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Abstract

We aimed to evaluate a computer-aided diagnosis (CADx) system for lung nodule classifica-

tion focussing on (i) usefulness of the conventional CADx system (hand-crafted imaging fea-

ture + machine learning algorithm), (ii) comparison between support vector machine (SVM)

and gradient tree boosting (XGBoost) as machine learning algorithms, and (iii) effectiveness

of parameter optimization using Bayesian optimization and random search. Data on 99 lung

nodules (62 lung cancers and 37 benign lung nodules) were included from public databases

of CT images. A variant of the local binary pattern was used for calculating a feature vector.

SVM or XGBoost was trained using the feature vector and its corresponding label. Tree

Parzen Estimator (TPE) was used as Bayesian optimization for parameters of SVM and

XGBoost. Random search was done for comparison with TPE. Leave-one-out cross-valida-

tion was used for optimizing and evaluating the performance of our CADx system. Perfor-

mance was evaluated using area under the curve (AUC) of receiver operating characteristic

analysis. AUC was calculated 10 times, and its average was obtained. The best averaged

AUC of SVM and XGBoost was 0.850 and 0.896, respectively; both were obtained using

TPE. XGBoost was generally superior to SVM. Optimal parameters for achieving high AUC

were obtained with fewer numbers of trials when using TPE, compared with random search.

Bayesian optimization of SVM and XGBoost parameters was more efficient than random

search. Based on observer study, AUC values of two board-certified radiologists were 0.898

and 0.822. The results show that diagnostic accuracy of our CADx system was comparable

to that of radiologists with respect to classifying lung nodules.

Introduction

Lung cancer is the leading cause of cancer deaths in the United States [1] because it is fre-

quently diagnosed at an advanced stage, and this prevents effective treatment. Results from the
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National Lung Screening Trial (NLST) show that compared with chest X-ray screening, lung

cancer screening with low-dose CT significantly reduced lung cancer mortality among heavy

smokers by detecting lung cancers at an early stage [2,3]. However, false positives in low-dose

CT screening can be problematic and can result in unnecessary follow-up CT, positron emis-

sion tomography, or invasive procedures. In NLST, 96.4% of the positive results in the low-

dose CT group were false positives [2,3].

Computer-aided diagnosis (CAD) has the potential of optimizing radiologists’ workloads.

CAD can assist radiologists in detection (CADe) and differentiation (CADx) of lung nodules

[4–23]. For example, CADx is useful for assisting radiologists in differentiating between

benign and malignant lung nodules [6], and it is expected that CADx is useful for reducing

false positives in lung cancer screening with low-dose CT.

Gradient tree boosting is superior to off-the-shelf classifiers such as random forest or sup-

port vector machine (SVM) [24,25]. Because performance of CADx is affected by machine

learning algorithms, gradient tree boosting may improve the performance of CADx. However,

to the best of our knowledge, no other study has investigated the usefulness of gradient tree

boosting in CADx of lung nodules. In our study, we used XGBoost as an implementation of

gradient tree boosting [25] and applied it to CADx system of lung nodules.

It is necessary to optimize parameters of machine learning algorithms to ensure good per-

formance. Grid search has been frequently used for this purpose [26]. However, when the

number of parameters is increased, grid search is not feasible because of its computational

cost. As an alternative to grid search, random search and Bayesian optimization were used for

parameter optimization [27,28]. Because XGBoost has many parameters, random search and

Bayesian optimization are suitable for parameter optimization.

The purpose of the current study was to develop and evaluate the CADx system, focusing

on (i) usefulness of the conventional CADx system (hand-crafted imaging feature + machine

learning algorithm), (ii) comparison between SVM and XGBoost as machine learning algo-

rithms, and (iii) effectiveness of parameter optimization using random search and Bayesian

optimization. Herein, a variant of the local binary pattern (LBP) [11,18,29–31] was used as the

hand-crafted imaging feature for calculating a feature vector that was fed into the machine

learning algorithms.

Methods

This study used anonymized data from a public database. Regulations of Japan did not require

institutional review board approval for use of a public database.

CT images

Our CADx system was tested using chest CT images obtained from The Cancer Imaging

Archive (TCIA). TCIA is an open database of medical images, mainly consisting of CT, MRI,

and nuclear medicine images that are stored as anonymized DICOM data. We used two sets of

chest CT images from TCIA; one set from the LUNGx Challenge and one from the NSCLC

Radiogenomics [20,21,32–35]. The LUNGx Challenge provided 60 test sets of chest CT images

with 10 calibration sets. The 60 test sets included 73 lung nodules; a list of these nodules is

available on the LUNGx Challenge website [34]. Among the 73 nodules from the LUNGx

Challenge, 36 were lung cancers and 37 were benign. In NSCLC Radiogenomics, each of 26

sets of chest CT images included lung cancer. By combining data from LUNGx Challenge with

those from NSCLC Radiogenomics, a total of 99 lung nodules (62 lung cancers and 37 benign

nodules) were used for the development and evaluation of our CADx system.

CADx of lung nodule using gradient tree boosting and Bayesian optimization
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Image preprocessing

First, CT images were loaded, and their voxel sizes were converted to 1 × 1 × 1 mm. Next, the

center was determined for each of the 99 nodules. Coordinates of the center of the lung nodules

were provided via spreadsheet in the LUNGx Challenge and utilized here. Conversely, no such

information was available for NSCLC Radiogenomics. Therefore, the center of the lung nodule

was visually validated by two board-certified radiologists (M.N. and M.N.). A 64 × 64 × 64 3D

bounding box was set for each nodule, and CT images inside the bounding box were cropped.

The cropped 3D CT images were analyzed as the input to our CADx system. Areas of the CT

images outside the bounding box were not assessed. As shown, manual segmentation of lung

nodule was not needed in this preprocessing (only the center of lung nodule was necessary).

Calculation of a feature vector

The local binary pattern on three orthogonal planes (LBP-TOP) was used for calculating a fea-

ture vector [11,18,29,30,31]. Naïve implementation of 2D LBP was represented as follows:

LBPðx;R;PÞ ¼
PP� 1

i¼0
2i � sðdiÞ

di ¼ Iðnðx;R; iÞÞ � IðxÞ; ðIÞ

where x is the center pixel where LBP is calculated; P is the number of samples; n(x, R, i) is the

ith neighbor pixel around the center pixel x and the distance between the center pixel x and the

neighbor pixel is R; I(u) is the CT density of pixel u and s(v) is an indicator function, where s
(v) is 1 if v� 0 and 0 otherwise. We used a uniform pattern and rotation invariant type instead

of naïve implementation as naïve implementation cannot handle large P values because they

make feature vectors too long. Both uniform pattern and rotation invariant type can enhance

the robustness of LBP as a feature vector. To utilize LBP in 3D images, LBP-TOP was used in

this study. In LBP-TOP, 2D LBP was calculated on the XY, XZ and YZ planes and the texture

information on other 3D planes was ignored. Then, the results of 2D LBP on the XY, XZ and

YZ planes were converted into 1D histograms, which were concatenated. In this method, rota-

tion invariance of LBP was retained only in the rotation of XY, XZ and YZ planes. To use

LBP-TOP as feature vectors of CADx of lung nodules, 3D cropped CT images were evaluated

with uniform pattern and rotation invariant type of LBP-TOP, and 1D feature vectors were

calculated.

Machine learning algorithm

Our CADx system was built using SVM or XGBoost [24,25]. Implementations of SVM and

XGBoost were freely available. SVM or XGBoost were trained using the feature vector

obtained by LBP-TOP and its corresponding label. SVM is a widely used machine learning

algorithm, and we used SVM with kernel trick (radial basis function) in this study. XGBoost

builds an efficient classifier using gradient tree boosting. Gradient tree boosting is invariant to

scaling of a feature vector, and it can determine higher-order interaction between a feature

vector. The usefulness of XGBoost has been validated in a number of machine learning and

data mining challenges (Please refer to the Introduction section of [25]). Gradient tree boost-

ing is trained in an additive manner. At each time step t, it grows a tree to minimize the resid-

ual of the current model. Formally, the objective function of XGBoost can be described as

follows:

Lt ¼
Pn

i¼1
lðyi; y

t� 1

i þ ftðxiÞÞ þ Oð ftÞ; ðIIÞ

CADx of lung nodule using gradient tree boosting and Bayesian optimization
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where xi and yi are the feature vector and its label at the ith instance, n is the number of training

data, yt� 1
i is the prediction of the ith instance at the t − 1th iteration, ft is a new tree that classifies

the ith instance using xi, l denotes a loss function that measures the difference between the label

and the prediction at the last step plus the new tree output, and O is the regularization term

that penalizes the complexity of the new tree.

Parameters

The following parameter space was used for parameter optimization.

• For SVM, C and γ were used for controlling SVM with a radial basis function kernel [26]; C

is a parameter for balancing classification error and regularization, and γ is a free parameter

for bandwidth of radial basis function kernel. The range of C and γ were as follows: C,

1.0 × 10−5–1.0 × 105 and γ, 1.0 × 10−5–1.0 × 105.

• For XGBoost, parameters and their range were as follows: eta, 0.2–0.6; max_depth, 1–13;

min_child_weight, 1–10; gamma, 0–1. The concise explanation of XGBoost parameters are

as follows: eta for step size shrinkage used in updating a tree [25], max_depth for maximum

depth of a tree, min_child_weight for minimum sum of instance weight needed in a child (If

the tree partition step results in a leaf node with the sum of instance weight less than min_-

child_weight, the process of tree building will stop further partitioning), gamma for mini-

mum loss reduction required to make a further partition on a leaf node of the tree. The

detail of these parameters can be available elsewhere [36].

• LBP-TOP has two parameters (R and P). The values of R and P were as follows: R = 7, 8 and

P = 40, 48.

Parameter optimization

The parameter space was defined in the previous subsection. Here we denoted the parameters

as θ. When using machine learning algorithm A (SVM or XGBoost) and the parameter θ, we

trained A using training data and validated its performance using validation data. We used L
(A,θ,Dtrain,Dvalid) to denote the validation loss that A achieved on validation data Dvalid when A
was trained on θ and Dtrain. The parameter optimization problem under K-fold cross-valida-

tion was then to minimize the black box function:

f ðθÞ ¼
1

K
PK

i¼1
LðA; θ;Di

train;D
i
validÞ; ðIIIÞ

where Di
train and Di

valid were training data and validation data of the i-th fold of K-fold cross-val-

idation, respectively. Bayesian optimization was used for optimizing this black box function f
(θ) and for searching for the optimal parameter θ. Tree Parzen Estimator (TPE) was utilized

for solving this problem [27]. Random search was used to compare the performance of TPE.

Number of trials for TPE or random search was as follows: 10, 100, 200, and 1000.

Software and outline of CADx

Code of our CADx system and binary data of lung nodules are available as S1 File of Support-

ing information. For our CADx system, python (version 2.7, https://www.python.org/), and

the following packages were used: scikit-image (version 0.18.1, http://scikit-image.org/), sciki-

learn (version 0.18.1, http://scikit-learn.org/), xgboost (version 0.6, http://xgboost.readthedocs.

io/en/latest/), and hyperopt (version 0.1, http://hyperopt.github.io/hyperopt/). An outline of

our CADx system is shown in Fig 1.

CADx of lung nodule using gradient tree boosting and Bayesian optimization
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Observer study

Two board-certified radiologists (M.N. and M.Y.) were included in observer study for assess-

ing the 99 lung nodules. They evaluated CT images of lung nodules with lung window condi-

tion (window width = 1500 HU and window level = −600 HU), and could change the window

condition if necessary. They rated their suspicion of malignancy with 10-point scale (1 = defi-

nitely benign lung nodule; 10 = definitely lung cancer).

Statistical analysis

Leave-one-out cross-validation was used for optimizing and evaluating the performance of

our CADx system. Validation loss under leave-one-out cross-validation was used for

Fig 1. Outline of our CADx system. Abbreviations: CADx, computer-aided diagnosis; LBP-TOP, local binary pattern on three orthogonal planes; SVM, support vector

machine.

https://doi.org/10.1371/journal.pone.0195875.g001
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parameter optimization. After parameter optimization, probabilistic outputs of our CADx sys-

tem with optimal parameters were analyzed using accuracy and area under the curve (AUC) of

receiver operating characteristic (ROC) analysis. Classification results of our CADx system

were output as probabilities of lung cancer to calculate AUC. For each number of trial, AUC

and accuracy were calculated 10 times, and their averages were obtained. For observer study,

AUC and accuracy of the two board-certified radiologists were also calculated for comparison

between our CADx system and radiologists.

Results

The averaged validation loss, AUC, and accuracy of our CADx system are shown in Tables 1

and 2 and Figs 2–4. S1 Table of Supporting information shows raw results of validation loss,

AUC, and accuracy of our CADx system for each setting. Tables 1 and 2 show the averages of

the raw results listed in S1 Table of Supporting information. Comparing the results depicted in

Tables 1 and 2, XGBoost was generally superior to SVM. According to Table 1, the best aver-

aged AUC of SVM was 0.850 when using TPE and number of trials = 1000. Table 2 shows that

the best averaged AUC of XGBoost was 0.896 when using TPE and number of trials = 1000.

According to S1 Table of Supporting information, the best AUC and accuracy of SVM was

0.855 and 0.834, respectively, and the best AUC and accuracy of XGBoost was 0.903 and 0.859,

respectively. In XGBoost, the averaged AUC of TPE was better than that of random search

when the number of trials was 100, 200, or 1000. In SVM, the averaged AUC of TPE was better

than that of the random search when the number of trials was 100. However, when the number

Table 1. Results of CADx when using SVM and parameter optimization.

Algorithm Number of trial Validation loss AUC Accuracy

Random 10 0.528 0.792 0.734

Random 100 0.481 0.832 0.780

Random 200 0.460 0.848 0.794

Random 1000 0.451 0.849 0.789

TPE 10 0.515 0.797 0.724

TPE 100 0.461 0.847 0.802

TPE 200 0.458 0.846 0.792

TPE 1000 0.453 0.850 0.797

Abbreviation: computer-aided diagnosis, CADx; support vector machine, SVM; Tree Parzen Estimator, TPE; area under the curve, AUC.

https://doi.org/10.1371/journal.pone.0195875.t001

Table 2. Results of CADx when using XGBoost and parameter optimization.

Algorithm Number of trial Validation loss AUC Accuracy

Random 10 0.488 0.838 0.756

Random 100 0.451 0.864 0.771

Random 200 0.440 0.868 0.784

Random 1000 0.422 0.878 0.806

TPE 10 0.494 0.838 0.762

TPE 100 0.427 0.876 0.811

TPE 200 0.419 0.881 0.804

TPE 1000 0.394 0.896 0.820

Abbreviation: computer-aided diagnosis, CADx; support vector machine, SVM; Tree Parzen Estimator, TPE; area under the curve, AUC.

https://doi.org/10.1371/journal.pone.0195875.t002
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of trials was 10, the difference of the averaged AUC was minimal between random search and

TPE in SVM and XGBoost. In addition, in SVM, the difference of averaged AUC was minimal

between random search and TPE when the number of trials was 200 or 1000.

From the results of observer study, AUC and accuracy of the two board-certified radiolo-

gists were as follows: radiologist1, 0.898 and 0.838; radiologist2, 0.822 and 0.717. Fig 5 shows

the corresponding ROC curves of the two radiologists.

Discussion

In this study, we used two different sets of CT images for evaluating our CADx system; one set

from the LUNGx Challenge and the other from the NSCLC Radiogenomics. Using XGBoost

and TPE, the best averaged AUC under leave-one-out cross-validation was 0.896 (the best

Fig 2. Validation loss of CADx. Abbreviations: CADx, computer-aided diagnosis; SVM, support vector machine.

https://doi.org/10.1371/journal.pone.0195875.g002

Fig 3. AUC of CADx. Abbreviations: CADx, computer-aided diagnosis; SVM, support vector machine; AUC, area

under the curve.

https://doi.org/10.1371/journal.pone.0195875.g003
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AUC under leave-one-out cross-validation was 0.903). AUC values of the two board-certified

radiologists were 0.898 and 0.822. These results of our CADx system show the following three

main points; (i) the diagnostic accuracy of our conventional CADx system (hand-crafted

imaging feature + machine learning algorithm) might be comparable to that of the radiolo-

gists; (ii) XGBoost was better than SVM; and (iii) parameter optimization with TPE was better

than that with random search.

From the comparison between our CADx system and radiolgists, we speculated that the

diagnostic accuracy of our CADx system was comparable to that of the radiologists with

respect to classifying lung nodules; AUC values of both our CADx system and radiologists

were nearly 0.9.

Fig 5. ROC curves of two radiologists. Note: (A) radiologist1 and (B) radiologist2. Abbreviations: ROC, receiver operating

characteristic.

https://doi.org/10.1371/journal.pone.0195875.g005

Fig 4. Accuracy of CADx. Abbreviations: CADx, computer-aided diagnosis; SVM, support vector machine.

https://doi.org/10.1371/journal.pone.0195875.g004
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A few previous studies have utilized XGBoost for developing a clinical model. One study

used XGBoost for classifying symptom severity based on text information in the form of psy-

chiatrist notes [37]. Another study showed the usefulness of XGBoost for differentiation

between subjects with epilepsy and healthy subjects using patients’ cerebral activity assessed by

functional MRI [38]. In conjunction with the results of these studies, we found that XGBoost

was useful for developing an efficient and reliable clinical model. Although SVM was widely

used as a machine learning algorithm in CADx, AUC of CADx using XGBoost was better than

that using SVM in our study. A prime reason for the superiority of XGBoost to SVM is invari-

ant to scaling of a feature vector. As well-known kernels for SVM, such as radial basis function

and linear kernels, are scale dependent, the output value of SVM is affected by scaling of a fea-

ture vector. In addition, because results of LBP-TOP can be viewed as a type of categorical

data, it is speculated that tree-based classifiers, such as XGBoost, are more suitable for feature

vectors obtained by LBP-TOP than SVM.

Previous studies have shown that Bayesian optimization was useful in several domains of

clinical application [39–42]. The results of the current study are compatible with those of the

previous studies. Figs 2–4 show that, in general, TPE is better than random search for optimiz-

ing parameters in SVM and XGBoost. However, when the number of trials was 10, the differ-

ence in performance between TPE and random search was minimal. This result suggests that

the small number of trials (10) hindered parameter optimization of SVM and XGBoost. When

the number of trials was 200 or 1000 in SVM, the difference in performance between random

search and TPE was also minimal. Because parameter space of SVM was narrower than that of

XGBoost in the current study, we surmised that both random search and TPE could almost

fully optimize parameters and the difference in performance may be minimal.

We used the conventional CADx system because the number of lung nodule was less than

100. Although results of recent studies suggest that deep learning is superior to conventional

machine learning algorithms, deep learning requires a large number of training data [43].

Therefore, we focused on the conventional CADx system in the current study. Generally

speaking, it is more difficult to collect training data for medical image analysis than for other

fields of image analysis. When the number of training data is limited, our methodology may be

more useful than deep learning.

Because we used the established software (LBP, XGBoost, and TPE), our CADx system was

technically simple. However, our results show that diagnostic accuracy of our system might be

comparable to that of the radiologists. The previous studies required nodule segmentation, cal-

culation of many types of image features, or radiological findings for successful differentiation

of lung nodules [8, 17]. The simplicity was the main advantage of our CADx system.

The previous study shows that AUC value of CADx system was more than 0.8 by using the

73 lung nodules of LUNGx Challenge and SVM with a linear kernel [11]. Because of differ-

ences in CT images, quality of labels, and kernel type of SVM, it is difficult to precisely com-

pare the diagnostic accuracy of the CADx system between the current study and the previous

study. However, the diagnostic accuracy of our CADx system using SVM might be comparable

to that of the previous study.

There were several limitations to our study. First, the number of lung nodules was relatively

small. Hence, our CADx system might overfit the dataset of the current study. We speculated

that the possibility of overfitting was not so high because this dataset consisted of two different

sets of CT images and the conditions and parameters of the images were variable (i.e. variabil-

ity in use of contrast material and thickness of CT images). However, this speculation might be

optimistic as we cannot deny a possibility that our CADx system overfitted the dataset of the

current study. Future studies should be conducted using a large number of lung nodules to

prevent overfitting and evaluate the generalizability of our CADx system. Second, this study

CADx of lung nodule using gradient tree boosting and Bayesian optimization
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focused on the investigation of technical usefulness of XGBoost and Bayesian optimization

from the viewpoint of CADx of lung nodules, and we ignored the clinical usefulness of our

CADx system. Because the results of our study showed that the diagnostic ability of our CADx

system may be comparable to that of radiologists, we expect that our CADx system will be use-

ful for classifying lung nodules in a practical clinical setting. Third, the parameter space was

relatively limited in this study. The parameters of our study were divided into two types: the

parameter of machine learning algorithms (i.e. C for SVM and eta for XGBoost) and the

parameter of feature vectors (R and P of LBP). Because the results of parameter optimization

were not stable when the parameter space of feature vectors was wide, we restricted the param-

eter space of feature vectors in our study. Last, we did not compare our CADx system with

CADx using deep learning. We plan to develop a CADx system with deep learning and will

use TPE for parameter optimization of deep learning in a future study.

In conclusion, XGBoost was better than SVM for classifying lung nodules. For optimizing

parameters of both SVM and XGBoost, Bayesian optimization was more efficient than random

search. Although our results were preliminary, the diagnostic accuracy of our CADx system

may be comparable to that of radiologists for classifying lung nodules.

Supporting information

S1 Table. Raw results of parameter optimization. S1 Table shows the raw results of valida-

tion loss, AUC, accuracy of our CADx system for each setting. Tables 1 and 2 show the aver-

ages of the raw results.

(DOCX)

S1 File. Code of our CADx system and binary data of lung nodules. S1 File includes Python

script of our CADx system and binary data of lung nodules stored as NPY.

(ZIP)
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