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Abstract: Regeneration of cartilage is difficult due to the unique microstructure, unique multizone
organization, and avascular nature of cartilage tissue. The development of nanomaterials and nanofab-
rication technologies holds great promise for the repair and regeneration of injured or degenerated
cartilage tissue. Nanomaterials have structural components smaller than 100 nm in at least one di-
mension and exhibit unique properties due to their nanoscale structure and high specific surface area.
The unique properties of nanomaterials include, but are not limited to, increased chemical reactivity,
mechanical strength, degradability, and biocompatibility. As an emerging nanomaterial, organic
nanocomposites can mimic natural cartilage in terms of microstructure, physicochemical, mechanical,
and biological properties. The integration of organic nanomaterials is expected to develop scaffolds
that better mimic the extracellular matrix (ECM) environment of cartilage to enhance scaffold-cell
interactions and improve the functionality of engineered tissue constructs. Next-generation hydrogel
technology and bioprinting can be used not only for healing cartilage injury areas but also for ex-
tensive osteoarthritic degenerative changes within the joint. Although more challenges need to be
solved before they can be translated into full-fledged commercial products, nano-organic composites
remain very promising candidates for the future development of cartilage tissue engineering.

Keywords: organic nanomaterials; cartilage tissue engineering; regenerative medicine

1. Introduction

Cartilage is a special structure on the surface of the bone within the joint, only 2–4 mm
thick, elastic, and smooth. The friction on the cartilage surface is very low, so it is easy to
be injured during sports, and the cartilage becomes thin and even ruptures and wears out,
which is called cartilage injury [1]. Clinical data show that among patients with cartilage
injury in China, cartilage injury is concentrated in the patellofemoral joint and the lateral
compartment, and a few are located in the medial compartment [2]. Due to the lack of blood
vessels, lymphatic and nerve distribution in the articular cartilage, poor nutrition supply
after injury, and very limited self-repair ability, it causes pain, joint instability, joint stiffness,
and other clinical symptoms, secondary to the occurrence of osteoarthritis, which is an
important cause of limb dysfunction and disability, seriously affecting the quality of life of
patients, wasting medical resources, and causing a lot of inconvenience to patients [3].

In the current treatment methods, if a patient has a slight cartilage injury, certain
immobilization should be given after the injury and generally 4–6 weeks for recovery. If
a patient is suffering from a severe cartilage injury that affects the patient’s limb activity
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and function, surgery is generally required, and they can recover 2 months after the
surgery. If the full layer of cartilage is damaged, the operation of chondrocyte culture
and transplantation is required, and the postoperative recovery time is 6–12 months. The
long convalescence makes the treatment of cartilage injury urgently require new treatment
methods [4].

Nanotechnology and nanomaterials have made rapid development in recent years
and are widely used in the medical field, providing new ideas for the treatment of cartilage
injuries [5]. Nanomaterials can be divided into organic nanomaterials and inorganic
nanomaterials. The role of organic nanomaterials in clinical cartilage injury and the progress
of related nanotechnology will be introduced in this review [6].

2. Sports Injuries of Articular Cartilage

Articular cartilage is a layer of articular cartilage, either hyaline cartilage or fibrocarti-
lage, that covers the surface of the bones attached to the joint [7]. Articular cartilage has
neither nerves nor blood vessels, and its nutrition is mainly supplied by synovial fluid and
arterial branches around the synovial layer of the joint capsule [8]. Between these collagen
fibers are scattered chondrocytes, consisting of flat to oval or round cells from superficial
to deep, that maintain the normal metabolism of articular cartilage [9]. Chondrocytes,
along with the extracellular matrix (ECM), are the major components of articular cartilage
tissue [10]. The damage and repair of articular cartilage is mainly related to ECM, while
hyaluronic acid is the main component of the extracellular matrix and is directly involved
in the regulation of electrolyte exchange inside and outside the cells [11]; in addition, type
II collagen is widely distributed in articular cartilage and cross-linked with a small amount
of type I and type IV collagen to form a network and increase mechanical strength [12,13].

During exercise, the cartilage of the joint is subjected to tremendous stress. In fact,
the ability to damage the knee joint during exercise is related to the amount of pressure
on the knee joint [14]. Studies have shown that human articular cartilage can withstand
pressures of 25 MPa without significant damage, and that pressures above 25 MPa can
lead to bone cell death and cartilage fractures [15]. Prolonged exposure to such stresses
can lead to deformation and relaxation of the articular cartilage beyond the tolerable
range [16]. Studies in animal models have shown that prolonged high-pressure impacts on
joints lead to a sustained release of tissue factors that induce inflammation, loss of tissue
integrity and mechanical properties, and eventually cell death [17]. The main cause of
articular cartilage damage is mechanical injury, which later further leads to secondary
osteoarthritis [18]. Mechanical injury can either directly lead to the destruction of the tissue
matrix or be mediated by chondrocyte expression of matrix-degrading enzymes or reduced
matrix synthesis activity [19]. As a result, the mechanical properties of the cartilage will be
significantly reduced.

3. Current Clinical Methods of Cartilage Repair

For the repair of articular cartilage defects, the strategy used depends on the degree
of damage and degeneration [20]. Articular cartilage defects that do not penetrate the
subchondral bone cannot be healed by the body’s own repair function because the bone
marrow space is difficult for the body’s stem cells to access. In contrast, defects that
penetrate the subchondral bone have been shown to be repaired by the body’s intrinsic
repair processes [21]. After repair, fibrocartilage tissue is usually formed, which has inferior
properties compared to hyaline cartilage. Defects in the articular cartilage are usually
treated with tissue implantation or cartilage regeneration methods [22]. Currently, the
treatment of osteochondral defects can be divided into nonsurgical and surgical treatments.

Nonsurgical treatment is divided into physical therapy and nonphysical therapy for
cartilage injuries that are combined with osteoarthritis rather than isolated cartilage injuries.
Physical therapy is the most common option for nonsurgical treatment, and the main
tools include pulsed electromagnetic fields and low-intensity pulsed ultrasound. Physical
therapy provides better pain relief and improved knee function than nonphysical therapy.
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Although physical therapy can provide symptomatic relief, it cannot treat cartilage damage
and concurrent osteoarthritis [23]. The main nonphysical treatment tools are oral nons-
teroidal anti-inflammatory drugs (NSAIDs) and intra-articular injections of chondroitin
sulfate and glucosamine. The latter two are commercially available products derived from
hyaline cartilage, both of which have been shown to have good effects on cartilage injury
and osteoarthritis with a better prognosis. However, this method is relatively unreliable
and lacks support from clinical data, and the criteria for evaluating the analgesic function
of chondroitin sulfate or glucosamine are vague [24]. In addition to chondroitin sulfate and
glucosamine, hyaluronic acid is also widely used. Hyaluronic acid is a major component of
synovial fluid, relieves moderate pain, and contributes to chondrogenesis [25].

Bone marrow stimulation is used in surgical operations for cartilage reconstruction,
the core technique of which is autologous chondrocyte implantation (ACI). ACI is more
often used to treat extensive symptomatic defects by using nonosteoarthritic cartilage to
wrap around the defect site, thereby artificially creating a cavity in the damaged area of the
cartilage, and then depositing the implanted cells to produce new tissue [26]. Biodegradable
three-dimensional matrices are now being rapidly promoted for use in periosteal patches,
replacing the traditional technique of chondrocyte injection. The biodegradable 3D matrix
not only has good biocompatibility to suit the nature of the repair site, but also accelerates
the process of matrix healing [27]. The main components of this material are hyaluronic acid
and type II collagen-based material [28]. In addition, several natural or synthetic materials
have been developed by medical institutions that stimulate the microenvironment of joint
tissue and enhance its mechanical structure [29]. However, the problems faced by surgery
are slow recovery, high risk, and a maintenance time of only 15 years, which cannot be
completed once and for all, and only play the role of relief. The effect is not obvious, if
the repair with autologous cartilage requires two surgeries, and the tolerance of the tissue
structure is very limited, but also easy to cause damage to other parts [4].

The latest clinical treatments include platelet-rich plasma therapy (PRP) and stem cell
therapy. The former cannot only promote the repair of articular cartilage and meniscus
damage, but also promote the absorption of inflammation in the knee joint, with high
efficiency in pain relief [30]. The latter is currently at the stage of clinical translation and
has not yet been promoted on a large scale, and its effectiveness and safety are still not
guaranteed [31]. Moreover, Kim et al. [32] showed in vivo differentiation studies that the
number of cytokines inducing mesenchymal stem cell (MSC) differentiation to chondrocytes
in the body tissue is low, and only a small fraction can be transformed into chondrocytes.

In general, surgical treatments are invasive, induce stress reactions in the body, have
a narrower scope of application, and cause more discomfort to the patient; nonsurgical
treatments mostly have a longer treatment period and slower recovery, and are only
applicable to mild articular cartilage injuries [5]. However, the development of organic
nanomaterials is expected to overcome these drawbacks simultaneously.

4. Application and Advantages of Organic Nanomaterials in Cartilage Repair

In modern clinical treatment, tissue engineering is widely used to repair cartilage
injuries. The core of tissue engineering repair is the use of nanomaterials to build scaffolds
that provide a suitable 3D environment for stem cell regeneration and differentiation [33].
Over the past two decades, a range of nanomaterials has been used in a wide range of
cartilage repair and regeneration processes [34]. Nanomaterials are divided into nano-
organic materials and nano-inorganic materials, while nano-organic materials are divided
into polysaccharide-based nanomaterials and protein-based nanomaterials [35].

A typical application of inorganic nanomaterials for cartilage repair is carbon nan-
otubes. With high mechanical strength, fatigue resistance, and ductility, carbon nanotubes
have great advantages as scaffolds for de novo cartilage, but poor integration with cartilage
often leads to implant failure; in addition, excessive elastic modulus leads to stress shield-
ing, resulting in low cartilage density, making the overall mechanical strength of the tissue
insufficient and often requiring further surgical intervention and hardware fixation [36].
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Amiryaghoubi et al. [37] reported that the existing clinical experimental approach for
carbon nanotubes relies on laborious arthroscopic interventions combined with bone mar-
row infusion, stem cell injection, or transplantation of different connective tissues. These
techniques are still in the experimental phase, with mixed results and a few long-term
follow-up studies.

Nano-organic materials are more suitable for tissue engineering because they effec-
tively promote the infiltration, transfer, and proliferation of cartilage stem cells in terms of
surface properties, such as topological structure and hydrophilic qualities, than traditional
organic materials. The special structure of nano-organic materials not only provides a larger
specific surface area for the activity of stem cells, but also provides a microenvironment
with suitable ionic strength, and mimics the natural factors that promote cartilage repair
in the in vivo environment, which have been confirmed in clinical studies [38]. A major
advantage of nano-organic materials over conventional nano-inorganic materials is their
excellent biocompatibility, which is a type of biomaterial that can be used to treat or replace
damaged cartilage tissue [39]. Currently, most of the nano-organic materials are involved
in cartilage repair in the form of 3D scaffolds [40]. To improve the quality of 3D scaffolds,
nanotechnology, such as spinning, chemical etching, 3D printing, and phase separation, has
been widely used [41]; nanoparticle technology has also been put into use to enhance the
interactions between chondrocytes and 3D scaffolds [42]. These nanotechnologies, together
with organic nanomaterials, have enabled the customization of different cartilage tissue
structures according to clinical needs [43].

4.1. Nanomaterials Based on Polysaccharides

The main polysaccharide-based nanomaterials (i.e., polysaccharide-based composite
nanomaterials composed of polysaccharides and multifunctional inorganic nanoparticles)
commonly used in cartilage repair include chitosan, alginate, agarose, and hyaluronic acid.
Each of these materials will be described later.

4.1.1. Chitosan

Chitosan is the product of the deacetylation of N-chitin [44]. Chitin, chitosan, and
cellulose are relatively similar in chemical structure; specifically, cellulose has a hydroxyl
group at the C2 position, while chitin and chitosan are replaced with an acetylamino and
an amino group at the C2 position, respectively [45]. The chemical structure determines the
properties, so chitin and chitosan have many unique properties, such as biodegradability
and cell affinity. In addition, chitosan containing a free amino group is the only basic
polysaccharide among natural polysaccharides. In recent years, a large number of research
results have been obtained on the application of chitosan-based materials to cartilage tissue
repair [46]. Pace et al. [47] reported that this natural biomaterial has excellent biocom-
patibility, which not only reduces cytotoxicity, but also is easily processed into various
geometries. The special nanostructure of chitosan allows cell growth and forms a scaffold
for cartilage stem cell attachment [48]. For example, hydroxyapatite (HAp)/chitosan-pectin
(nHCP) composites were synthesized with in situ mineralization reactions in chitosan-
pectin polyelectrolyte complex (PEC) networks [49]. The pH of the microenvironment
and the chitosan/pectin ratio during the synthesis process play an important role in the
formation of nano-chitosan complex crystals [50]. The good cytocompatibility of chitosan
is reflected in the fast gelation properties of its solution, a property that mimics some of the
properties of ECM, providing a cartilage matrix for the accumulation and crawling of new-
born chondrocytes [51]. Gels composed of chitosan can remain for more than a week at sites
of damaged cartilage that have been fixed, and for at least a day at sites of cartilage defects
that have not been completely fixed [52]. In addition, composites composed of chitosan and
other materials also play a good role in cartilage repair. For example, the chitosan-ethylene
terephthalate mesh scaffold plays an important role in the repair of ECM thickness and
the regeneration of type II collagen at the site of cartilage defects [53]. Chitosan can also
be mixed with polycaprolactone (PCL) solution to form a scaffold for cartilage repair, and
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depending on the proportion occupied by both, the solution has different properties to
maximize the speed of cartilage repair, degree of deacetylation, and mechanical strength,
respectively [54,55]. Chitosan hydrogels also have unique temperature-sensitive properties
that maximize the repair and reconstruction effects of the hydrogel when the local tem-
perature of the cartilage defect site is appropriate, which also suggests that we should use
thermostatic devices in future clinical treatments [56]. For implants, chitosan-containing
implants perform better, as evidenced by better biocompatibility leading to slower clot
formation, inhibition of vasoconstrictor nerves, less release of interleukins and other in-
flammatory factors, and higher mechanical strength and elastic modulus detectable in
chitosan-containing implants [57,58].

4.1.2. Alginate

Alginate is a natural polysaccharide found in the cell walls of brown algae. Usually,
the pure product is white to brownish yellow fibers, granules, or powder. Alginate readily
forms gels with cations, such as sodium alginate, and is known as alginate [59]. Alginate
is a polysaccharide formed by the linear polymerization of monoglycoalkalic acid, the
monomers being β-D-mannuronic acid (M) and α-L-gulonic acid (G). The M and G units
are linked by 1–4 glycosidic bonds as block copolymers in combinations of M-M, G-G, or
M-G, with molecular weights ranging from 10,000 to 600,000 [60]. Alginate has an ideal
degradation rate and a range of excellent properties, and alginate oxide (OA) is now com-
monly chosen clinically as an alternative to conventional implants and has been introduced
into a range of technologies, such as hydrogels, microspheres, 3D printed/composite scaf-
folds, membranes, and electrostatic spinning and coating materials [61]. By utilizing OA,
OA-based materials can be easily functionalized and delivered with drugs or growth factors
to promote cartilage tissue regeneration [62,63]. The modern theory of “wet wound healing”
proves that the healing process is accelerated when wounds are exposed to a moist environ-
ment [64]. As a natural polymer derived from brown algae, alginate is highly hygroscopic,
hydrogel-forming, and has excellent biocompatibility. Alginate has been extensively inves-
tigated as a raw biomaterial for the manufacture of wound healing dressings [45]. So far,
the main forms of alginate wound dressings are fibers, sponges, hydrocolloids, hydrogels,
etc. In general, alginate fibers are the most widely used clinically among the four alginate-
based wound healing dressings [65]. Nevertheless, alginate sponges, hydrocolloids, and
hydrogels have received increasing attention in both basic and clinical research due to their
excellent properties in promoting wound healing [66]. Alginate-based implanted scaffolds
facilitate the growth of chondrocyte stem cell adsorption. Antich et al. [67] confirmed that
HAp/alginate nanocomposite scaffolds have been prepared by electrostatic spinning, suc-
cessfully mimicking the in-situ synthesis of type II collagen in cartilage tissue. This method
enabled the uniform deposition of HAp nanocrystals on the lamellar coating, overcoming
the severe agglomeration of HAp nanoparticles processed with conventional mechanical
electrostatic spinning methods [68]. The special spatial structure of the nanosheets can
bind HAp and interoperate with alginate to form composites, which are advantageous in
applications of cartilage tissue repair [69]. In addition, repair of cartilage damage is now
clinically accomplished using alginate hydrogels, and Baba et al. [70] used a combination
of alginate microspheres and a porous polyvinyl alcohol hydrogel scaffold to successfully
demonstrate the role of the new composite in managing mechanical specifications and
enhancing cell migration and the feasibility of repairing cartilage defects after composite
scaffold implantation. Liu et al. [71] showed that articular cartilage cells seeded in alginate
hydrogels increased Young’s modulus and mechanical stiffness over time and significantly
increased the initial hyaline cartilage biomass. Alginate hydrogels have a wide range of
action, even human dental pulp stem cells can be regenerated in them, and almost all
sites of chondrocytes do not cause an inflammatory response during regenerative repair in
alginate hydrogel scaffolds, demonstrating the stabilizing effect of alginate hydrogels on
inflammatory cells [72].
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4.1.3. Agarose

Agarose is an organic substance that is a white or yellow bead-like gel particle or
powder at room temperature, a linear polymorph with a basic structure of long chains of
β-D-galactose and 3,6-endoether-L-galactose alternately linked together [73]. Agar pectin
is essentially a mixture of many kinds of small molecules. Agarose needs to be dissolved in
water temperatures above 90 ◦C and forms a semi-solid gel when the water temperature
drops to 35–40 ◦C, when the state is most stable [74]. This phase change property is the phys-
ical basis for the versatility of agarose in the field of cartilage repair. Gel strength is used to
characterize agarose gel properties, with higher values indicating better gel properties, and
the strength of the mechanical properties of the cartilage tissue to be repaired is directly
related to the rate of ECM synthesis. Therefore, attention needs to be paid to promoting the
synthesis and secretion of ECM in chondrocytes in clinical treatment, which contributes to
the tissue engineering of cartilage scaffolds [75]. Garakani et al. [76] proved that mechanical
stimulation is an effective method to enhance cartilage extracellular matrix synthesis, and
agarose, which has both biocompatibility and some mechanical strength, has been widely
used as a cell culture scaffold for mechanical stimulation studies. When chondrocytes are
attached to a scaffold composed of agarose gel, the action of external forces can accelerate
the directed differentiation of chondrocytes, while stimulating the proliferation of differen-
tiated chondrocytes and the secretion of ECM [77,78]. Although the applied mechanical
load can induce the differentiation of chondrocytes and also promote the synthesis of the
extracellular matrix of cartilage tissue, it is not the only factor that affects the synthesis of
cartilage matrix; the surface structure of the material that encases the chondrocytes is also
crucial. The surface structure of the material encasing the chondrocytes is also crucial [79].
Salati et al. [73] reported that the surface structure of agarose-based compounds is particu-
larly suitable for chondrocyte encapsulation. In addition to their encapsulation role, the
production of chondrocyte-derived glycosaminoglycans (GAGs) highlights their important
role in cartilage repair. Ateshian et al. [80] verified that the differentiated adipose-derived
adult stem cells will synthesize and secrete proteoglycans, hydroxyproline and sulfated
GAG (sGAG) after being embedded in alginate hydrogel and agarose culture for a period
of time and induced using TGFβ-1. In addition, Schmidt et al. [81] demonstrated that the
biological properties of agarose scaffolds are uniquely close to native articular cartilage, and
the mechanical properties of cellular-agarose hydrogel scaffolds are comparable to those of
natural articular cartilage. Felfel et al. [82] reported that encapsulation of immature articular
chondrocytes in agarose hydrogels significantly increases the repair capacity, a quality
that is superior to that of native cartilage. With this method, chondrocytes can recover
rapidly in culture as long as the integrity of the tissue remains intact during development,
significantly shortening the recovery period.

4.1.4. Hyaluronic Acid

Hyaluronic acid is a glycosaminoglycan, formed by the polymerization of a double
pond unit consisting of D-glucuronide and N-acetylglucosamine [83]. Hyaluronic acid is
an acidic mucopolysaccharide with a variety of special properties, such as biocompatibility
and macromolecular adhesion, which can reduce joint friction, adjust the permeability of
blood vessel walls, adsorb and release proteins, assist in transmembrane transport of metal
ions and anions, and accelerate the recovery of cartilage damage in vivo [84]. Osteoarthritis
(OA), usually caused by rupture of the articular cartilage and the underlying bone tis-
sue, is a common cartilage disease and accounts for the vast majority of sports-induced
cartilage damage [85]. Li, Qi et al. [86] proved that injectable hydrogels of hyaluronic
acid with Epigallocatechin-3-gallate (EGCG), which has intrinsic properties that modulate
inflammation and scavenge free radicals, can control inflammation and enhance cartilage
regeneration when injected into the joint cavity. Composite hydrogels were prepared by
mixing EGCG, tyramine complexed HA, and gelatin together in appropriate proportions.
The composite hydrogel can adsorb the proinflammatory factor IL-1β, thus, protecting the
newborn chondrocytes and promoting the regeneration of cartilage in vitro. Additionally,
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in in vivo histological experiments, the EGCG-HA/gelatin hybrid hydrogel has a good
effect on the repair of cartilage damage caused by a sports injury, which can greatly reduce
the loss of cartilage [87]. Microgels, as a special form of a hydrogel, can achieve precise
regulation of the cellular microenvironment at the microscopic scale, providing a new
avenue for regenerative cartilage tissue repair [88]. Martin et al. [89] showed that micro-
gels encapsulating mouse bone marrow mesenchymal stem cells (mBMSC) prepared by
microfluidic technology with vinylsulfonated hyaluronic acid and mercapturic gelatin as
the main materials have good functions in promoting cartilage repair. After a period of car-
tilage induction in vitro, the microgels were injected into nude mice, and Zhang et al. [90]
confirmed that the microgels could spontaneously form cartilage-like self-assemblies due
to intercellular interactions and secretion of extracellular matrix, and BMSC changed from
hyaline to fibrochondrogenic differentiation with the increase in cross-linking degree. A
commercial hyaluronic acid-based polymer (Hyaff-11) currently supports the ability of
human bone marrow mesenchymal cells (hMSCs) to chondrogenic differentiation by in-
ducing the upregulation of type II collagen, type IX collagen, and aggrecan, as well as a
decrease in type I collagen expression. In addition, Wong et al. [91] reported that differ-
entiation of hMSCs into chondrocytes is induced in the presence of higher concentrations
of TGFβ-1. Overall, the advantages of hyaluronic acid-based biomaterials include water
solubility, gelling ability through reduced temperature, and biological properties (e.g.,
noncytotoxicity and cytocompatibility) that make them suitable candidates for cartilage
tissue repair [92]. For example, chitosan-hyaluronic acid dialdehyde hydrogels can induce
bone marrow cell differentiation in vivo and further promote ECM proliferation in hyaline
and fibrocartilage [93].

4.2. Nanomaterials Based on Protein

The main protein-based nanomaterials (i.e., composites based on protein macro-
molecules combined with inorganic or organic small molecules) commonly used in cartilage
repair are collagen and fibrin. They play different roles in the repair of cartilage tissue
based on their unique properties.

4.2.1. Collagen

Collagen accounts for approximately 20% of the total mammalian protein and is a very
important protein of the human ECM, mainly found in connective tissue. Collagen has a
strong elongation capacity and is the main component of ligaments, and collagen is also a
major component of the ECM [94]. Collagen microfibrils are the most basic components
of collagen. Many collagen microfibrils accumulate laterally and are linked in the same
way by covalent bonds to form collagen fibers. Collagen fibrils are the basic forms of
collagen for its physiological functions, and in living organisms they are interwoven into
a mechanically strong and elastic meshwork that becomes the most basic component of
connective tissue [95]. Exercise causes progressive wear and tear of the articular cartilage,
which leads to loss of cartilage tissue, resulting in increased exposure at the ends of the
long bones, decreased protection of the epiphyseal cartilage, and finally degenerative
osteoarthrosis [96]. The regenerative capacity of cartilage tissue is poor, and cartilage
healing is relatively more difficult after sports injuries [97]. In current clinical practice,
three-dimensional (3D) porous scaffolds filled with cartilage stem cells are widely used for
cartilage tissue repair, with relatively good repair results. However, most of the scaffolds
currently use organic solvents to cross-link small molecules or use chemically synthesized
polymers [98]. Lee and Kim [99] demonstrated that collagen and oxidized hyaluronic acid-
based composite scaffolds have high biocompatibility and excellent mechanical properties,
and can promote angiogenesis and chondrocyte proliferation; if metal ions are added to
this scaffold, the mechanical strength of the scaffold will be close to that of native cartilage,
and will not cause inflammation [100]. The cartilage bionic matrix material prepared from
type II collagen is a gel at body temperature and a sol-gel at low temperatures, which can
anchor cartilage stem cells to the damaged area by phase change [101]. The method is
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simple and easy to use, the product is easy to use, the surgical damage is small, the defect
site is repaired well, and the clinical application is safer [102].

4.2.2. Fibrin

Fibrin is a fibrous, nonspherical protein involved in blood clotting. It is turned into
fibrin monomers by the action of thrombin on fibrinogen, which then polymerizes to form
fibrin [103]. Fibrin is required in the following biological processes: messaging, blood coag-
ulation, platelet activation, and protein polymerization. Human fibrin gel is a Food and
Drug Administration (FDA)-approved material that mimics the coagulation process and
can be used as a matrix for cartilage tissue engineering [104]. Platelet-rich fibrin is a platelet
polymer tightly encapsulated by fibrin, with a loose and porous interior, and contains
a variety of cell growth factors that promote chondrocyte differentiation and prolifera-
tion [105]. Platelet-rich fibronectin not only has anti-infective and anti-inflammatory effects,
but also promotes tissue healing and regeneration, and contains a variety of cytokines that
promote the differentiation of bone marrow MSCs into chondrocytes [106]. Platelet-rich
fibrin can repair the old cartilage defect caused by traumatic osteoarthritis, and its repair
ability is significantly better than that of BMSCs alone. The old cartilage defect is one of
the common types of cartilage injury caused by exercise [107]. Masgutov et al. [108,109]
reported that the fibrin glue cell complex by adding phalloidin and tranexamic acid, and
they found that the modified cells generated new cartilage with histological properties
consistent with normal cartilage and accelerated chondrocyte ECM formation and cartilage
repair. Currently, Vilar et al. [110,111] have injected fibronectin sealant (FS) into the joint
to form a trap similar to normal cartilage tissue, in which new chondrocytes are located
to secrete vigorously and build injectable cartilage tissue together with FS. In addition,
Heo et al. [112–114] have demonstrated that fibrin can also be involved in constituting
nanohydrogels, which stimulate GAG production and ECM formation and can improve the
mechanical strength of new cartilage and accelerate the delivery of adipose-derived multi-
potential stem/progenitor cells (ASPCs) to the damaged tissue for continued differentiation
to form new cartilage tissue.

4.3. Nanosynthetic Materials

Natural cartilage has a complex layering in which the ECM is rich in nanoscale collagen
fibrils and proteoglycan molecules, which provide many nanostructural features to natural
cartilage tissue. Therefore, if one hopes to repair and regenerate cartilage using organic
nanomaterials, then this material needs to have both excellent mechanical properties and
good biocompatibility to mimic the nanostructural features of natural cartilage [115]. These
nanomaterials are polymers, synthesized artificially, and differ significantly from the previ-
ously described natural nano-organic materials in terms of their scope of application and
mechanism of action. Different types of conventional materials are used in this field, namely
polylactic acid (PLA) and its derivatives poly-L-lactic acid (PLLA), poly (lactic-co-glycolic
acid) (PLGA), dextro-polylactic acid (PDLA), polyurethane (PU), polyethylene glycol (PEG),
and polyvinyl alcohol (PVA). In addition to their good mechanical properties, they also
have good processing potential [116]. Additionally, similar to natural organic nanomateri-
als, synthetic nanomaterials are widely used for the preparation of hydrogels [117]. Such
hydrogels show high efficiency in immobilizing living cells, including cartilage stem cells,
and creating a highly hydrated microenvironment that allows easy diffusion of nutrients
and induces cell migration, proliferation, and differentiation [118].

4.3.1. PEG

PEG has been extensively studied as a support agent for cartilage tissue engineering.
The main application directions of PEG are involved in the synthesis of hydrogels and for 3D
bioprinting [119]. The hydrogel scaffold composed with the involvement of polyethylene
glycol can promote the cell viability of cartilage stem cells and contribute to the attachment
and growth of new cells and the generation of ECM [120]. When polyethylene glycol and
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filamentous protein are configured together as inks for 3D bioprinting, the printed synthetic
cartilage scaffolds will promote differentiation of MSCs and secretion of ECM, and have
phase change properties to facilitate implantation into damaged areas [121].

4.3.2. PVA

Polyvinyl alcohol (PVA) is a synthetic polymer that is soluble in water and forms a
solution with special adhesive properties. The materials involved in the composition of
PVA mostly have superior properties for adhering to living cells, which can speed up the
repair process and hold promise to be widely used in cartilage repair [122]. The mechanical
strength of 3D scaffolds made with PVA is similar to that of natural cartilage, and the PVA-
based hydrogel has a better tensile modulus than natural cartilage and is biocompatible,
which can repair articular cartilage defects and delay the onset of degenerative changes
after implantation in joints [123,124]. PVA mixed with other nanomaterials can also have
good effects, for example, when mixed with titanium fiber mesh, it can help the growth
of subchondral bone and play a role in fixation [121]; the composite material mixed with
chitosan can promote the proliferation of bone marrow mesenchymal stem cells to assist in
the repair of cartilage defects [125].

4.3.3. PLGA

PLGA has been widely used in various medical engineering applications because
of its good biocompatibility and degradability, and the special feature of the 3D scaffold
created with PLGA is that it has relatively larger pores, which helps cells to infiltrate
and migrate along the scaffold without being adhered to the scaffold, accelerating the
regeneration of the cartilage defect site [126]. Kim et al. [127] showed that the compos-
ite scaffold prepared by PLGA and decellularized articular cartilage extracellular matrix
(DACECM) is noncytotoxic and has mechanical strength and elasticity comparable to that
of native cartilage. Qu et al. [128] also mixed PLGA with type II collagen and GAG to
prepare scaffolds and found that they possessed superior compression modulus without
significant changes in other properties, making PLGA more suitable for cartilage repair.
As shown in Figure 1, Shen et al. [56] incorporated PLGA short fibers into a chitosan
hydrogel scaffold for mechanical strengthening and structural biomimicking; meanwhile
introducing cartilage-decellularized matrix (CDM) for biochemical signaling to promote
chondroinduction activities. They found that the incorporation of PLGA short fibers and
CDM remarkably strengthened the mechanical properties of the chitosan hydrogel. Biolog-
ically, the scaffold significantly promoted the adhesion and proliferation of chondrocytes
and supported the formation of matured cartilage tissue with a cartilage-like structure and
the deposition of abundant cartilage ECM-specific GAGs and type II collagen. They thereby
demonstrated the great potential of PLGA in cartilage tissue repair and regeneration.

4.3.4. PCL

PCL is widely used as a medical biodegradable material because of its good biodegrad-
ability, biocompatibility, and nontoxicity. PCL is used in electrospinning technology because
it can be complexed with metal anions, and the composed nanoscaffold can induce differ-
entiation of mesenchymal stem cells and assist in the formation of cartilage matrix [129]. In
addition, compared with conventional scaffolds, PCL scaffolds have smaller pores, so the
mechanical strength is higher, even higher than that of natural cartilage, but the small pores
also prevent cell penetration, so uneven distribution of chondrocytes may occur [130,131].
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4.3.5. PLLA

PLLA is an important biodegradable polymer material that is characterized by non-
toxicity, nonirritation, biodegradable absorption, high strength, good plasticity, and easy
processing and molding [132]. Zhao et al. [133] prepared PLLA as nanofibrous scaffolds and
found that the cells penetrated more uniformly; the surface of new cartilage was smoother,
and more type II collagen was secreted, resulting in better mechanical properties. It has
been reported that when PLLA scaffolds were implanted, the scaffolds themselves were
completely resorbed after a period of time, but the new chondrocytes and the secreted ECM
retained the shape of the scaffolds, which facilitated subsequent defect repair, and the new
cell population was stable in nature [134]. Additionally, Mahboudi et al. [135] reported that
the type of collagen and the amount of GAG were relatively higher in the new cartilage
tissue repaired by PLLA scaffolds, while the number of macrophages was lower and the
bioaffinity was higher.
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4.3.6. PU

One of the major challenges in cartilage repair is the integration of new cartilage with
the original bone tissue, and the nature of PU can better solve this problem [136]. Abpeikar,
Wen et al. [137,138] verified that the cartilage repair scaffolds prepared with PU can help
stem cells replicate in situ and have good mechanical properties; more importantly, PU
can be used to prepare scaffolds using a gas foaming method [139], and the resulting
porous scaffolds have high cell adhesion and elasticity, which can effectively bind growth
factors [140,141]. It can create a more stable microenvironment that is more conducive to
cell adhesion and proliferation [142,143].

4.4. Next Generation Organic Nanomaterials

The organic nanomaterials described in detail in the previous section, i.e., agarose,
alginate, hyaluronic acid, collagen, PLA, PVA, etc., are considered to be classical materials
for articular cartilage repair. Adjusting the ratio of different base materials in composites
can yield composites with different mechanical and biological properties, but qualitative
changes in material properties are difficult to occur. With the advances in materials science
and biomedical engineering, the development of nano-biomaterials for cartilage tissue
engineering applications requires an integrated consideration of the interactions between
polymer science, nanoscience and cell biology, based on which next-generation organic
nanomaterials promising for cartilage repair have been developed in the laboratory and
will be described in the following sections.

4.4.1. Double Network (DN) Hydrogel

Hydrogels show potential for a wide range of applications in the field of tissue en-
gineering. The field of cartilage repair places higher demands on hydrogels that can
withstand continuous high levels of impact over short periods of time while having self-
healing properties after damage [144]. Unfortunately, the inherent structural inhomogeneity
of hydrogels makes the mechanical strength of conventional hydrogels relatively low and
does not fully mimic the growth process of cartilage tissues [145]. To overcome this problem,
attempts have been made to strengthen the mechanical strength of hydrogels by means
of composite materials and multiple architectures, such as DN hydrogels [119]. The steps
for preparing DN hydrogel are shown in Figure 2. DN hydrogels not only have better
biocompatibility compared with previous generation hydrogel materials to accelerate the
regeneration of hyaline cartilage in vivo, but also have higher material science properties,
such as mechanical strength, toughness, corrosion resistance, as well as fatigue resistance,
self-recovery shape memory, pH-mediated phase change, thermoplasticity (which can be
used for 3D printing), and a series of engineering properties, thus, comprehensively surpass-
ing single-network hydrogels [146]. The bilayer network structure of DN hydrogels allows
it to combine the properties of different materials [147]. Wang et al. [148] used biomacro-
molecular polymers to form the first network, which helps complete the enzymatic reaction,
and biocompatible polymers to form the second network, which can remain in the body
for a longer period of time and facilitate the adhesion and growth of new chondrocytes.
Together, the first network and the second network enable the complete self-assembly and
supramolecular response function of DN hydrogels, thus, achieving the clinical goal of
rapid self-healing, which is its advantage as a next-generation nanomaterial [62].
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4.4.2. Bioprinting Technology

In cartilage tissue engineering, the main advantage of 3D bioprinting is its ability to
print scaffolds distributed with controlled cells that can promote cartilage tissue regen-
eration [149]. Thus, 3D bioprinting, as a precise and efficient biomanufacturing method
for cartilage regeneration, can combine cells and biomaterials in an orderly manner while
performing layer-by-layer deposition to precisely construct cartilage tissue scaffolds with
a specific spatial structure [150]. The main raw materials for 3D bioprinting are organic
nanomaterials and biological cells, which are layered to produce synthetic materials that
can be implanted in cartilage defect sites. Compared to the traditional synthesis of or-
ganic nanomaterials, 3D bioprinting technology is faster and more concise in the way
it synthesizes materials, facilitating the rapid application of new materials in cartilage
repair [151]. The base materials for 3D bioprinting are organic nanomaterials. Take PEG,
mentioned before, as an example, PEG is one of the most commonly used synthetic ma-
terials for 3D bioprinting [152]. In traditional production, PEG is more often used alone
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to make biological scaffolds [153]; now Yamasaki et al. [154] have mixed dimethacrylate-
polyethylene glycol (PEG-DMA) material with human chondrocytes as raw material to
print 3D scaffolds loaded with cartilage and found that the mechanical strength is much
higher than that of traditional PEG scaffolds, and there is almost no effect on the biolog-
ical activity of the cells, and the cell survival rate is much higher than that of traditional
materials [155]. Grigor’eva et al. [156] proved that mixing methacrylic acid anhydride
chitosan (PEG-GelMA) material with human mesenchymal stem cells for printing can
promote the differentiation of stem cells, and the mechanical strength of the composite
scaffold composed of both cells and organic nanomaterials breaks the bottleneck of the
original single nanomaterial scaffold. In addition, PCL is also a commonly used bioprinting
material. Similar to PEG, mixing PCL with traditional bionanomaterials results in scaffolds
with higher resolution and significantly higher cell viability, as well as good thermoplas-
ticity, mechanical strength, degradability, and biocompatibility [157]. The human-derived
cells used in 3D bioprinting also have special properties. As shown in Figure 3, using
chondrocytes as an example, Chen et al. [158] used stereolithography (SLA) technology
to 3D print cartilage scaffolds. The scaffold significantly promoted the migration of chon-
drocytes in the cartilage defect area, and exosomes were released during the migration
process, and exosomes were finally absorbed by chondrocytes. After the administration of
mitochondria-related proteins, scaffolds can promote the generation of mitochondria in
chondrocytes and restore some functions of chondrocytes that have been damaged, so as to
realize the regeneration of cartilage defects. Along with the advancement of cell biology,
the cells used in 3D bioprinting are more often mesenchymal stem cells and embryonic
stem cells/induced pluripotent stem cells. The advantage of stem cells over traditional
autologous chondrocytes is that they have good proliferative potential and do not lose
their multidirectional differentiation ability within a few generations [159]. Ni et al. [160]
demonstrated that scaffolds printed with a mixture of stem cells and organic nanomaterials
can simultaneously promote the formation of new cartilage, integration of bone and carti-
lage, and lumen formation with significantly higher efficiency than using chondrocytes,
and their safety has been demonstrated.

Bioengineering 2022, 9, x FOR PEER REVIEW 14 of 21 
 

 
Figure 3. Schematic illustration of the one-step operation system for facilitating osteochondral defect 
regeneration. (A) Stereolithography-based bioprinting and osteochondral defect implantation. (B) 
Migration of chondrocytes to the defect regions. (C) Controlled administration of exosomes by the 
3D printed scaffolds. (D) Enhanced chondrocyte mitochondrial biogenesis by the scaffolds [158]. 

5. Conclusions and Outlook 
The more structural layers of cartilage and the fact that articular cartilage often needs 

to bear more weight place higher demands on the materials needed for tissue engineering 
of articular cartilage. Organic nanomaterials have common features, such as higher me-
chanical strength, good biocompatibility, and induce chondrocyte secretion, which makes 
them commonly used materials in cartilage tissue engineering. Single or composite or-
ganic nanomaterials composed of different macromolecules have their own specific prop-
erty preferences, which should be adjusted according to actual clinical needs. Advances 
in materials science and engineering have led to the rapid diversification of combinations 
between different materials, for example, composites composed of organic nanomaterials 
with cells and growth factors are beginning to gain importance. Such composites have 
unique advantages, such as low dosage, diverse functions, and good safety, and are ex-
pected to become the next generation of materials commonly used in tissue engineering. 
In addition, the multiple properties of bilayer network hydrogels meet the requirements 
of next-generation tissue engineering, i.e., diverse functions with less dosage, and their 
main function is to provide mechanical support for the composites and facilitate the gen-
eration of new cartilage tissue. In the future, the focus of cartilage repair research will be 
on natural cartilage signaling pathways, and clinical differentiation will be made for car-
tilage defects caused by different types of signaling pathway blockage, i.e., using high 
bioaffinity scaffolds to supplement the corresponding signaling pathway proteins, and 
implanting cartilage stem cells to achieve faster and better repair of cartilage damage. 

6. Perspectives 
With the development of materials science and engineering, as well as the analysis 

of cartilage repair signaling pathways, the treatment of cartilage repair in future clinical 
fields will tend to be precision medicine. For cartilage defects caused by diseases, doctors 

Figure 3. Schematic illustration of the one-step operation system for facilitating osteochondral
defect regeneration. (A) Stereolithography-based bioprinting and osteochondral defect implantation.
(B) Migration of chondrocytes to the defect regions. (C) Controlled administration of exosomes by
the 3D printed scaffolds. (D) Enhanced chondrocyte mitochondrial biogenesis by the scaffolds [158].



Bioengineering 2022, 9, 390 14 of 21

5. Conclusions and Outlook

The more structural layers of cartilage and the fact that articular cartilage often needs
to bear more weight place higher demands on the materials needed for tissue engineering
of articular cartilage. Organic nanomaterials have common features, such as higher me-
chanical strength, good biocompatibility, and induce chondrocyte secretion, which makes
them commonly used materials in cartilage tissue engineering. Single or composite organic
nanomaterials composed of different macromolecules have their own specific property
preferences, which should be adjusted according to actual clinical needs. Advances in
materials science and engineering have led to the rapid diversification of combinations
between different materials, for example, composites composed of organic nanomaterials
with cells and growth factors are beginning to gain importance. Such composites have
unique advantages, such as low dosage, diverse functions, and good safety, and are ex-
pected to become the next generation of materials commonly used in tissue engineering. In
addition, the multiple properties of bilayer network hydrogels meet the requirements of
next-generation tissue engineering, i.e., diverse functions with less dosage, and their main
function is to provide mechanical support for the composites and facilitate the generation
of new cartilage tissue. In the future, the focus of cartilage repair research will be on
natural cartilage signaling pathways, and clinical differentiation will be made for cartilage
defects caused by different types of signaling pathway blockage, i.e., using high bioaffinity
scaffolds to supplement the corresponding signaling pathway proteins, and implanting
cartilage stem cells to achieve faster and better repair of cartilage damage.

6. Perspectives

With the development of materials science and engineering, as well as the analysis of
cartilage repair signaling pathways, the treatment of cartilage repair in future clinical fields
will tend to be precision medicine. For cartilage defects caused by diseases, doctors will
first analyze the loss of signaling pathways in cartilage cells by means of genetic testing and
proteomics, and then implant a high bioaffinity scaffold prepared by 3D printing with PEG
as the main framework and filled with hyaluronic acid, and encapsulate cartilage stem cells
with complete signaling pathways in the scaffold after repair. This treatment method can
greatly reduce the rejection reaction and accelerate the speed of cartilage repair; for cartilage
defects caused by sports injuries, a composite hydrogel prepared with hyaluronic acid and
anti-inflammatory factors is used to protect the cartilage defect area from inflammatory
factors, and then a three-dimensional scaffold prepared with PVA and chitosan is implanted
to provide high mechanical strength to accelerate the cartilage repair.
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