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Abstract: Tau protein is a microtubule-associated protein encoded by the MAPT gene that carries
out a myriad of physiological functions and has been linked to certain pathologies collectively
termed tauopathies, including Alzheimer’s disease, frontotemporal dementia, Huntington’s disease,
progressive supranuclear palsy, etc. Alternative splicing is a physiological process by which cells
generate several transcripts from one single gene and may in turn give rise to different proteins from
the same gene. MAPT transcripts have been proven to be subjected to alternative splicing, generating
six main isoforms in the central nervous system. Research throughout the years has demonstrated
that the splicing landscape of the MAPT gene is far more complex than that, including at least exon
skipping events, the use of 3′ and 5′ alternative splice sites and, as has been recently discovered, also
intron retention. In addition, MAPT alternative splicing has been showed to be regulated spatially
and developmentally, further evidencing the complexity of the gene’s splicing regulation. It is unclear
what would drive the need for the existence of so many isoforms encoded by the same gene, but a
wide range of functions have been ascribed to these Tau isoforms, both in physiology and pathology.
In this review we offer a comprehensive up-to-date exploration of the mechanisms leading to the
outstanding diversity of isoforms expressed from the MAPT gene and the functions in which such
isoforms are involved, including their potential role in the onset and development of tauopathies
such as Alzheimer’s disease.

Keywords: MAPT; Tau protein; alternative splicing; intron retention; Alzheimer’s disease

1. Introduction

Tau protein belongs to the microtubule-associated proteins (MAP) family and is
encoded by the single-copy microtubule-associated protein Tau gene (MAPT), which is
located on chromosome 17q21 in humans and consists of 16 exons [1–3]. Tau participates
on different physiological functions, including microtubule assembly and stabilisation [3],
neurite outgrowth and axonal transport [3], and regulates neuronal activity, neurogenesis
and long-term depression (LTD) [3,4].

However, Tau is also involved in a number of pathological processes, undergoing
misfolding and oligomerisation into paired helical filaments (PHFs) and neurofibrillary
tangles (NFTs) [5]. These neuropathological lesions constitute a characteristic hallmark of a
wide range of tauopathies, including Alzheimer’s disease (AD), progressive supranuclear
palsy, corticobasal degeneration, argyrophilic grain disease, Pick’s disease, Huntington’s
disease or frontotemporal dementia with parkinsonism-17 [3,6].

The reasons behind the shift from a physiological to a pathological state are not clearly
elucidated, but it is rather well-established that Tau’s post-translational modifications
(PTMs) are crucial for its normal function and thus, alterations in the pattern of such
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modifications may be responsible for the transition from a healthy soluble protein to insol-
uble misfolded fibrils of Tau [5,7]. Two PTMs of Tau are mainly related to neurofibrillary
degeneration: hyperphosphorylation and truncation [5], both leading to neurotoxic gain
of function and generally aggregation-prone versions of Tau [1,5,6,8]. Besides hyperphos-
phorylation and truncation, Tau is post-translationally modified by a great deal of other
processes, including ubiquitination, SUMOylation, glycation, acetylation, glycosylation,
O-GlcNAcylation, and nitration—as recently reviewed by Alquezar et al. [7].

In addition, more subtle nuances in Tau function can be explained by the existence of
different Tau isoforms, generated by alternative splicing [9]. Alternative splicing (AS) is
a co- or post-transcriptional process that occurs when introns of a certain pre-mRNA are
excised in more than one way giving rise to structurally and functionally different protein
isoforms from the same gene [10,11].

AS is a powerful regulatory mechanism that affects at least 60% of human genes, and
has been hypothesised to be responsible for the greater proteomic and cellular complexity
of higher eukaryotic organisms [9,12,13]; although more recent proteomic approaches
point out that the contribution of this mechanism to proteomic complexity may be wildly
overestimated [14]. Nevertheless, it should be pointed out that certain genes, including
MAPT, have been robustly determined to undergo alternative splicing, yielding a variety
of splicing-generated isoforms [14,15].

This is particularly relevant, considering that alternative splicing is a regulated pro-
cess that suffers alterations both during healthy ageing and under pathological
conditions [16–18]; some of which are disease-specific and pointedly involve Tau [16,19,20].

The purpose of the present review is to highlight the great diversity of Tau isoforms
mainly generated by alternative splicing and how this entails a consistent diversity function-
wise; both of which get markedly and specifically modified both with natural ageing and
with age-related disorders.

2. Alternative Splicing: A Force of Diversity

Alternative splicing is not constituted by one single mechanism acting throughout
the genome generating spliced alternatives. Instead, different types of alternative splicing
events have been identified, including exon skipping, mutually exclusive exons, alternative
use of 5′ splice sites (5′ss) and 3′ splice sites (3′ss), alternative polyadenylation and intron
retention [9,12,17] (Figure 1).

The most common type of AS is exon skipping, also known as cassette exons [12].
Cassette exons are delimited by splice sites located at the boundaries between mRNA-
coding and non-coding sequences and may be included or not in the mature mRNA
transcript [21–23]. When the exon is retained, the splicing pattern is similar to that of a
constitutive gene; however, when it is removed, it is presumably spliced out together with
its flanking introns [23,24].

Mutually exclusive exons refer to a specific type of splicing in which only one of two
or more candidate exons in a cluster is included into the mature mRNA, but the exclusion
or inclusion of both simultaneously does not occur [23,25].

Alternative 3′ and 5′ splicing events constitute at least one-quarter of the known AS
events [12]. Alternative 5′ splicing sites exons (A5Es) and alternative 3 ’splicing sites exons
(A3Es) are flanked on one end by a constitutive splice site and on the other end by two
(or more) alternative splice sites, resulting in different primary transcripts of the same
gene [22,24].

Polyadenylation is the process whereby almost all eukaryotic mRNAs acquire an
uncoded polyA tail at their 3′ ends. Alternative polyadenylation is defined as the use of
more than one polyadenylation signal present in pre-mRNAs, allowing a single gene to
encode a variety of mRNA transcripts [26].

Finally, intron retention is one of the least common types of alternative splicing, by
which an intron sequence is maintained in the mature mRNA molecule due to its weak
flanking splice sites [21,24,27].
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Figure 1. Schematic representation and summary of the mechanisms of alternative splicing. Pre-
mRNA from a hypothetical gene is displayed with 4 exons (E1-E4, green) and 3 introns (I1-I3, light 
orange). Below, schematic representations of the different mechanisms of alternative splicing is ev-
idenced as different potential alternative splicing decisions marked with purple branches as op-
posed to black branches for constitutive splicing decisions. RNA and protein fragments marked in 
violet and purple (mutually exclusive exons and alternative 3′ and 5′ splicing sites) show the differ-
ences with respect to constitutive splicing. “AAAA” (alternative polyadenylation) represents a pol-
yadenylated sequence. RNA and protein fragments marked in light orange (intron retention) point 
out intronic regions that are maintained instead of spliced out, while the black dashed line repre-
sents the constitutive splicing decision that would happen if intron retention did not take place. 

The most common type of AS is exon skipping, also known as cassette exons [12]. 
Cassette exons are delimited by splice sites located at the boundaries between mRNA-
coding and non-coding sequences and may be included or not in the mature mRNA tran-
script [21–23]. When the exon is retained, the splicing pattern is similar to that of a consti-
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Figure 1. Schematic representation and summary of the mechanisms of alternative splicing. Pre-
mRNA from a hypothetical gene is displayed with 4 exons (E1–E4, green) and 3 introns (I1–I3,
light orange). Below, schematic representations of the different mechanisms of alternative splicing
is evidenced as different potential alternative splicing decisions marked with purple branches as
opposed to black branches for constitutive splicing decisions. RNA and protein fragments marked
in violet and purple (mutually exclusive exons and alternative 3′ and 5′ splicing sites) show the
differences with respect to constitutive splicing. “AAAA” (alternative polyadenylation) represents
a polyadenylated sequence. RNA and protein fragments marked in light orange (intron retention)
point out intronic regions that are maintained instead of spliced out, while the black dashed line
represents the constitutive splicing decision that would happen if intron retention did not take place.

Transcripts from the majority of human protein-coding genes may undergo one or
more forms of alternative splicing that, combined, can give rise to a number of different
alternative spliced isoforms. All these events require the spliceosome [28], a multi-subunit
ribonucleoprotein complex, composed of five small nuclear ribonucleoproteins (U1, U2,
U4, U5 and U6), acting along many other proteins (more than a hundred, by some esti-
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mates) [17]. The spliceosome recognises three cis-acting elements on pre-mRNA: the 3′

splice site, the 5′ splice site and the intronic branch-point sequence [29]. However, the
regulation of the whole process is much more complex and depends not only upon these
cis-acting elements, but also other cis-acting factors (exonic and intronic silencers and
enhancers) and trans-acting factors that interact with these and include activators (such as
proteins of the serine-rich family) and repressors (heterogeneous ribonucleoproteins, for
instance) [17].

Thus, AS constitutes a tightly regulated process, controlled by multiple exonic and
intronic cis-elements and trans-acting splicing factors [17,18,30]. The whole process, includ-
ing these splicing factors, is altered in healthy ageing and age-related pathologies [16,31];
consequently affecting this very regulation and all the mechanisms in which AS may be
involved, which is especially relevant for the case of the MAPT gene and the associated
protein isoforms of Tau.

3. Tau Alternative Splicing: Diversity of Forms

The human microtubule-associated protein Tau gene (MAPT) consists of 16 exons,
with at least 6 of them being subjected to alternative splicing [3,9]. Exons 1, 4, 5, 7, 9, 11 and
13 are the constitutive exons of the Tau molecule [3]. Exons 0 (also termed as exon -1 by
some authors) and a part of exon 1 encode the 5′ untranslated sequences of MAPT mRNA.
Exon 1 encodes the N-terminus, while exons 4, 5, 7 and the first part of exon 9 encode the
region between the N-terminal inserts and the first microtubule-binding repeat, including
the proline-rich regions (mainly encoded by exons 7 and 9). Exons 9, 11 and 12 encode the
three constitutive tubulin-binding repeats and exon 13 is translated into the C-terminus of
Tau [3,9,32,33] (Figure 2A).

On the other hand, at least exons 2, 3, 4A, 6, 8, and 10 undergo alternative splic-
ing. Six major Tau isoforms can be found in the human central nervous system (CNS)
through different combinations of the splicing of exons 2, 3, and 10 [9,34], ranging from
48 to 67 kDa [33] (Figure 2B). Exons 2 and 3 encode two N-terminal inserts and can be
included or excluded together, but only exon 2 can be included on its own, since, strikingly,
exon 3 needs to be included in conjunction with exon 2 [3,35], although the mechanisms
reigning this conditional inclusion of exon 3 remain unexplained. As for exon 10, it encodes
the second of four possible tubulin-binding repeat regions, that appear right between those
encoded by exons 9 and 11. Inclusion of exons 4A and 6 is restricted to certain tissues [9]
and their inclusion generates tissue-specific isoforms (Figure 2B); while exon 8 has been
described in other mammals, but not in humans [36].

Recently, a new Tau isoform named W-Tau arising from intron 12 retention has been
described, opening new research avenues that focus on the generation of novel isoforms
by means of less frequent forms of alternative splicing [37] (Figure 2B). Of note, MAPT
intronic sequences have been studied in different contexts. For instance, intron 9 con-
tains a nested cryptic exonic sequence, whose translation generates a protein named
saitohin [38] (Figure 2A); suggesting that the translation of introns from MAPT may be
exhaustively regulated.

Lastly, exon 14, although considered alternatively spliced, is part of the 3′ untranslated
region and therefore does not imply any changes in the composition of the protein [3,9].

The regulation of these splicing events is complex and involves the orchestration of a
myriad of splicing factors, including Serine-rich splicing factors (SRSF1, 2, 3, 4, 6, 7 and
9) [34,39] and the arginine and serine-rich coiled coil protein (RSRC1) [40], but also non-SR
proteins, such as RNA-binding motif protein 4 (RBM4) [34] and 11 (RBM11) [40], RNA
helicase p68, heterogeneous nuclear ribonucleoproteins (hnRNP) [41] or Tra2β, among
others [34,39]. Such regulation is still more intricated, considering the Tau splicing depends
upon developmental stage and tissue type [9], the modulation of the activity of such
factors [34] and the existence of different RNA structures that can influence MAPT mRNA
stability and splicing [42]. The complexity of regulation of MAPT splicing highlights the



Cells 2022, 11, 840 5 of 25

need of finely tuned mechanisms that ensure the correct and precise modulation of the
processes that encompass such splicing [40,41].
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Figure 2. Alternative splicing of the MAPT gene. (A) Schematic representation of the splicing process.
The MAPT gene is shown with its 16 exons highlighted in different colours. Exon 0 and part of
exon 1 comprise the 3′ untranslated region while the end of exon 13 and exon 14 make up the 5′

untranslated region and are all marked in grey. Constitutive exons (exons 1, 4, 5, 7, 9, 11, 12 and part
of exon 13) are displayed in green. Exons 2, 3, 4a, 6, 8 and 10 are subjected to alternative splicing and
have their own colours (purple, pink, violet, blue, orange and yellow, respectively). The dark-grey
stripped fragment in the intron between exons 9 and 10 (S.) represents the nested gene encoding the
protein saitohin. The red stripped region in the intronic area between exons 12 and 13 (I12) represents
the part of intron 12 that is retained in W-Tau isoforms of Tau. The colour patterns are maintained in
the RNA splicing schematic representation, stripped boxes symbolising splicing decisions that would
be responsible for truncated isoforms of Tau. Finally, the longest isoform of Tau described is depicted
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below, including all the constitutive exons and exons 2, 3, 4a, 6 and 10 from those subjected to
alternative splicing. (B) Representation of the main type of isoforms of Tau that can arise from the
alternative splicing of the exons depicted above. The six main isoforms found in the Central Nervous
System are displayed on the first box, including 4R and 3R isoforms with 0, 1 or 2 N-terminal inserts.
For isoforms including exons 4a (Big Tau) or 6 or retaining intron 12 (W-Tau), only the 4R2N isoforms
are depicted, but note that all combinations are potentially possible.

However, it is not the aim of this review to discuss the mechanisms regulating the
process of alternative splicing of the MAPT gene, but rather, explore the consequences
of said process. Hence, isoforms arising from all the described splicing events will be
described in the following sections and are summarised in Figure 2B.

It is important to mention that the majority of these splicing events are not mutually
exclusive and can therefore happen simultaneously. Also, as a result of the splicing process,
a shift on the reading frame or the appearance of a different termination codon can occur,
thus resulting in a different protein or in the premature truncation of the protein [43–45].
All this together can give rise to an even greater number of isoforms. For representation
purposes only, Figure 2 shows the variants of Big Tau, isoforms containing exon 6 and
W-Tau containing 4 microtubule binding repetitions and 2 amino-terminal inserts, but
any and all of the combinations of expressions of exons 2, 3 and 10 may be possible for
these isoforms.

Finally, given the human-specific nature of Tau-related disorders such as Alzheimer’s
disease and the broad interspecies variability of the MAPT gene and the regulation of its
alternative splicing events [46,47], we will only dwell on human Tau isoforms. Thus, we
will not consider exon 8-including isoforms, which have been described in goat, rhesus
monkey and bovine brains, but not in humans [36].

3.1. Central Nervous System Isoforms: Meet the Classics

Classically, researchers describe six main Tau isoforms existing as proteins in the
human brain ranging from 352 to 441 amino acids and arising, as mentioned, from the
inclusion or exclusion of exons 2, 3 and 10 [3,9,32].

The default splicing pattern of exon 2 is inclusion, and its pre-splicing enhances the
consequent inclusion of exon 3, although this latter follows exclusion as its most common
splicing pattern. In fact, as mentioned, exon 3 requires the inclusion of exon 2 to be able
to be included itself, a process which mechanisms have not yet been fully explained [35].
Alternative splicing of exons 2 and 3 result in Tau isoforms with 0, 1, or 2 inserts in the
N-terminal domain, known as 0N, 1N, and 2N isoforms, respectively [2,48].

As for exon 10, the choice between its inclusion or skipping gives rise to Tau isoforms
with four (4R) or three (3R) microtubule-binding repeat domains in the C-terminal end [49].
These isoforms differ from each other in their affinity for microtubules [50], with 4R isoforms
showing increased tendency to bind to microtubules and greater potency in inducing their
assembly [32].

The default behaviour of exon 10 is inclusion; however, its flanking exons influence
the splicing: upstream exon 9 promotes its inclusion, while downstream exon 11 competes
with it [9].

The isoforms resulting from the interplay of inclusion and exclusion of exons 2, 3 and
10 are usually named after the number of 29-amino-acid N-terminal inserts encoded by
exons 2 and 3, and 31-amino-acid microtubule-binding repeats they include. Namely, we
can find Tau with four repetitions harbouring two inserts (4R2N), one insert (4R1N) or no
insert at all (4R0N), and the same for 3R Tau (3R2N, 3R1N and 3R0N) (Figure 2B).

Although these isoforms are usually mentioned as if they were present in equal
amounts, the brain pattern of expression of these proteins is not such [32,51]. 4R and
3R Tau isoforms do seem to be found in almost an equimolar ratio in the adult human
brain, but 0N, 1N and 2N isoforms are expressed very differently, with 2N constituting
only around 9% of the total Tau, 1N more than half (approximately 54%) of total Tau and
0N roughly 37% of total Tau [51]. The balance between 4R and 3R isoforms have been
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deemed to be key for brain function, with splicing dysregulation being involved in the
development of tauopathies [10]; but rather little research exists regarding 0N, 1N and 2N
isoforms’ proportion.

These data hold true for adult brains, but it is important to note that alternative splicing
of the MAPT gene is also subjected to temporal regulation, with a marked shift on the
expression of exons 2 and 10 mainly during the perinatal period [52], while the variation of
exon 3 expression is smaller in comparison, but still significant. Such changes imply the
shift from a hyperphosphorylated-3R0N-predominant environment in the foetal brain to
the landscape of isoforms described above for the adult one. This shift is preserved in every
vertebrate species studied to date, although the result is not always the same: while human
adult brains keep a similar level of 3R and 4R Tau isoforms, adult mice express solely 4R
isoforms, while adult chicken brain contains 3R, 4R and 5R isoforms [32,52].

The functional implications of this shift are not completely elucidated, but the fact that
it is an evolutionarily conserved mechanism points towards a possible role in ensuring the
versatility of the protein to accomplish brain development and plasticity during prenatal
stages but also microtubule stabilisation and axonal transport in the adult brain [32,52].

Again, researchers rarely make a distinction on the localisation of these isoforms within
the cell when discussing their presence in certain tissue, but studies aimed to examine this
prove that subcellular localisation seem to be isoform dependent [53]. Indeed, isoform
localisation preference exists between developmental stages, tissues, cell lines, brain regions
and intracellular compartments [54]. Hence, 2N isoforms are retained in the soma [33],
while 1N isoforms localise in the nucleus [53,55] and 0N isoforms can be found in both
somas and axons [53]. However, the difference between 4R and 3R Tau does not seem to
make a difference in Tau’s axonal sorting [33].

Nevertheless, to our knowledge, a subcellular, compartment-specific mapping for
the different Tau isoforms do not exist for human neuronal cells. This, together with the
fact that many studies do not report specific isoforms when discussing Tau-related results,
makes it rather difficult to ascertain a specific function or localisation to each isoform.
Future research should consider this gap in the literature and explicitly report the isoform
or isoforms involved in their findings.

Finally, alternative splicing of the MAPT gene is tissue-specific, as proven by the differ-
ential expression of certain isoforms, such as big Tau or exon 6-including isoforms [9,52,56];
but also cell-type and cell-stage specific [52]. This fact, together with the different suscepti-
bility of brain regions to the development of tau-related pathologies, such as Alzheimer’s
disease [39] or paranuclear superior palsy [57] and the region-specific nature of other
tauopathy-related mechanisms, such as Tau post-translational modifications [58] under-
line the importance of considering also regional variability of Tau isoforms and their
potential role in determining such differential vulnerability. This specific area, however,
remains understudied to date and further research is needed supported by means of novel
technologies [59].

3.2. Big Tau: A Giant Outsider

The last decade of the past century witnessed the discovery of a version of Tau
protein with higher molecular weight in the dorsal root ganglion (sensory neurons) and
pheochromocytoma cells of neural crest origin (PC12 cells), both from rats [60,61]. Later on,
it was also found in the optic nerve and in CNS cells with projections to the PNS [56].

This high-molecular-weight Tau was termed Big Tau and was determined to arise
from an 8–9 kb mRNA from the MAPT gene, longer than the previously described (~6 kb),
due to the inclusion of another exon between exons 4 and 5, which has been named exon
4a [30,62,63]. Actually, several isoforms of Tau containing exon 4a may exist, since some of
them were also found to contain exon 6 [9,63] (Figure 2A).

However, data is lacking in human tissue regarding these Big Tau isoforms. Most of the
information we have so far has been attained through genomic analysis based on transcript
alignments [56]. We do know that the default pattern for this exon is exclusion and, due to
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its length, it is expected to require a helper to be included, encoding a 251-residue fragment
that results in a great extension of the amino-terminal region [9] (Figure 2B).

3.3. Black Sheep: Isoforms including Exon 6

Another exon that is not present in the six main Tau isoforms from human CNS is
exon 6. Many authors have repeated that exon 6 is not expressed in the brain and relegated
it to peripheral tissue such as muscle [3,34], but evidence traceable back more than 20 years
point that Tau isoforms expressing exon 6 can be found as a protein in foetal and adult
brain [64], including forebrain, hippocampus and cerebellum; albeit it is indeed more
prominent in skeletal muscle and the spinal cord [64,65].

The splicing behaviour of exon 6 is most frequently inclusion, although it strongly
depends upon its flanking exons: upstream exon 5 promotes its inclusion, unlike down-
stream exon 7 that competes with it [9,66]. In addition, exon 6 has proven to include
two alternative 3′ splice sites, one closer to the beginning of the exon (6p, or proximal)
and the other one a bit further (6d or distal); thus yielding three possible isoforms [64]
(Figure 2B). When used, these alternative sites cause a frameshift that finds a premature
stop codon, giving rise to two truncated proteins that include the N-terminal region but
lack the proline-rich region, the microtubule-binding domain, and the C-terminal region
of canonical Tau proteins [9,65]. Such a frameshift results in the appearance of specific
sequences for each one: PCCVPRATFLS for 6p isoforms and FWSKGDETQGG for those
that use the distal site (Figure 3A). Importantly, these would be the only Tau isoforms to
lack the microtubule-binding domain, which begs the question as to whether they can
be considered Tau isoforms at all if we were to focus solely on its function, given that
the very core function of Tau as a member of the microtubule-associated proteins, would
be related to microtubules. Nevertheless, Tau protein has been linked to a multitude of
functions during the last decades of research [67–69]. Additionally, there is certain degree
of redundancy of these functions with other microtubule-associated proteins such as MAP2
and neurons from Tau knockout mice display an almost identical morphology but altered
synaptic functions with respect to wild-type [70,71]. Together, these data may suggest that
Tau protein is much more than a microtubule-associated protein, and this might not be
considered to be the main function of this protein.

Within exon 6′s default pattern of inclusion, not all of these isoforms are equally
included. The regulation seems to be related to the affinity of the site to splicing machinery
and 6p isoforms constitute the predominant species [9,66]. In addition, the expression of
6p and 6d isoforms is regulated spatially [72] and temporally [45], being 6d levels higher
in foetal brain, while 6p isoforms are present similarly in foetal and adult brains. Within
the adult brain, both 6p and 6d can be found in different CNS areas (including cortex
and hippocampus), but display the highest levels in spinal cord and cerebellum [45,64].
Precisely in cerebellum, 6d isoforms’ levels were comparable to those of full-length Tau
isoforms [45]. In any case, a 6d isoform-specific antibody show this isoform is not present
in neurofibrillary tangles. Together, these results are especially interesting, given the
cerebellum’s lack of Tau-related pathology in Alzheimer’s disease patients.

3.4. W-Tau: The Rara Avis

Very recently, the landscape of MAPT splicing variants has become even more com-
plex, with the discovery of novel Tau isoforms generated by intron 12 retention and the
consequent translation of a fragment of that intronic region [37] (Figure 2B).

Intron retention is the most common type of alternative splicing event in different
organisms, including plants, fungi and unicellular eukaryotes, but it has not been until
recently that its role in humans and other mammals has been noticed and begun to be
regarded as a regulating mechanism for many physiological and pathological events [73],
with important contributions to cellular homeostasis [74] and an age-dependent regulation
that increases these events with age [75].



Cells 2022, 11, 840 9 of 25Cells 2022, 11, x FOR PEER REVIEW 9 of 25 
 

 

 
Figure 3. Translation of truncated Tau isoforms lacking the C-terminus. (A) Nucleotide and amino 
acid sequence of exon 6, flanked by exons 5 and 7. The alternative 3′ splice sites of exon 6 that gen-
erate a shift of the reading frame are indicated with black arrows within the exon sequence. The 
sequence resulting from such frameshifts in the proximal and distal sites are specified below. (B) 
Nucleotide sequence of the end of exon 12 and the beginning of intron 12 and the amino acid se-
quence that would be translated into upon intron 12 retention, giving rise to truncated W-Tau 
isoforms. 

Figure 3. Translation of truncated Tau isoforms lacking the C-terminus. (A) Nucleotide and amino
acid sequence of exon 6, flanked by exons 5 and 7. The alternative 3′ splice sites of exon 6 that generate
a shift of the reading frame are indicated with black arrows within the exon sequence. The sequence
resulting from such frameshifts in the proximal and distal sites are specified below. (B) Nucleotide
sequence of the end of exon 12 and the beginning of intron 12 and the amino acid sequence that
would be translated into upon intron 12 retention, giving rise to truncated W-Tau isoforms.
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In this case, intron 12 retention in the MAPT gene implies the appearance of a prema-
ture stop codon that translates into a protein lacking Tau’s C-terminal region, but having a
unique 18-amino-acid sequence right after the fourth microtubule binding repeat encoded
by exon 12 [37] (Figure 3B). Interestingly, the sequence corresponding to the fragment of
intron 12 that is retained is translated as KKVKGVGWVGCCPWVYGH, which contains
two tryptophan residues (W), an amino acid that cannot be found at any other point within
the Tau molecule; hence the name proposed by the authors: W-Tau.

Importantly, even though there is a high degree of interspecies homology for Tau
protein, pointing to MAPT exons being conserved phylogenetically, that is not the case for
introns, not even in the case of chimpanzees, which express an identical Tau molecule to
that found in humans [46]. Consequently, W-Tau is human-specific, as are some tauopathies,
such as Alzheimer’s disease, which is not accurately mirrored in animal models [76].

RNAseq data pointed out that mRNA for W-Tau is expressed in ~50–75% of humans,
depending on the brain region examined, with frontal cortex displaying higher levels than
frontal lateral cortex and hippocampus [37], newly pointing to the regionally-specific nature
of MAPT alternative splicing. Strikingly, those results imply that not everyone expresses
this isoform, at least in the regions that were analysed, or that the expression is so low that
it falls below the technique’s detection threshold. The study of W-Tau mRNA and protein
levels in other cerebral and peripheral areas might help understand better the processes
behind its modulation. In addition, W-Tau protein levels are diminished in Alzheimer’s
disease patients with respect to control, non-demented subjects, thus suggesting a role in
the development and progression of the disease [37].

Although the mechanisms responsible for this unique splicing event are not fully
elucidated, the authors found a possible inverse relationship between W-Tau levels and the
GSK3β mediated activation of the splicing factor SRSF2 (also named SC-35) [37], a member
of the SR-protein family, which have been previously linked to intron-modulating splicing
events [77]. Noteworthily, this mechanism of splicing regulation has been also related with
exon 10 inclusion [78,79]

Since the alternative splicing event that spawns W-Tau isoforms is located almost at the
end of the molecule, it does not directly interact with any other of the previously mentioned
splicing events, meaning they are all—at least theoretically—compatible with this one.
Hence, this would greatly increase the repertoire of potential isoforms generated from
alternative splicing from the 30 mentioned by Luo et al. [65] to at least 54, not considering
post-translational modifications, that drive by themselves numerous modification in Tau’s
structure and function [58].

4. Tau Alternative Splicing: Diversity of Functions

The generation of different isoforms of any protein by means of alternative splicing
frequently implies different functions for those isoforms, or mechanisms of self-regulation
between them. In the case of MAPT, the function of Tau isoforms is not completely clear,
since the precise structure of each isoform is not conserved between species [32]. However,
research has pointed out that certain regions of the final protein are related to specific
functions, such as microtubule stabilisation and polymerisation or interaction with other
proteins [3]. This, together with the fact that Tau isoforms are regulated temporally [52] and
spatially [52,72,80], suggests that specific Tau isoforms carry out specific cellular functions.

The result of the above described mechanisms of alternative splicing is a number of
isoforms with distinct fragments, but in terms of sequence and biochemical properties, Tau
consists of four major domains: the N-terminal end (NTR), the proline-rich region (PRR),
the microtubule-binding domain (MTBD) and the C-terminal end (CTR) [3,4,81] (Figure 4A).
The N-terminal end is of acidic nature and its negatively charged at physiological pH, but
the proline-rich region and the MTBD are markedly basic, generating somewhat of a dipolar
structure on the molecule [67].

As for the extension of these areas, the N-terminal region ranges from the beginning
of the molecule until the first residues of exon 7, encompassing residues 1–151 of the Tau
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441 isoform. The proline-rich region is encoded by parts of exons 7 and 9, which constitute
the proline-rich regions 1 and 2, respectively, while the microtubule-binding domain is
made up by the rest of exon 9 and exons 10 (only in 4R isoforms), 11 and 12. Lastly, exon
13 constitutes the C-terminal end (Figure 4A). Other authors consider that the molecule
of Tau can actually be divided in just two regions, attending to functional factors: the
projection domain, that includes the N-terminal region and the first proline-rich region,
and the microtubule-assembly domain, composed of the second proline-rich region, the
microtubule-binding tandem repeats and the C-terminal end. Both classifications do not
need to be mutually exclusive (Figure 4A).

Such functionality is intimately linked to alternative splicing, since splicing events
suppose the extension, reduction or even the deletion of certain of these regions; or modifi-
cations in their interactions through changes on the distance between them. For instance,
isoforms including exons 2 and 3 have a larger N-terminal region and those including exon
10 have one extra repetition that accounts for a 31-amino-acid longer microtubule-binding
domain [32] (Figure 4B).

Isoforms including exon 4a and exon 6 on the canonical splicing site (6+) display a
longer molecule. Inclusion of exon 4a entails a great amplification of the amino-terminal
region [56]; but the inclusion of exon 6, due to its composition, implies an elongation of the
proline-rich region [64,65] (Figure 4C).

Finally, inclusion of exon 6 on either the proximal (6p) or distal (6d) alternative 3′

splice site or retention of intron 12 generating W-Tau isoforms is linked to the loss of the
C-terminal end of the molecule (Figure 4D). In the case 6p and 6d isoforms, the loss is
more dramatic, because it entails the deletion of most part of the molecule [64], leaving
only the N-terminal region and a small sequence whose function is not clearly determined,
corresponding to the translation of the sequence of exon 6 under the new frames. On the
other hand, W-Tau isoforms lack the C-terminal region encoded by exon 13 but keep the
rest of the molecule in its entirety [37] (Figure 4D).

There is a considerable gap in the literature regarding the specific function of each Tau
isoform, most likely due to the difficulty of asserting a specific function of the protein to a
specific isoform. However, there is some research focused on ascertaining the functions
of specific fragments and that, coupled with the proportion in which each isoform is
present [51] can be used as an approach to the function of isoforms carrying such fragments;
albeit it is important to bear in mind that a lot of the functions of these regions overlap and
are also dependent on the intramolecular interactions between them [67].

4.1. The Projection Domain: Tau’s Versatile N-Terminal End and the Extension of Big Tau

Research dealing with Tau functions has classically focused on the microtubule-binding
region, but the past decades have seen an increasing interest rise towards the implications of
the N-terminal end of Tau isoforms in physiological and pathological conditions.

The so-called projection domain receives its name because it projects away from
the microtubule surface when the microtubule-binding region is attached to these. Such
position grants this region the opportunity to interact with other cytoskeletal and cyto-
plasmic proteins.

Within the projection domain, the N-terminal end constitutes the least evolutionary
conserved region of Tau [67], with the sole exception of both amino-terminal inserts en-
coded by exons 2 and 3, which points to efficient interactions with specific ligands [9],
probably annexins [67]. Indeed, the whole region has proven to interact with a myriad
of cytoplasmatic membrane proteins beyond annexins [9,82], including synaptic vesicle-
associated proteins, such as synapsin-1, synaptogyrin-3 and synaptotagmin-1 [67]. These
interactions could be related to recent evidence that suggests that pathological cleavage
of the NTR contributes to early synaptic failure in Alzheimer’s disease [83] and that the
mutation A152T within this region prompts presynaptic dysfunction [84]. Analogously, this
region is able to interact with other membranous elements in the cell, such as mitochondria
or other organelle’s membranes [81].
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tends the molecule including a proline-rich exon that would extend the proline-rich region. (D) Dif-
ferences on the length of Tau functional regions in isoforms lacking the C-terminal region. 6p and 
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Figure 4. Functional regions of Tau protein. (A) Schematic representation of the equivalence between
Tau amino acids translated from each exon and regional functions of Tau protein. (B) Differences
on the length of different functional regions due to the inclusion or exclusion of exons 2, 3 and
10, indicated by vertical stripes. Tau 441 (4R2N) and Tau 352 (3R0N) are shown to highlight the
differences. (C) Differences on the length of different functional regions of Tau due to the expansion
of the protein with respect to Tau 441 (4R2N). Inclusion of exon 4a (pink, squared area) implies
the extension of the N-terminal region, while inclusion of exon 6 (blue, horizontally stripped area)
extends the molecule including a proline-rich exon that would extend the proline-rich region. (D)
Differences on the length of Tau functional regions in isoforms lacking the C-terminal region. 6p
and 6d isoforms lack the proline-rich region, the microtubule-binding region and the C-terminal end
altogether, while W-Tau isoforms only lose the C-terminal end. Blue, diagonally stripped regions on
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isoforms 6p and 6d represent the translation of their respective specific sequences, which can have
their own functions. Red stripped regions on the W-Tau isoform represent the unique 18 amino acid
sequence characteristic of these isoforms, which may also have specific properties.

The majority of these NTR–membrane interactions are susceptible of regulation via
(de)phosphorylation [67,85], which suggests the existence of regulatory mechanisms via
intracellular signalling. In fact, membrane-associated Tau is dephosphorylated at serine
and threonine residues [69]. This may help explain the contribution of Tau’s hyperphos-
phorylation to the pathology of Alzheimer’s disease since, in addition to promote Tau
self-aggregation, it may hinder other membrane-related functions.

In line with this, it should come as not much of a surprise, then, that this region
interacts with several signalling and phosphorylation-related proteins, such as GSK3 or
different members of the 14-3-3 proteins family [67], although the latter also interact with
other Tau regions, so it might not display a specific interaction with this area.

The disruption of the membrane-related functions of Tau’s N-terminal region could
have direct implications in pathological conditions, contributing to Tau aggregation and
toxicity, and to the localisation of Tau back from the axon to the soma [67].

Other of the most studied functions of Tau is axonal transport [3]. The NTR has been
proposed to be at least partly responsible of accomplishing this function, since it directly
binds to the C-terminal area of the p150 subunit of the dynactin complex [86].

As mentioned before, Tau subcellular localisation is isoform-dependent, with 1N
isoforms specifically being targeted towards the nucleus [53]. This suggests a functional
relation between exon 2 and nuclear Tau, but only when it does not appear accompanied
by exon 3 [55]. Strikingly, there is no nuclear localisation signal within the sequence of Tau
corresponding to exon 2 that explains why 1N isoforms may be directed toward the nucleus,
so it may be due to the interaction with transport proteins that grant such localisation [87].
This interaction might be specific, as mentioned for so many other proteins within the N-
terminal region and might be inhibited by the presence of exon 3 in some way. Nonetheless,
it could also be the case that the interaction is electrostatic in nature and due to the presence
of several acidic residues within exon 2 encoded sequence that would increase the negative
charge of this particular area.

In line with its nuclear localisation, Tau protein has been demonstrated to bind to
DNA in vitro [88,89] and in vivo [90] and RNA [91], as well as interact with chromatin
components [92] and the inner side of the nuclear lamina [93]. Due to the specificity of
isoforms found in nuclear Tau and the N-terminal region being the main interactor with
other proteins and membranes, we cannot rule out that a portion of the N-terminal end
encoded by exon 2 is responsible for these nuclear interactions of Tau.

Within the nucleus, Tau has been mainly reported to be found in the nucleolus and the
pericentromeric heterochromatin [90,94], in both phosphorylated and dephosphorylated
states, although the nucleolus exhibits primarily dephospho-Tau [54].

Tau functions in the nucleus have not been fully elucidated and are currently being
intensively researched. Given the role of the nucleolus and its relationship to ribosomes
and that Tau interacts with the ribosomal protein pS6 [95], Tau has been proposed to be
linked to ribosome biosynthesis and regulation and ribosomal DNA transcription [68,95].
Nuclear Tau has also been proposed to participate in gene expression and DNA protection,
for instance [54,96]; which could be linked to genome vulnerability and neurodegeneration
found in tauopathies such as Alzheimer’s disease [54]. In fact, since Tau nuclear localisation
occurs across different nervous and peripheral tissues, it has been proposed that it may
actually carry out a more general role in genome surveillance [54].

As hinted before, all these nuclear functions of Tau, and more specifically of exon-2
containing isoforms of Tau, are susceptible of regulation through post-translational modifi-
cations, such as phosphorylation [97,98], further supporting the idea of post-translational
modifications being a key factor of Tau’s functions in health and disease [58].

Finally, another interesting consequence of Tau’s position when the protein is attached
to microtubules is that the projection domain regulates the spacing between microtubules
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in the axon and may therefore be at least partly responsible for axonal diameter [81]. The
inclusion of exon 4a implies a great extension of the N-terminal region (Figure 4C), but the
amino acid composition includes high proportions of proline, lysine, serine and glycine
compared to other vertebrate globular proteins [63], much as the rest of Tau.

The primary repercussion of this elongation is an increased space between micro-
tubules [99], which helps explaining the large diameter of the axon of peripheral neu-
rons [81]. Such larger spacing may also contribute to axonal transport in these specific
neuron populations with longer axons by reducing the resistance of the axoplasm, which
would imply less energy is needed for such transport [56].

Apart from that, the possible function of exon 4a remains prominently understudied.
Some authors theorise that Big Tau isoforms may be more related to axonal microtubule sta-
bilisation than their lower-molecular-weight counterparts, which might be more associated
to axonal growth instead [61], also exhibiting more dynamic neurites [56]. Nevertheless,
given that the homologous to exon 4a in non-human primates [46] and non-mammals such
as Xenopus [100] maintain the same size with small sequence correspondence, it has also
been proposed that it might not be truly a functional region, beyond the enlargement of the
projection domain [56,100].

4.2. Proline-Rich Region and Isoforms Including Exon 6

The proline-rich region constitutes a hinge between the N-terminal end and the
microtubule-binding region and is characterised by an elevated proportion of proline
residues (around 20% higher than the average for human proteins) [67], which contributes
to an increased rigidity of this part of the molecule. In contrast with the amino-terminal
area, this region is markedly basic and positively charged at physiological pH.

The PRR also exhibits a high content of serine and threonine residues, thus increasing
its proneness to phosphorylation (with up to 22 predicted sites, 14 of which are serine) [67]
and, in consequence, its susceptibility to drive Tau’s phosphorylated-mediated regula-
tion [67,101]. Relatedly, the proline-rich area interacts with a great deal of kinases (such
as fyn) and phosphatases (like PP2A/Bα); but also other signalling molecules, such as the
isomerase Pin1, involved in Tau conformation regulation [67].

This region, however, is not just a regulatory or bridging area. Even though Tau’s
function promoting microtubule assembly and stability has been typically linked to the
appropriately-named microtubule-binding region, evidence show there is a less studied seg-
ment between residues K215 and N246 (and more specifically, the sequence 215KKVAVVR221)
within the proline-rich region that also interacts directly with microtubules to exert such
functions [102]. This role interacting with cytoskeletal proteins is further confirmed by
studies showing that the PRR is involved in Tau’s association to actin [103]. Moreover,
phosphorylation in the PRR directly affects its capacity to polymerise microtubules, fur-
ther evidencing the importance of this role and the regulation of this region’s function
in microtubule binding and assembly [101]. In fact, more recent evidence points that the
PRR binds to tubulin in a strong, stoichiometric manner, while the microtubule-binding re-
peats have weaker but more distributed interacting sequences [81,104]. These authors thus
proposed that the proline-rich region would constitute a “core tubulin-binding domain”,
and the MTBD may participate increasing local tubulin concentration, hence facilitating
polymerisation [104].

Other specific functions of this region are currently under research, including a role
in Tau secretion [105] and participation in the interaction with PSD-95 in the postsynaptic
area [106] and in the regulation of postsynaptic dysfunction via phosphorylation [107].

Inclusion of exon 6 implies the addition of another proline-rich sequence, right before
the PRR (Figure 4C), which can be interpreted as an extension of this region, increasing the
rigidity of the molecule and constituting another area susceptible to phosphorylation and
proteolysis that can help regulate Tau’s functions [9,45,65].

Isoforms containing the canonical version of exon 6 are found in higher amounts in
adult spinal cord, peripheral nervous system and skeletal muscle [65], partly coinciding
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with the expression pattern of isoforms containing exon 4a [56]. In fact, the longest Tau
isoform described results from the inclusion of both exons in skeletal muscle [9] (Figure 2A).
The larger, more rigid bridging region generated upon exon 6 inclusion may also determine
differences in microtubule spacing [65], which may be related to this expression pattern in
regions where microtubule spacing is increased [56,64,65].

Analysing the temporal and spatial distribution of isoforms including exon 6, some
authors have proposed that they can be found in developmental stages, subcellular locations
and tissues where a more dynamic cytoskeleton might be needed and might then be linked
to neuronal plasticity and axonal guidance functions [9,65]. However, these isoforms have
proven to inhibit neurite extension in SH-SY5Y cells, which suggests a regulatory role more
than an active one in these functions [65].

Beyond that, exon 6 has a highly conserved sequence, suggesting the interaction with
specific molecules, as occurs with exons 2 and 3 [9], although these ligands have not been
clearly established yet [9,65].

On the other hand, when either the proximal or distal alternative 3′ splice sites are used,
the corresponding isoforms 6p and 6d are generated [64]. Both of them find a premature
stop codon (Figure 3A), generating truncated isoforms that do not include a proline-rich
region at all, nor do they present the MTBD or the C-terminal end [9,45,64] (Figure 4D).
Thus, these isoforms are not expected to be able to carry out any of the functions associated
with this areas such as microtubule binding [65] and may see the functions associated
to the N-terminal end altered, either being enhanced due to an increased availability of
NTR residues or being hindered due to the lack of other regions that regulate NTR-related
functions, as seems to be the case for kinesin-based axonal transport that are inhibited by
6p and 6d isoforms [45].

Very relevantly, LaPointe et al. proved that both 6p and 6d isoforms are able to inhibit
in vitro polymerisation of other, full-length Tau isoforms, with 6p isoforms constituting
more potent inhibitors than 6d ones, although the presence of the N-terminal inserts
encoded by exons 2 and 3 increases the potency of the latter ones [45]. 6p and 6d isoforms
reduce the number of filaments and the overall mass, while remaining soluble, so they
proposed a model in which they stabilise a conformation of Tau that is not aggregation-
prone, very much as other N-terminal fragments previously tested by the same group [108].

It remains unclear whether this inhibition might occur in vivo as well, since 6p and
6d isoforms are in comparably very low amounts in the human brain, with the exception
of the cerebellum [9,45,64]. Nonetheless, the punctuated immunoreactivity of an specific
antibody against 6d isoforms may indicate local enriched levels of these isoforms in specific
subcellular locations [45]. The authors also point out that, although the in vitro experiments
required higher amounts of 6p and 6d isoforms, these had to compete with aggregation
inducers, so the required levels may not be as high in a cellular context. On the other
hand, given the higher expression of these isoforms in cerebellum and the diminished
vulnerability of this area to tau lesions in AD, it is tempting to establish a role for such
isoforms as aggregation inhibitors in vivo [45].

Lastly, both 6p and 6d isoforms are generated due to a shift on the reading frame after
the use of the alternative sites and hence include two unique sequences (PCCVPRATFLS
and FWSKGDETQGG, respectively) (Figure 3A), which may possess specific functions that
remain unexplored [45].

4.3. Microtubule-Binding Domain: A Repetitive Region

Tau is a member of the microtubule-associated proteins (MAP) family and as such,
microtubules are the main ligand of the protein [3,67]. This interaction is carried out
between microtubular tubulin and Tau’s proline-rich region and microtubule-binding
tandem repeats (MBTR) [67,102,104].

These microtubule-binding tandem repeats are encoded by exons 9–12, which im-
plies that the inclusion or exclusion of exon 10 determines differences in length of this
region [9,32] (Figure 4B). Namely, each repeat is composed of a highly conserved 18 amino
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acid sequence and 13- or 14-residue separating sequences [67,81]. The inclusion of exon 10
entails the increase from 3 to 4 tandem repeats, which directly affects functionality, with
4R isoforms displaying a greater ability to bind to microtubules than their 3R counter-
parts [3,32,81]. Apparently, the main driver of this difference of affinity between 3R and
4R isoforms is the region between the first and the second repeat, through the sequence
275KVQIINKK282 [81] (number according to Tau 441). The extension of this region may
also have other consequences, such as alterations of Tau’s subcellular location mediated by
non-specific, sized-determined sorting mechanisms [80], that might operate in the same
way for other extensions of the molecule such as exon 4a or exon 6 inclusion (Figure 4B).

The MBTR are very similar to the PRR in terms of charge and isoelectric point, being
quite basic and positively charged, which facilitates interaction through electrostatic inter-
actions with negatively charged glutamate-rich tubulin C-termini [67], which constitute a
rather exposed binding site and is thus consistent with the extremely dynamic “kiss and
hop” interaction between Tau and microtubules [67,109].

Besides the MBTR and the PRR interaction with microtubules, a pseudorepeat region
has been described within the C-terminal side, which is also present in other members of
the MAP family [110].

As the rest of the mentioned functions for the protein, microtubule binding is mod-
ulated by phosphorylation. S262 phosphorylation is a potent inhibitor of microtubule
binding within the MBTR, but the majority of phosphorylation sites affecting microtubule
binding are located either in the PRR or the CTR [101,102,111]. Interestingly, microtubules
compete with phosphatase PP2A for binding to residues 224 to 236 within the MBTR,
conferring the MTBR a role as an indirect modulator of Tau’s phosphorylation [81].

Microtubules participate on a myriad of cellular processes, including cell morpho-
genesis and division and intracellular trafficking of organelles, lysosomes, endocytic and
exocytic vesicles, etc. [67,81]. Consequently, Tau would act as a modulator of all these
functions via interaction with microtubules, which explains Tau’s influence on axonal
transport and pose an important regulatory role of Tau phosphorylation with cellular-
wide consequences.

In this respect, other post-translational modifications have been proven to modulate
Tau’s functions [58]. More specifically, acetylation is crucial to the microtubule-binding
function, since it neutralises Tau’s charge and thus hinders this binding, especially in the
MBTR, where lysine residues are overrepresented [67]. This is notably relevant, given
that Tau itself has been demonstrated to exert acetyltransferase activity and could then
self-regulate in this way [67,112].

Beyond binding to microtubules, the MBTR region has been proven to interact with
many other proteins, including actin, the low-density lipoprotein receptor-related protein 1
(LRP1) or heat-shock proteins, among others [67,113]. Functionality-wise, these proteins
are related in its majority with microtubule-related processes and signalling mechanisms,
but also some of them with cell death mechanisms [67].

Of particular interest is that Tau uses this region to bind to itself [113,114] and can be
related to self-aggregation and polymerisation into filaments and neurofibrillary tangles,
typical of tauopathies such as Alzheimer’s disease [48,76,81,114–116]. This may help ex-
plain the fact that isoforms lacking this region such as 6p and 6d isoforms do not aggregate
and even possess anti-aggregative properties [45]. In line with this, there are sequences
from the second and the third repetition displaying β-structures (an uncommon feature on
an intrinsically disordered protein as Tau), which can assemble between themselves and
with other such structures from Tau molecules in the vicinity [67].

Together, these data underlined the importance of the microtubule-binding region on
physiological and pathological Tau functions, and stresses its role in tauopathies such as
AD, where certain parts of this region—and of the C-terminal end—are found at the core of
filaments that polymerise giving rise to such lesions [117,118].



Cells 2022, 11, 840 17 of 25

4.4. W-Tau: The Uncharted Territory of Novel Isoforms and New Mechanisms

The discovery of novel, human-specific Tau isoforms generated by intron 12 retention
implies the opening of a new avenue of research that has never been explored, both in
terms of isoform properties and splicing mechanisms of the MAPT gene [37].

W-Tau isoforms are generated from the retention and partial translation of intron
12, that results in the appearance of a premature stop codon followed by a canonical
poly-A signal, truncating the C-terminal end (Figure 4D) and causing the translation of a
unique 18-amino-acid sequence containing two tryptophan (W) residues (KKVKGVGWVG
CCPWVYGH) [37].

The resulting isoforms retain the rest of the molecule up to the last microtubule-binding
repeat, and can potentially harbour, then, zero, one or two N-terminal inserts and three or
four microtubule-binding repeats. This would make W-Tau isoforms strikingly similar to a
fragment described by Zhang et al. [119], generated by asparagine endopeptidase cleavage
that comprises residues 1–368 (numbered according to the sequence of Tau 441). Indeed,
W-T42 (4R2N) would share the exact same sequence with the exception that asparagine
endopeptidase truncated Tau would end in N368 and W-T42 would be followed by the
specific 18-residue sequence [37] (Figure 3B).

Notably, Tau 1–368 proved to be prone to aggregation and a strong inducer of neu-
rodegeneration, while being unable to assembly microtubules and promote axon elonga-
tion [119]. Indeed, Tau truncation has been proposed to be one of the post-translational
modification most intimately linked to Alzheimer’s disease onset and progression from
early stages, since it induces Tau misfolding and self-aggregation, as well as neurodegener-
ation; all correlating to cognitive decline [83]. However, contrary to what one would expect
and in spite of the sequence similarity, W-Tau isoforms have been demonstrated to keep the
ability to bind to microtubules and exhibit an increased solubility and a non-aggregative
behaviour compared to both full-length Tau and Tau 1–368 [37]. In this sense, and in
their lower expression in the brain with respect to the six main isoforms, W-Tau intron
12 retention-mediated truncation is more similar to that of isoforms 6p and 6d [45] than to
a post-translational truncation; although the ability of W-Tau to influence the aggregation
of other isoforms as 6p and 6d isoforms do is still to be determined.

The reasons behind the different behaviour observed for different truncated isoforms
remains unclear and purely speculative for the time being. On the one hand, it appears
that those truncated isoforms that are generated by means of alternative splicing—that is,
W-Tau and 6p and 6d isoforms—have an inhibitory effect on Tau aggregation [37,45], while
truncation as a post-translational modifications clearly promotes it [83,119]; which may
point towards a regulating role for alternative spliced variants whereas those generated
from proteolysis might be related to pathological situations [83].

On the other hand, Fasulo et al. proved by deletion mapping experiments that
the shortest fragment with toxic, apoptotic properties is the peptide constituted from
residues 151–368 of Tau 441 [120]. This may explain the difference between W-Tau isoforms
and their asparagine endopeptidase-mediated equivalents, with the 18-residue sequence
following N368 either masking or blocking the interaction with this specific residue or
altering the conformation of the whole molecule, thus hindering the exertion of aggregation-
promoting activities.

The mechanisms that explain the non-aggregative properties of these isoforms also are
pending to be studied [37]. The authors point out that these properties may be explained in
part by the 18-amino-acid sequence specific to W-Tau isoforms. Namely, they propose that
the sequence GVGWVG is similar in nature to that of some recently described inhibitors of
Tau and amyloid β aggregation [121]. Also, this sequence contains two adjacent cysteines, a
feature that has previously been reported to be able to produce an intramolecular ring [122]
that can alter Tau’s conformation and determine a change on its properties. In addition,
the truncation of the C-terminal region implies the loss of a small sequence within exon 13
that can be found in the core of Tau filaments, as previously mentioned [117,118], maybe
hindering filament-seeding to some extent.
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No studies have been done so far regarding W-Tau subcellular localisation. It is
expected that W-Tau isoforms with 0N, 1N and 2N would distribute accordingly throughout
the cell [53], but there is an interesting phenomenon to be taken into account: the start of the
18-residue sequence is fairly similar to that of certain nuclear localisation signals [123,124],
so a specific role for W-Tau isoforms determined by a different subcellular localisation
cannot be ruled out.

W-Tau isoforms were found both in non-demented human and in Alzheimer’s patients’
hippocampus and frontal lateral cortex as mature mRNA species and as protein, using a
specific antibody generated against the 18-residue sequence arising from intron 12 retention.
Noteworthily, the levels of W-Tau in Alzheimer’s brains were diminished with respect to
non-demented subjects, more prominently so in advanced stages of the disease whereas
total Tau displayed an accumulating pattern [37]. Given this evidence suggesting an
inverse relationship with Alzheimer’s disease and the analogy between W-Tau and 6p/6d
containing isoforms, future studies would benefit from exploring the expression of such
isoforms in other regions that are less vulnerable to tau pathology, like the cerebellum,
where 6p/6d isoforms are found in greater amounts [45].

As for the mechanism that gives rise to this novel set of isoforms, it has been proposed
that MAPT intronic sequences might have a regulatory role in the development of fila-
mentous inclusions typical of tauopathies, since tau lesions are not reproduced in other
species, not even great apes with highly similar (if not identical) Tau protein amino acid
sequence [46]. In this sense, it is important to underline that W-Tau isoforms would be
human-specific and that animal models poorly reproduce Alzheimer’s disease multifacto-
rial pathology [76]. All this, together with the diminished levels of W-Tau in Alzheimer’s
disease patients, might suggest that intronic sequences could have a modulating effect
by means of generating species-specific isoforms through determined alternative splicing
mechanisms such as intron retention. Such mechanism would imply the need of finely
regulated splicing mechanisms dealing with intronic sequences; an idea that can be sup-
ported by the fact that the protein saitohin is encoded within an intronic sequence of the
MAPT gene [38] and that exon 4a might actually come evolutionary from an intron of other
gene [56].

Such evidence, together with W-Tau’s modulation in Alzheimer’s disease patients,
suggest it could be interesting to explore these isoforms and the mechanisms leading to their
generation from a clinical perspective. Therapeutic correction of aberrant splicing [125]
and modulation of both intron retention [126] and post-translational modifications such as
truncation [58] have been previously proposed as potential therapeutic aims. In this line,
an increase of this non-aggregative species or the prevention of its decline in Alzheimer’s
disease might turn out to be a valuable strategy in the future [37].

4.5. The Interplay: Interaction between Functional Regions

We cannot finish this review without highlighting that the functional regions that
compose Tau protein are not isolated one from the other but together as a whole forming
the protein, and most of their functions cannot be pinpointed to a specific site, but rather,
to the interplay of more than one of these functional regions.

For instance, Tau is an example of an intrinsically disordered protein, characterised by
low sequence and structural complexity [67], which implies that Tau conformation cannot
be described as a single state, but rather a conformational ensemble, greatly depending on
Tau’s post-translational modifications, as well as the specific sequence of a given isoform,
its environment, binding proteins, etc [127]. Incidentally, it is important to consider that not
the whole protein is equally disordered, but the NTR and the PRR show the highest degree
of disorder, partly explaining the great extent of binding promiscuity of these regions [67].

Among these Tau conformational states, the paperclip conformation has been greatly
studied and proposed to be a usual conformation of soluble Tau, at least in vitro. Such
conformation requires the physical approach of the N-terminus and the C-terminus of the
Tau molecule [128]. It is not surprising, then, that modifications in the C-terminus, such as
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the pathological mutation R406W or pseudophosphorylation of certain sites have a direct
effect on NTR-mediated interactions [67,81]. The paperclip conformation is proposed to
be crucial for Tau’s physiological functions and can be greatly disturbed by modifications
such as phosphorylation or truncation on either end [127,128].

In fact, this conformation can inhibit self-aggregation by masking of the sticky domains
of the MBTR [67], which may contribute to understanding the increased tendency towards
aggregation of truncated isoforms in either the N- or the C-termini [83]. Isoforms 6p and
6d do not have that problem despite truncation because they lack the microtubule-binding
repeats themselves [45] and, as for W-Tau isoforms, it has proposed that the 18-residue
sequence they present after the repetitions might trigger a different conformation that elicits
a similar result [37].

However, the importance the interaction between different parts of the protein applies
to other functional regions of Tau as well. For example, it has been consistently proven
that for microtubule binding and assembly functions of Tau to be efficient, intramolecular
interactions between the PRR and the MTBR are needed [101,102]. In fact, such interactions
are susceptible of modulation, since they can be reduced by the NTR through, precisely,
a conserved conformational ensemble; negatively regulating tubulin binding to both the
PRR and the MTBR [104].

The regulation between different areas is not unidirectional either. Phosphorylation
at some residues of the PRR can deeply alter interactions from the N-terminal end and
the MTBD. Actually, the majority of the regulatory sites of MBTR-mediated aggregation
are present in either the PRR or the CTR; such as interaction with microtubules and
polymerisation being inhibited by phosphorylation of serine 214 [67]. The regulation
of these sites is intimately associated to AD onset and progression, with the AT8 site
(S202/T205) being the best correlated phosphorylation with disease progression, but also
including other important ones as S199 or T231 [8,129–133]. Phosphorylation on these
sites hinders Tau’s microtubule-related functions (even if it is not sufficient to abolish
microtubule binding and polymerisation) and might have modulating effects on other Tau
functions such as intracellular signalling [67].

Collectively, these results make clear that Tau protein is much more than a microtubule-
associated protein and that their functions are deeply regulated by a great deal of external
factors including alternative splicing and post-translational modifications, but also the
complex interplay between the different functional regions of the protein.

5. Conclusions

In the past few decades, our understanding of the complex mechanisms that reign
and modulate alternative splicing has increased greatly, as have our knowledge of the
implication that these processes might have in physiological and pathological condi-
tions [12,17,28,29,31,34].

Specifically, Alzheimer’s disease and other age-related pathologies have been pro-
posed to be, at least partly, consequence of aberrant or unsuccessful alternative splicing
events [17,49]. Even so, some evidence point out that alternative splicing may not be,
after all, the great driver of proteomic diversity that it was originally thought to be [14],
potentially leading to underestimate the influence it might have in physiological and
pathological processes.

Nevertheless, it seems very clear that the MAPT gene is genuinely subjected to alterna-
tive splicing, with current estimates calculating over 50 isoforms can be generated by these
mechanisms [9,14,15,37,45]. This paints a clear picture of the direct influence the alternative
splicing process might have in the onset and development of Alzheimer’s disease and other
tauopathies [17,49].

Considering the huge variety of alternatively spliced Tau isoforms and that some of
them have just been discovered [37], there is a deeply underresearched niche, including the
functions and distribution of isoforms that express exon 4a, exon 6 in either of its alternative
splice sites or retain intron 12, as well as the possibility of new isoforms arising from other,
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less studied alternative splicing processes, such as other intronic-related events. Charting
these previously unexplored research avenues surely offers an exciting field that we will
most likely see thrive in the upcoming years.
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