonticum and Eubacterium sulci.
Conclusion The gradient of depletion of commensal taxa found in healthy airways is a key feature of
bronchiectasis associated with disease severity.

Introduction
Bronchiectasis (BE) is a common chronic lung disease with a wide range of underlying causes, including
infections, genetic conditions, as well as autoimmunity and hypersensitivity disorders. Patients suffer from
chronic bronchitic symptoms and frequent respiratory infections, and the disease is characterised by
permanent abnormal dilatation of the bronchi [1, 2]. Airways in BE are predisposed to chronic infection
with micro-organisms that have been linked to disease progression [2, 3]. Culture-based studies of sputum
show a clear association between infection with Pseudomonas aeruginosa and poor outcomes, including
increased mortality. However, culture is recognised as being limited in its ability to characterise the
complexity of chronic lung infections. Using sputum as a surrogate for bronchial secretions and lung
fluids, microbiota have been examined in more than a dozen studies through 16S rDNA amplicon
sequencing [2, 4–6]. Consistent with culture-based diagnostics, the low-diversity microbiomes of people
with BE were often found to be dominated by either Haemophilus, Staphylococcus, Pseudomonas or
Streptococcus. Whole-genome shotgun sequencing provides an additional level of taxonomic information
by resolving the microbiota to species or even strain levels [7]. Correspondingly, the airway metagenome
of people with BE has been explored in the context of exacerbation and the gut–lung axis [8, 9]. Studies to
date largely confirm the relationship between classical pathogens such as P. aeruginosa and Haemophilus
influenzae and worse outcomes in BE, but further studies are needed to understand the contribution of less
abundant taxa, which may play an important role in the BE microbiome. For example, a recent study
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demonstrated that the commensal Rothia mucilaginosa had anti-inflammatory effects including inhibition
of NF-κB activation in airway cells and its presence could modulate the harmful effects of P. aeruginosa [10].
These data suggest that the depletion of commensals found in the healthy airway metagenome may be a key
factor in BE disease severity.

Here we report on the cross-sectional analysis of the sputum metagenome of 101 people with BE. After
taxonomic profiling with our publicly available Wochenende pipeline [11], the metagenome datasets of
people with BE segregated into four clusters of divergent bacterial composition that all are depleted of
commensals from the healthy airway metagenome.

Materials and methods
Study participants
The European Bronchiectasis Registry (EMBARC) is a prospective longitudinal cohort study of patients
with clinically significant BE confirmed by computed tomography (CT). The registry collects detailed
clinical data and, in a subset of patients at selected sites, linked biological samples are collected. Data
collection was approved by the research ethics committee (EMBARC 14/SS/1101). For this analysis, 101
patients enrolled in the EMBARC study provided a spontaneous sputum sample during clinical stability,
defined as 4 weeks free from antibiotic and/or corticosteroid treatment and without symptoms of an
exacerbation. Inclusion criteria also included high resolution CT-confirmed BE, clinical symptoms
consistent with BE and the ability to give informed consent. For this analysis, all participants were
enrolled from Ninewells Hospital, Dundee, UK. To compare the airway metagenome profiles in non-cystic
fibrosis BE with lung health, control groups of healthy smokers (n=8) and healthy nonsmokers (n=88)
were recruited [12]. Clinical metadata are available from the Supplementary Material (Tables S1, S2, S3).
Induced sputum from healthy nonsmokers was collected in sterile tubes (Sarstedt #62.547.004 or
Eppendorf #0030118405) according to the Cystic Fibrosis Foundation Therapeutics Development Network
standard operating procedure 530.00 by autogenic drainage after up to four cycles of 3 min inhalation of
5.85% (w/v) hypertonic saline. The samples were immediately stored at −80 °C until further use.

Sputum sampling from BE patients and healthy smokers in Dundee was approved by the research ethics
committee (approval numbers 16/NW/0101 and 17/LO/1961). The study regarding healthy nonsmokers was
approved by the ethics committee of Hannover Medical School (No. 9299_BO_K_2020). Written informed
consent was obtained from all participants. Sputum samples from BE and healthy controls were processed
and sequenced at Hannover Medical School through the same wet-lab and bioinformatics pipelines.

DNA isolation, library preparation and sequencing
DNA was isolated as previously described [13] (see also extended methods in the Supplementary Material).
The Qubit dsDNA High Sensitivity Kit (Thermo Fisher Scientific, Karlsruhe, Germany; #Q32854) was
applied to measure DNA concentration. 10–50 ng of DNA was sheared into 300 bp fragments using a
Covaris S220 instrument [13]. Fragment libraries were prepared with the NEBNext Ultra II DNA Library
Prep Kit for Illumina (New England Biolabs, Frankfurt am Main, Germany; #E7645L) and NEBNext
Multiplex Oligos for Illumina (#E6440) in six to eight PCR cycles. Purification of fragment libraries was
performed with 0.9× AMPure Beads (Beckman Coulter, Krefeld, Germany; #A63881). The Illumina
NextSeq 550 platform was applied for single-ended 75 bp short-read sequencing (Illumina, Cambridge, UK;
#20024906). Negative controls were processed and sequenced in parallel with the patient samples.

Bioinformatic processing and statistical analysis
Quality filtering, adapter trimming and alignment of the short reads to a reference database consisting of
bacterial, fungal, viral and archaeal genomes (n=2800) was performed by the public pipeline Wochenende [11],
which additionally normalised the read counts. Additional information and documentation regarding
Wochenende is retrievable from GitHub (https://github.com/MHH-RCUG/nf_wochenende/wiki). The
reference database used is available for download (https://drive.google.com/drive/folders/1q1btJCxtU15XX
qfA-iCyNwgKgQq0SrG4). The microbial reads were normalised to an ideal genome length of one million
base pairs and a sequencing depth of one million sequencing reads accounting for both variations in
chromosome length and sequencing depth (reads per million base pairs values). The raspir tool was used
to filter out false-positive species characterised by nonuniform read distributions across their reference
genome [14]. Taxonomic profiling was also performed by MetaPhlAn3 [7] and KrakenUniq [15].
Additional alpha and beta diversity analyses were conducted to compare results from the three
metagenome classifiers Wochenende, MetaPhlAn3 and KrakenUniq (Supplementary Figure S1).

Whole-genome shotgun sequencing and further processing with Wochenende generated a median number
of 8.4 million high-quality sequencing reads of 75 bp length per BE sputum sample. The mean relative
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percentage of microbial reads was 7%, corresponding to about 600 000 reads. Negative controls had a
median number of 102 reads and species patterns were highly divergent from those of patient samples
(Supplementary Figure S2). Coverage of nonhuman reads was assessed by the tool Nonpareil 3
(Supplementary Figure S3) [16].

Statistical analysis was conducted with R in RStudio version 2022.07.2. Diversity indices and nonmetric
multidimensional scaling (NMDS) were calculated with the vegan package (R function distance, metaMDS).
Comparisons of metagenome datasets between subcohorts of individuals were performed with MaAsLin2
(Microbiome Multivariable Association with Linear Models) applying the suggested default parameters [17].
A permutation test was employed to fit clinical metadata and microbial ecology parameters in the ordination
(vegan, envfit). Group centroids were evaluated by the betadisper function (vegan). Dirichlet multinomial
mixtures (DMMs) were applied for microbial community typing [18] (DirichletMultinomial package) with
parameter π as a measure of weight and θ as a measure of variance. A Laplace approximation was applied to
determine the number of components in the Dirichlet mixture. The R package metacoder was used to
generate heat trees [19]. Statistical significance was evaluated using the Mann–Whitney or Kruskal–Wallis
tests, with a Dunn test for post hoc analysis and Benjamini–Hochberg correction. Fisher’s exact test was
applied to detect significant associations between clinical metadata and disease severity. Please see the
Supplementary Material for more details about the selected methods.

The metagenome datasets from people with BE and healthy smokers have been uploaded to the European
Nucleotide Archive (Project PRJEB65368). The metagenome data sets from healthy nonsmokers can also
be retrieved from the European Nucleotide Archive (project PRJEB52822). Coding scripts are available
from GitHub (https://github.com/irosenboom/sputumMetagenomics_bronchiectasis).

Results
Characteristics of the study population
The study cohort consisted of 101 people with BE having a median age of 68 years (range 21–91 years)
(table 1, Supplementary Table S1). The population had slightly more males than females (57%). 37
patients were ex-smokers and eight were current smokers. The most common aetiologies were idiopathic
and post-infective disease with COPD being the third most common cause, consistent with the European
Bronchiectasis Registry aetiologies as a whole [20]. 34 BE patients were taking long-term antibiotics,
predominantly long-term azithromycin prophylaxis.

Airway metagenome analyses
Sputum samples from all study participants (n=101) underwent high-throughput shotgun microbial genome
sequencing. First, the metagenome datasets were analysed by ecology parameters differentiated by the
patient’s bronchiectasis severity index (BSI) [21]. The group of mildly and moderately affected individuals
had significantly higher diversity measures for species number and Shannon, Simpson and Pielou diversity
indices than the severely affected patients (figure 1a,b,c,d). Next, we compared the differential abundance
of taxa in patients with mild, moderate and severe BSI by MaAsLin 2 analysis [17]. Figure 1e
demonstrates the moderate and strong depletion of commensals in the individuals with moderate and severe
BSI, respectively, compared to the patient cohort with mild BSI. Beta diversity of the datasets was
assessed by NMDS of Bray–Curtis dissimilarity indices (figure 2a). Sputa collected from patients with
severe BSI were significantly more distant from the average sample of the dataset implying individual
signatures (figure 2b). Community profiling by DMMs [18] segregated the datasets into four clusters
(figure 2c). Cluster DMM1 (n=40) was populated by similar numbers of samples from patients with mild
and severe BSI, whereas DMM2 (n=35) predominantly consisted of samples from individuals with mild
and moderate BSI (figure 2d). Samples mainly from patients with moderate or severe BSI contributed to
DMM3 (n=16) and DMM4 (n=10).

DMM3 and DMM4 consisted of H. influenzae and P. aeruginosa as primary species, respectively
(figure 3). Even though all other species made only minor contributions, the alpha diversity of the
metagenomes dominated by H. influenzae was significantly higher in samples from individuals with mild
and moderate BSI than from those with severe BSI (Supplementary Figure S4). In contrast to the
pathogen-driven and less diverse DMM3 and DMM4, clusters DMM1 and DMM2, where commensal
species predominated, differed substantially in terms of their parameter θ values, serving as a measure of
variance (figure 3a). Cluster DMM1 was characterised by personalised metagenomes as its major
constituents, including Moraxella catarrhalis, Staphylococcus aureus, H. influenzae and members of the
genus Streptococcus (figure 3c). In contrast, DMM2 was characterised by low variance and high diversity.
Shannon diversity was significantly different between the four clusters in all pairwise comparisons, except
for DMM3 and DMM4 (figure 3b).
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Clusters DMM1 and DMM2 were predominantly populated by commensal species rather than by
conventional pathogens. Hence, we wanted to compare the composition of these clusters with those
derived from sputa of healthy nonsmokers and healthy smokers. The heat trees in figure 4 point to
substantial differences in the airway metagenomes of healthy and BE patients, even in the absence of
classical pathogens such as H. influenzae or P. aeruginosa. Of the 10 most common species in a healthy
lung, the major anaerobes, i.e. Veillonella and Prevotella species, were strongly depleted. The heat trees
additionally resolved that cluster DMM1 contained infrequently occurring, personalised pathogens such as
Serratia liquefaciens, Neisseria meningitidis and Elizabethkingia miricola. To resolve the different

TABLE 1 Clinical metadata of 101 individuals with bronchiectasis stratified by bronchiectasis severity index [21]

Cohort characteristics Mild (n=26) Moderate (n=40) Severe (n=35)

Age, years (median 68, 63–75 IQR)
<50* 6 (23%) 2 (5%) 2 (6%)
50–70* 17 (65%) 19 (48%) 11 (31%)
70–80** 3 (12%) 15 (38%) 17 (49%)
>80 0 (0%) 4 (10%) 5 (14%)

Gender
Female 9 (35%) 21 (53%) 13 (37%)
Male 17 (65%) 19 (48%) 22 (63%)

BMI (median 26.5, 22.6–30.4 IQR)
<18.5 0 (0%) 1 (3%) 3 (9%)
18.5–25* 8 (31%) 11 (28%) 20 (57%)
>25–30* 9 (35%) 16 (40%) 5 (14%)
>30 9 (35%) 12 (30%) 7 (20%)

Smoking history
Ex-smoker 6 (23%) 15 (38%) 16 (46%)
Smoker 2 (8%) 4 (10%) 2 (6%)
Never-smoker 18 (69%) 21 (53%) 17 (49%)

FEV1 % pred (median 67, 52–87 IQR)
>80*** 19 (73%) 12 (30%) 2 (6%)
50–80 7 (27%) 20 (50%) 16 (46%)
30–50*** 0 (0%) 8 (20%) 13 (37%)
<30* 0 (0%) 0 (0%) 4 (11%)

Comorbidities
Cancer 2 (8%) 2 (5%) 4 (11%)
Cardiovascular disease 8 (31%) 11 (28%) 12 (34%)
Chronic renal failure 0 (0%) 5 (13%) 3 (9%)
Depression* 1 (4%) 5 (13%) 10 (29%)
Diabetes* 0 (0%) 9 (23%) 5 (14%)
Osteoporosis* 1 (4%) 6 (15%) 10 (29%)

Aetiologies
Idiopathic* 13 (50%) 23 (58%) 10 (29%)
Post-infective 6 (23%) 5 (13%) 2 (6%)
COPD 0 (0%) 5 (13%) 6 (17%)
ABPA 1 (4%) 1 (3%) 4 (11%)
Asthma 2 (8%) 1 (3%) 2 (6%)
Primary ciliary dyskinesia 2 (8%) 1 (3%) 2 (6%)
Inflammatory bowel disease 0 (0%) 1 (3%) 3 (9%)
Nontuberculous mycobacteria 1 (4%) 1 (3%) 1 (3%)
Rheumatoid arthritis 0 (0%) 0 (0%) 3 (9%)
Immunodeficiency 1 (4%) 1 (3%) 0 (0%)
Alpha-1 antitrypsin deficiency 0 (0%) 0 (0%) 1 (3%)
Aspiration 0 (0%) 1 (3%) 0 (0%)
CFTR-related disorder 0 (0%) 0 (0%) 1 (3%)

Treatment
Inhaled corticosteroids 14 (54%) 21 (53%) 26 (74%)
Long-term antibiotics 7 (27%) 10 (25%) 17 (49%)

Fisher’s exact test was applied to detect significant associations of clinical metadata with the severity of
disease. ABPA: allergic bronchopulmonary aspergillosis; BMI: body mass index; CFTR: cystic fibrosis
transmembrane conductance regulator; FEV1: forced expiratory volume in 1 s; IQR: interquartile range. * p<0.05;
** p<0.01; *** p<0.001.
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abundances in more detail, figures 5a and 5b compare the quantitative abundances of randomly selected
pairs of the four age quartiles in the four clusters with that of the average metagenome of healthy
nonsmokers aged 20–59 years [12]. Each BE sample demonstrated a substantial and individual depletion
of the taxa present in healthy airways, whereby more taxa were absent in specimens of DMM3 and DMM4
(figure 5b). Even though samples from cluster DMM2 were more diverse than those from cluster DMM1,
they both were strongly depleted in terms of Veillonella spp., Prevotella spp., N. subflava, Eubacterium
sulci and Fusobacterium periodonticum (figure 5a).

Figure 6a depicts the differential taxonomic profiles of our metagenome datasets from healthy and BE
cohorts analysed by the MaAsLin2 [17] software package. As visualised before in the heatmaps (figure 5),
numerous commensal species present in healthy lungs were significantly depleted in the sputa of
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individuals with BE. Of the total 102 significantly differentially abundant taxa (Supplementary Figure S5),
taxa of the genera Fusobacterium, Eubacterium, Prevotella, Leptotrichia, Neisseria, Haemophilus,
Actinomyces, Campylobacter and Veillonella were most strongly depleted (figure 6a). Besides the
pathogens well known to colonise BE lungs, such as H. influenzae, P. aeruginosa and M. catarrhalis,
three Streptococcus species (S. salivarius, S. equinus and S. mutans) are present in BE lungs and less
common in healthy lungs (Supplementary Figure S5, Supplementary Table S5). The NMDS plots in
figures 6b and 6c compare the beta diversity of the total datasets of the metagenomes from people with
BE, healthy smokers and healthy nonsmokers highlighting the individual signatures of BE samples and
partly overlapping profiles of the healthy controls. In other words, samples from smokers are shifted in the
second NMDS dimension because F. periodonticum, N. subflava, H. parainfluenzae and R. mucilaginosa
are at least partially depleted (figure 6c, Supplementary Table S4).

Discussion
This is the first study to characterise the metagenome of sputum from patients with BE compared to
control populations including healthy adults and smokers without lung disease. Our analysis of the
metagenome of people with BE revealed four clusters characterised by predominances of Haemophilus,
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Pseudomonas or polymicrobial communities with a differential composition of nonpathogenic commensals
and opportunistic pathogens. The metagenomes of the severely affected patients showed individual profiles
of low alpha diversity. Importantly, 49% of patients with severe disease were in cluster DMM1, which was
largely populated by commensals. Our study demonstrates that far from representing “healthy”
metagenomes, these profiles are depleted of key commensals when compared to healthy airways.
Comparisons with the sputum metagenomes of healthy smokers and healthy nonsmokers revealed a
gradient of depletion of taxa in BE.

Our study confirms previous analyses by culture-dependent diagnostics and amplicon sequencing of the 16S
rDNA gene that P. aeruginosa, H. influenzae, S. aureus and Candida albicans are the major pathogens in
the sputum of people with BE [4, 6, 22–26]. Consistent with our beta diversity analysis (figure 2),
microbiota in BE sputum can be assigned to three groups, the first dominated by P. aeruginosa, the second
by H. influenzae and the third negatively defined as non-P. aeruginosa/non-H. influenzae dominated.
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FIGURE 5 Heatmap of the top 40 microbial species in bronchiectasis and a cumulative metagenome from
healthy nonsmokers. Two patient samples were randomly selected per age quartile (21–62, 63–68, 69–74 and
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The composition of the third group varies between the published reports, which probably does not reflect
the spatiotemporal divergence of BE microbiota around the globe but more the differential range of taxa
that are resolved by the respective diagnostic microbiology laboratory and the inherent limitations of 16S
rDNA amplicon analysis. The 16S rDNA sequence has its merits as being the universal molecular marker
of the bacterial tree of life [27], but the amplicon sequencing of a variable region often falls short to
discern bacteria at the species level. This limitation is particularly relevant for the diagnosis of the
microbiota in the respiratory tract that consist of many Firmicutes such as Streptococcus species that are
not differentiated by sequencing of a variable region of the 16S rDNA gene.

Shotgun sequencing of the metagenome overcomes these limitations. Consistent with two previous reports
on the metagenome of 55 sputa from people with BE [8, 9], our metagenome datasets segregated into
clusters characterised by a predominance of Pseudomonas, Streptococcus and Haemophilus. Thanks to
algorithms that minimise false-positive and false-negative taxonomic assignments of reads [14], we could
identify all bacterial species in the samples represented by at least 100 reads. Thus, the non-P. aeruginosa/
non-H. influenzae group could be partitioned into two clusters comprising a divergent set of commensals
and opportunistic pathogens. In future longitudinal studies, it will be interesting to assess whether a
patient’s assignment to a cluster will be stable or could switch over time.

Since this study implemented the sputum metagenome of healthy smokers and healthy nonsmokers, which
has not been considered in all previous studies on the BE sputum microbiome, the dysbiosis of the BE
airway metagenome in the absence of typical pathogens could be clarified. The members of the genera
Rothia and Streptococcus can thrive in the BE lung habitat, whereas numerous other species of the healthy
airway microbiome are partly or completely depleted. The strongest depletion was seen for the
phylogenetically unrelated species F. periodonticum, E. sulci and N. subflava. We have observed the same
pattern of depletion in sputa collected from individuals with cystic fibrosis [12]. F. periodonticum and
E. sulci have so far not been investigated in the context of respiratory health and disease. However, low
levels of N. subflava have been identified as a biomarker of COPD disease severity in Chinese patients [28].
Interestingly, based on murine infection models N. subflava has been qualified as a pathobiont in Southeast
Asians with BE [29]. The differential abundance of Neisseria species and the association with BE disease in
European and Asian patient populations may reflect a varying impact of ethnicity, lifestyle and polymicrobial
interactome in the airways. In addition, the different spectrum of aetiologies already seen as a gradient among
European populations [20] may contribute to the opposite roles attributed to N. subflava.

We have tested the association of the alpha diversity measures of the patient’s metagenome with several
clinical outcome measures, such as lung function, anthropometry, treatment and frequency of pulmonary
exacerbations (see table 1), which all turned out to be nonsignificant with the exception of the BSI [21]. In
other words, the high heterogeneity of aetiologies, in accordance with BE being a heterogeneous disease
and especially the low frequencies of certain aetiologies, did not allow for multivariate statistical analysis
taking aetiology as an outcome variable of metagenome data. The BSI, which is based on the evaluation of
data from a prospective BE cohort [21], was superior to any other standard measure to link the airway
microbiome with disease.

Our study has limitations. We did not perform any genome-based functional analysis. Any comparative
metatranscriptomics, metabolomics and metaproteomics study would be beyond the scope of this work
because of the technical challenges involved in handling the low microbial biomass samples. Moreover, we
did not assess the geographic diversity of the BE sputum metagenomes, which has already been addressed
by one of us by comparing samples from Scotland and the Southeast Asian Malacca peninsula [8, 29]. In
addition, the sputa from patients and smokers were collected from visitors to a Dundee clinic and those
from healthy nonsmokers were retrieved from people living in the Hannover region. Third, induced sputa
were collected from the healthy controls because most healthy people cannot spontaneously mobilise
respiratory secretions and we wanted a consistent sampling method for all controls. Conversely,
spontaneous sputum was sampled from the people with BE. Thus, the same mode of sampling and storage
was not guaranteed. Moreover, the healthy control group was on average younger than the people with BE.

75–91 years) and Dirichlet multinomial mixture (DMM) cluster. The species were compared with a cumulative
metagenome of 88 induced sputa from healthy nonsmokers aged 20–59 years. A grey square indicates an absent
species. Colour indicates logarithmic RPMM values (reads per million base pairs) from low (blue) to high
abundance (red). a) The first panel depicts the most variable cluster DMM1 and the more diverse cluster DMM2.
b) The second panel illustrates the less diverse pathogen-driven clusters DMM3 and DMM4.
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However, as the gradient of depletion noted in patients with BE matches with that observed in patients
with cystic fibrosis seen at the Hannover clinic [12], the divergent geographic origin of samples from
Scotland and Northern Germany should not have substantially influenced the outcome of our study.

In summary, the sputum metagenome of our study cohort could be segregated into four clusters. Apart
from the samples dominated by singular pathogens such as H. influenzae, P. aeruginosa or S. aureus,
many specimens contained no prima facie pathogens. The polymicrobial communities were mainly an
assembly of Rothia and Streptococci species, but other common members of a healthy airway microbiome
were underrepresented or even lacking. Even in the absence of classical pathogens, all samples from
individuals with BE showed this mode of dysbiosis. These species that differentiate BE from lung health
could be exploited in the future as biomarkers to monitor the longitudinal course of a patient, to trace the
efficacy of disease management or even to function as an end-point for clinical trials.
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