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Obesity and its’ associated metabolic diseases such as type 2 diabetes and
cardiometabolic disorders are significant health problems confronting many countries.
A major driver for developing obesity and metabolic dysfunction is the uncontrolled
expansion of white adipose tissue (WAT). Specifically, the pathophysiological expansion of
visceral WAT is often associated with metabolic dysfunction due to changes in adipokine
secretion profiles, reduced vascularization, increased fibrosis, and enrichment of pro-
inflammatory immune cells. A critical determinate of body fat distribution and WAT health
is the sex steroid estrogen. The bioavailability of estrogen appears to favor metabolically
healthy subcutaneous fat over visceral fat growth while protecting against changes in
metabolic dysfunction. Our review will focus on the role of estrogen on body fat
partitioning, WAT homeostasis, adipogenesis, adipocyte progenitor cell (APC) function,
and thermogenesis to control WAT health and systemic metabolism.

Keywords: white adipose tissue, estrogen, adipocyte progenitor cells, estrogen receptor, metabolically healthy,
hypertrophy, adipokines, ovariectomy
INTRODUCTION

Obesity is a global public health problem (1). Not only is obesity characterized as having excess body
fat, but it is also associated with or is a risk factor for developing metabolic dysregulation and
cardiometabolic diseases such as insulin resistance, type 2 diabetes, hypertension, arterial
cardiovascular disease, and cancer (2–6). These comorbidities occur because white adipose tissue
(WAT) is no longer considered an inert storage depot for excess energy but rather an active
endocrine organ that regulates numerous physiological, metabolic, and endocrine responses and
cues. For instance, WAT regulates appetite, thermogenesis, lipid metabolism, sexual reproduction,
immunological responses, insulin signaling, and glucose homeostasis. Moreover, WAT is a highly
dynamic organ that can expand and contract depending on the body’s energy demand (7). Because
of these attributes and when situated within a positive energy balance—increased food consumption
and decreased exercise— it is the perfect recipe for obesity and metabolic dysfunction. However, this
is only because evolution, developmental transcriptional programs, and hormonal sex steroids have
paved the way for the development of obesity. Indeed, discernable fat-storing tissues can be
observed in invertebrates and vertebrates, allowing organismal survival during food restriction or
famine periods (8–10). Moreover, these organisms and phyla share conserved developmental
transcriptional programs and fat-storing proteins. Specifically, in mammals, sex steroids determine,
specify, and expand specific body fat storage depots (11). For example, males tend to accumulate
more visceral adiposity, the so-called “apple shape,” which promotes metabolic disorders and
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increases the risk for cardiometabolic diseases. In contrast,
females tend to expand subcutaneous adipose tissue, favoring
metabolic protection (Figure 1). This review will examine how
sex steroids specifically, estrogen, regulate WAT distribution,
function, and growth in males and females to control
metabolic health.
ESTROGEN ACTION AND SIGNALING
MECHANISMS

Sex steroids such as estrogens activate a specific group of ligand-
dependent transcription factors called nuclear hormone
receptors to regulate gene transcription. Estrogens are a group
of compounds that include estrone, estradiol, and estriol.
Estradiol can be further separated into 17 alpha-estradiol (17a-
E2) and 17 beta-estradiol (17b-E2) (12). Specifically, estrogens
are synthesized and metabolized by the cytochrome P450 (CYP)
superfamily of enzymes (13). Biosynthesized from cholesterol,
estrogens are produced using a host of CYP enzymes, the most
notable being aromatase (CYP19A1), converting androgens to
estrogen (14). Aromatase is found in a variety tissues such as
brain, adipose tissue, blood vessels, and bone with highest
expression taking place in the gonads (15). Thus, the main site
of estrogen biosynthesis in premenopausal females occur in the
reproductive track and ovaries (16, 17). In postmenopausal
women, WAT becomes the bodies major supplier of estrogen,
which is dependent on robust aromatase expression and activity
(18). Particularly, in WAT, aromatase converts estrone—a
converted metabolite from androstenedione, a secreted
hormone from the adrenal gland—to estradiol by the 17-beta
hydroxysteroid dehydrogenase (17b-HSD) class of enzymes (19,
20). However, the levels of estrogen produced by this pathway
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are unable to compensate for the loss of ovarian estrogen
production, accordingly hormone replacement therapy (HRT)
may be required for post-menopausal women. Nevertheless,
17b-E2 is the major circulating and biologically active form of
estrogen. It is also the most described in adipose tissue
regulation, and we will use the common term estrogen to refer
to 17b-E2, broadly (21, 22).

Estrogen can bind and activate two estrogen receptors (ERs),
alpha and beta (ERa; ERb) (23). Classical ER activation requires
the binding of estrogen within the ligand binding pocket of the
receptor. Estrogen binding to ER allows the receptor to directly
interact with DNA by binding to estrogen response elements of
target genes (24). Upon DNA binding, ER can cooperate with
other transcription factors and be tethered to transcriptional
coregulators to communicate with the DNA polymerase to
initiate or repress gene transcription. The ability of ER and
estrogen to regulate gene expression is often disrupted in many
disease states, such as breast cancer. In these scenarios, control
mechanisms no longer regulate estrogen-induced ER
transcription, resulting in potential tumorigenic action (25,
26). Moreover, modulating levels of estrogens in circulation
also plays a critical transcriptional role in controlling metabolic
and disease responses (27). In addition to estrogens,
environmental estrogen mimetics such as Bisphenol A (BPA)
have been shown to activate or suppress ER activity in various
tissues. For example, BPA acts as an ERa agonist but has a
significantly lower affinity for ER than estrogen (1000- to 2000-
fold less) (28, 29). Chronic exposure to BPA has been implicated
in disrupted human health and has been associated with an
elevated risk of cancer, developmental malformities, obesity, and
infertility (28, 29).

In addition to the traditional activation of ERs, estrogen can
also associate with and activate a G-protein coupled membrane-
FIGURE 1 | Estrogen influence on adipose tissue expansion. White adipose tissue can expand through either hypertrophy, the swelling of individual adipocytes, or
hyperplasia, the increase of adipocyte numbers. Hypertrophy is accompanied by a reduction in vascularization, increased inflammation, and promotes fibrosis.
Hyperplasia maintains tissue health by facilitating vascularization, promoting anti-inflammatory signals and block fibrosis. Estrogen levels play a role in determining the
type of expansion and location which shifts as estrogen decreases due to pharmacological drugs, medical procedures, and/or age. While normal estrogen levels
result in hyperplastic subcutaneous adipose tissue growth, reduced estrogen leads to metabolically unhealthy hypertrophic visceral adipose tissue expansion.
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bound estrogen receptor called GPER or GPER30 (30). GPER
appears to be critical for driving ER-independent pathways and
mediates the non-genomic effects of estrogen (30). Upon GPER
activation by 17b-estradiol the MAPK (Erk1/2) and adenylyl
cyclase pathways are activated to promote various cellular
activities (31, 32). Specifically, GPER has been suggested to
promote estrogen-mediated inhibition of oxidative stress-
induced apoptosis, increased cellular growth through
stimulation of cyclin D expression, and upregulated nerve
growth factor production in macrophages (33–36). This unique
and diverse biological repertoire has strong implications on
breast cancer biology and progression. This range of activity
exists for adipose tissue as well, and all ERs and GPER3 are
expressed within various WAT depots. Yet, ERa has been the
most extensively evaluated and appears to drive most of estrogen
WAT-related functions (37, 38). In contrast, the roles of ERb and
GPER are not well characterized; however, both estrogen
receptors do appear to regulate metabolism (39, 40).

Estrogen Cycling in Humans and Rodent
The human menstrual cycle begins at puberty, occurring every
28 days, and consists of three phases, menstrual, proliferative,
and secretory (41). However, mice have a more truncated
reproductive cycle of five days consisting of 4 phases:
proestrus, estrus, metestrus, and diestrus. Furthermore, the
reproductive cycle in mice consists of 4 phases, including
proestrus, estrus, metestrus, and diestrus, compared to
humans. Unlike humans, female rodents do not experience
menstruation or menopause, but their reproductive organs do
undergo senescence (42). To mirror human menopause, 4-vinyl
cyclohexene diepoxide has been used to induce the loss of
ovarian follicles in mice. Mice receiving this compound do
develop metabolic and cardiovascular disease (43). More
commonly, ovariectomy surgeries are performed on mice to
mimic human menopause to study the effects of estrogen loss
on various tissues such as bone, adipose tissue, and metabolic
disease (42).
THE REGULATION OF BODY FAT
DISTRIBUTION BY ESTROGENS

WATs are dispersed and are noncontiguous throughout the
body, representing the potential heterogeneity of this organ
(44). For example, WAT can be demarcated into two broad
anatomical locations, subcutaneous and visceral, which can be
further separated into distinct compartments called depots.
Subcutaneous fat resides below the dermis while visceral fat
surrounds internal organs within the body cavity (4, 6, 8). This
gross anatomical placement also appears to have significant
metabolic implications. Subcutaneous fat appears to
be metabolically protective, whereas visceral fat contributes to
metabolic dysregulation (3, 45, 46). This protective anatomical
distribution of WAT is particularly relevant between males and
females. For instance, women will tend to have 10-20% more
body fat than men of the same body mass index (BMI) (47).
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However, premenopausal females preferentially accumulate
subcutaneous fat throughout the lower body, hips, and thighs
and have reduced visceral adiposity (48). Moreover,
premenopausal women are more protective against developing
metabolic disease, likely due to the increased subcutaneous fat to
visceral fat ratio. In contrast, males often accumulate excess
visceral fat, leading to metabolic disorders and cardiovascular
disease (49). However, postmenopausal females often
accumulate visceral fat while reducing subcutaneous WAT
depots. This effect is predominantly due to the lack of
estrogen, predisposing women to metabolic disease (50).
Indeed, studies using the data from the National Health and
Nutritional Examination Survey (NHANES), the most extensive
nutritional assessment data on interview and physical
examinations available, showed that an increase in visceral or
centralized adiposity is associated with the most significant risk
of mortality in women (51–53). A UK study further supported
this notion by demonstrating a similar risk of mortality and
visceral adiposity in women (51, 52). In general, elevated visceral
fat deposition is associated with the highest risks for metabolic
disease and premature death, regardless of sex (54). Thus, the
overall changes in adipose storage sites and sexual dimorphic
responses controlling body fat disposition are thought to explain
why men develop cardiometabolic diseases earlier than women.

The Role of Circulating Estrogens on WAT
Location
What might account for these metabolic differences and
adiposity between males and females? It seems to emanate
from where adipose t issue growth occurs and the
bioavailability of estrogens. Accumulating evidence from
human and rodent studies has demonstrated that higher
estrogen levels augment subcutaneous WAT expansion and
blunts visceral WAT growth (37). In addition to body fat
distribution, ovarian estrogen levels can further protect against
obesogenic cues and metabolic disease (55). Research has shown
that lowering circulating levels of estrogen by menopause or
ovariectomy increases the risk of developing obesity, type 2
diabetes and cardiovascular disease (56–58). In rodents and
humans, estradiol replacement therapy or HRT reverses
obesity by lowering visceral fat mass thereby improving
metabolic fitness (59, 60). In humans, HRT has been shown to
have numerous beneficial metabolic effects in post-menopausal
women. For example, in a 3-year study, HRT statistically
decreased fasting glucose levels and significantly lowered
incidences of diabetes (61). Additionally, HRT elevated HDL
while lowering LDL, resulting in healthier lipid profiles (62, 63).
Furthermore, postmenopausal women receiving estrogen had a
decrease visceral adiposity, which reduced their risk of
cardiovascular disease (64). In agreement with these studies,
ovariectomized rodents provided with estradiol replacement
therapy had decreased food intake and increased energy
expenditure, protecting them from fat mass accumulation (65–
68). Interestingly, these observations are not confined to women;
research suggests that men and male mice also benefit from
estrogen activity and signaling. For example, studies have shown
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that the loss of estrogen signaling in males promotes obesity and
impairs glucose metabolism (69–72). Moreover, cross-sex
hormonal therapy in trans women receiving estrogen exhibit a
more feminine body fat distribution and a lower waist-to-hip
ratio (73). Thus, circulating estrogen contributes to body fat
distribution, remodeling, and maintenance but how are
circulating estrogen levels and ER activity maintained?

The Role of Estrogen Receptor Alpha on
WAT Location
Modulat ing estrogen impacts adiposity in pre-and
postmenopausal women but is this effect driven by ERs? In
overweight to obese premenopausal women, ER expression
differences can be observed in abdominal and gluteal adipose
tissues (74). These data suggest that receptor availability may be
critical for thwarting regional fat depots in response to a positive
energy balance (Figure 2). A human study comparing regional
differences in abdominal and femoral subcutaneous in pre-and
postmenopausal women, found that metabolic differences were
ER isotype expression dependent (75). That is, these metabolic
differences (i.e., insulin sensitivity) emanated from the
alterations in the ERa and ERb ratio between the two fat
depots. A higher ERa to ERb ratio was observed in
premenopausal women than in postmenopausal women (75).
Moreover, treating both pre and postmenopausal subjects with
17b-estradiol increased the ERa to ERb ratio within WAT,
suggesting that estrogens mediated changes in the ER ratio is
critical for inducing insulin sensitivity of WAT (75). While
interesting and physiologically relevant, the mechanisms
governing this response remain to be elucidated. A potential
regulatory mechanism accounting for these changes in the ERa:
ERb ratio may be due to enhanced ERa promoter silencing via
DNA methylation. This appears to occur in the rat aorta, but
Frontiers in Endocrinology | www.frontiersin.org 4
studies examining ERa promoter methylation in fat are lacking
and cannot be linked to metabolic disease (76). What is clear is
the consistent increase in adiposity, specifically visceral WAT,
and altered energy metabolism of ERa null male and female mice
(38). This obesogenic and altered energy balance in ERa null
mice is further heightened when fed a HFD (77).

Yet, the increase in adiposity in ERa null mice might be
independent of WAT biology and may be linked to hypothalamic
estrogen-ER regulation. For example, knockdown of ERa within
the ventral medial nucleus (VMN) caused weight gain via
disruption in energy expenditure independent of food intake.
Additionally, knockdown of ERa within the VMN results in
metabolic dysfunction in rats. Yet, estrogen-induced effects on
food intake can be observed in response to low-dose
microinjections of 17b-estradiol into the brain. In agreement,
reports have suggested that estrogen decreases orexigenic
peptides to reduce food intake. For example, a reduction in
neuropeptide Y (NPY), a potent appetite stimulator, has been
associated with increased circulating estrogen levels and
estrogen-mediated ER activity (78, 79). Specifically, NPY
transcription corresponds to the ERa:ERb ratio present within
the hypothalamus. When the ratio is high, there is less NPY
transcribed; conversely, when the ratio is low, NPY is produced
(80). Additionally, changes in the level of the hunger hormone
ghrelin have been associated with different phases of the ovarian
cycle (81). Specifically, ghrelin infusion during diestrus one and
diestrus two stimulates eating but not during proestrus or estrus,
coinciding with the peak in estrogen levels. In support of this
notion, ovariectomized ghrelin receptor knockout mice do not
develop hyperphagia or body weight gain. This suggests that
reducing circulating levels of estrogen increases food intake by
releasing ghrelin from a tonic inhibitory effect of estrogen. Thus,
estrogen normally suppresses ghrelin function to block food
FIGURE 2 | Site-specific regulation of adipose tissue by estrogen. White adipose tissue homeostasis and expansion is influenced by estrogen. In pre-menopausal
females, estrogen produced by the ovaries plays a major role in ERa/b signaling thus downregulating androgen receptors, leading to hyperplastic subcutaneous
WAT expansion and decreased visceral adipogenesis. Post-menopausal women have a ∼95% reduction in circulating estrogen levels due to cessation of ovarian
function, resulting in a stunted ERa/b activation, thus giving rise to metabolically unhealthy hypertrophic WAT expansion.
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intake, but in the absence of estrogen, ghrelin secretion is
unchecked, mediating the hyperphagic response (81). It
remains unclear how estrogen affects ghrelin-mediated eating
and whether these effects can originate from ghrelin signaling,
secretion, or receptor expression.

The Role of Estrogen Receptor Beta on
WAT Location
While ERa gene ablation leads to a distinct and robust metabolic
dysfunctional response, ERb gene deletion appears less obvious.
Interestingly, the whole-body deletion of ERb has relatively no
effect on adiposity or energy balance (82). This observation led to
the hypothesis that ERb promoted obesity and metabolic
disorders. This observation was further supported by a 10-fold
increase in 17b-estradiol concentration in ERa null mice, thus,
inferring an increased flux in estrogen signaling through ERb
(83). In support of this view, ovariectomized ERb null mice were
protected from obesity (40). However, follow-up studies showed
that ERb null mice were actually more susceptible to obesity but
protected against insulin resistance (84). This obesogenic effect
on ERb null mice was further heightened by ovariectomy. In
alignment with these rodent studies, a human genetic study
revealed five single nucleotide polymorphisms (SNPs) in ERb
associated with obesity in both males and females (85). Yet, the
molecular mechanisms and regulatory features of ERb under
diet-induced obesity remain to be elucidated. But new studies are
beginning to suggest that ERb may have a metabolic protective
role by regulating WAT mitochondria activity. For example, in
rodents, ERb specific ligands appear to increase energy
expenditure and WAT mitochondria activity, even in the
absence of circulating estrogens (86, 87). Moreover, changes in
fat storage genes and adipokines have been related to the
activation of ERb over ERa or the ratio between the two
receptors (88, 89). In totality, these studies would argue that
both ERa and ERb are required for proper energetics to mediate
metabolic flexibility. Collectively, the area of ER isotype
activation, ER expression profiling, ER receptor-DNA
interaction, and non-genomic activities of estrogen are critical
areas of investigation and will help resolve unanswered questions.

The Role of GPER Activity on WAT
Location
In addition to ligand-receptor genomic mediated responses,
estrogen can also have non-genomic responses mediated by
GPER (G-protein coupled membrane-bound estrogen
receptor). GPER is expressed in intracellular membranes, and
like other GPCRs, it couples estrogen signaling to changes in
adenylyl cyclase, kinase, and ion channel activity. Notably, GPER
can also indirectly regulate target gene expression. GPER is
expressed in a host of tissues; however, GPER does not appear
to be involved in estrogen-mediated reproduction (90). This is
because GPER null mice are fertile, whereas ERa null mice are
infertile (91). Within adipose tissue, the metabolic roles of GPER
remain elusive, but in recent years more information has been
garnered, which has been recently reviewed in (92). Briefly, some
studies show that GPER deficiency leads to reduced body weight
and bone growth in females, and other studies reported a
Frontiers in Endocrinology | www.frontiersin.org 5
significant increase in fat mass when GPER is deleted (93–96).
In contrast, several studies have shown an effect of GPER or its
activation on body weight even in response to HFD (97, 98).
Overall, the ability of estrogen to regulate fat mass and sexual
dimorphic distribution relies on receptor expression, estrogen
bioavailable and synthesis, and age.

The Role of Aromatase on WAT Location
What might control local and systemic estrogen levels to regulate
body fat distribution? The answer to this question appears
multifaceted but may be related to WAT CYP19 gene
(aromatase)—the enzyme required to synthesize endogenous
estrogen—expression and activity (Figure 2). In agreement,
knockout mice lacking the functional aromatase gene are
markedly obese (99). In contrast, activating aromatase within
WATs reduces adiposity and improves metabolic performance,
such as insulin sensitivity (100). Notably, only male mice with
heightened aromatase activity showed changes in body fat
distribution. This effect could be attributed to overall changes
in adipose tissue estrogen levels in males but not females,
presumably due to the already elevated amounts from ovarian
estrogen (100). Genetic necessity and sufficiency tests have
demonstrated the importance of aromatase enzyme in estrogen
bioavailability and WAT function, but there are additional
aromatase regulation layers. For example, the human
aromatase promoter contains eight unique start sites allowing
for selective tissue expression (101, 102). Because aromatase has
a diverse tissue expression profile, it could be inferred that the
additional regulatory mechanisms, such as epigenetic DNA
regulation, exist to govern tissue specificity and spatiotemporal
control. Regarding epigenetic regulation, the aromatase
promoter has been shown to be highly methylated, which
appears to be evolutionarily conserved among reptiles, fish,
birds, ungulates, and primates (103–107). Yet the mechanisms
driving DNA methylation of the aromatase promoter remains
obscure and substantially less is known for WAT. A potential
modulator of aromatase epigenetic modification may be driven
by microRNAs (miRNA; miR). miRNAs are small 20-30
nucleotide long regulatory RNA molecules that have
implications in numerous biological processes, including WAT
physiology (108). For example, we have previously shown that
the conserved family of miR-26 miRNAs can regulate
adipogenesis and WAT mass by repressing Fbxl19, an E3
ubiquitin ligase complex (109). Consistent with this notion,
miRNA activity appears to be linked to aromatase gene
suppression in human breast cancer. However, the full
spectrum of miRNA and DNA methylation regulation remains
undefined for WAT, which could have implications on visceral
and subcutaneous expansion. In agreement, a recent study by
Martinelli et al., compared obese and lean WAT from males and
females and identified 42 differentially expressed miRNAs (110).
Yet, the molecular roles of these various miRNAs are unclear but
suggest that miRNAs could be an essential genetic regulatory
feature controlling estrogen levels and adiposity.

Aromatase expression can also be induced by cAMP
activators such as protein kinase A and C (111). Indeed,
inhibition of phosphodiesterase type 5 (PDE5), an enzyme that
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breaks down cAMP and cGMP, increases aromatase gene
expression within cultured human visceral adipocytes (112).
The upregulation in aromatase expression by PDE5 inhibition
boosts estrogen production, which could be protective against
metabolic dysregulation. While the clarification of the pathway
remains controversial, it may depend on the identification of two
distinct cAMP binding protein (CREB) response elements within
the aromatase promoter (113). Regardless of modality, inhibition
of PDE5 and its subsequent increase in visceral WAT estrogen
production could induce anti-inflammatory responses and
improve vasodilation (114). Yet, it remains to be determined if
PDE5 inhibitors can improve systemic metabolism and
counteract visceral WAT expansion, especially under estrogen
depletion methods (ovariectomy and aromatase knockout
mice) (115).
STORING AND EXPANDING FAT

WATs expand and contract in response to metabolic demands
and overnutrition. Accordingly, WAT can expand via two main
methods: hypertrophy and hyperplasia (116, 117). Adipocyte
hypertrophy is characterized by lipid filling of existing adipocytes
to store excess nutrients as triglycerides. Studies in rodents and
humans have identified that WAT expansion by adipocyte
hypertrophy is considered metabolical ly unhealthy.
Presumably, this is because as adipocytes swell to
accommodate extra storage, their transcriptional program,
adipokine secretion profile, insulin responses, and lipid
metabolism and capacity become disrupted (4, 116, 117). Yet,
modulation of adipocyte size regulators, such as SWELL1, are
required for proper adipocyte lipid function and glucose sensing
(118). Moreover, a hypertrophic response is associated with
chronic low-grade inflammation, immune cell composition
alterations, and fibrotic tissue replacement (119) (Figure 1).
Subsequently, changes in immune cell populations stimulate
pro-inflammatory signals to recruit more immune cells to
facilitate adipocyte cell death. Adipocyte death is accompanied
by the release of triglycerides into circulation, which, over time,
will cause hyperlipidemia and ectopic lipid accumulation. In
contrast to hypertrophy, WAT hyperplasia is associated with
APC proliferation and expansion with subsequent adipogenesis
(120). New smaller and potentially healthier adipocytes
positively affect WAT health protecting against hyperlipidemia
and insulin resistance. Additionally, WAT hyperplasia promotes
metabolically favorable immune cells, promoting an anti-
inflammatory environment, reducing inflammation and
adipocyte cell death (120). Likewise, hyperplasia is associated
with WAT angiogenesis, providing the tissue with oxygen,
nutrients, and the ability to enlarge—as it serves as a platform
for APC growth and viability (121). Thus, WAT hyperplasia—
while it does lead to an increase in adipose tissue mass—appears
to be a protective measure against the rapid onset of metabolic
dysfunction (Figure 1).

Adipose tissue mass balances adipocyte number and volume,
which is tightly regulated and appears to depend upon various
dietary stimuli and nutrient availability (excess or deficiency).
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However, in vivo adipocyte kinetics (turnover and expansion)
also appears to be controlled by the presence and abundance of
sex steroids. For example, in women, adipocyte diameter tends to
be greater in subcutaneous WAT than visceral WAT (122). On
the other hand, adipocyte size appears to be equivalent in males
and obese females’ fat pads (123). Studies in rodent models have
demonstrated sex-dependent differences in WAT depot
remodeling by hypertrophy versus hyperplasia. In response to
a caloric excess, male gonadal fat pads mainly expand through
hypertrophy, whereas female visceral and subcutaneous adipose
tissue expands via both methods (124). Consequently, there is
more adipocyte cell death and inflammation in male fat pads
than in female WAT (125). Moreover, high-fat diet (HFD) fed
female rats have a delayed onset of insulin resistance and type 2
diabetes compared to male littermates (126). Indeed, the usage of
the ERa null mouse has revealed preferential expansion of WAT
depots, specifically visceral, that foster metabolic imbalance (38).
However, an essential caveat of the whole-body ERa gene
deletion is a disruption in energy balance from non-adipose
tissues, such as hypothalamic regulation on energy homeostasis
(127). Yet, recent advances by Clegg and colleagues have
demonstrated that a novel visceral depot-specific ERa-siRNA
knockdown strategy showed a reduction in ERa expression
increased visceral WAT weight and adipocyte size (67). These
data tend to support the direct effects of ERa on adipocyte
biology. The following sections will highlight various areas of
estrogen action on WAT hypertrophy and changes in metabolic
consequences (Figure 2).
The Role of Estrogens in WAT Lipid
Metabolism
The regulation of adipocyte size directly links to triglyceride
storage and lipolysis. Lipid storage is influenced by the rate of
fatty acid uptake and its conversion into triglycerides. On the
other hand, depending on metabolic demand, triglycerides can
be hydrolyzed and released into circulation to fuel target tissues.
This balance between storage and breakdown, in part, can be
ascribed to the bioavailability of sex steroids. It has been reported
that the majority of circulating fatty acids in women are taken up
by subcutaneous fat (128). In contrast, a significant portion of
dietary fats are preferentially stored in male visceral fat (129).
This favored partitioning of fatty acid uptake in male visceral fat
may not be due to inherent sex steroid differences. Instead, it may
be related to extracting lipids from chylomicrons due to the
proximity of visceral fat to the digestive track (130). Yet, estrogen
appears to have a direct role in suppressing lipid storage genes
and preferentially activating lipolytic pathways. For instance, in
adipocytes and cancer cells, ER receptor has been shown to
directly interact with peroxisome proliferator activated receptor
gamma (Pparg), a major driver of lipid storage and adipogenesis,
to block its transcriptional activity (131, 132). Blocking Pparg
activity has several implications in both the adipose progenitor
and adipocyte compartments. For instance, estrogen-mediated
blockade of Pparg activity in APCs would prevent adipogenesis
and hinder the potential metabolic benefit of hyperplasia (133).
In contrast, suppression of Pparg transcriptional activity within
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mature adipocytes by estrogen would repress lipid biogenesis and
insulin sensitization genes (134). As noted above, these effects of
estrogen on Ppargmay be depot specific and may have additional
transcriptional regulatory steps controlling Pparg target genes. In
addition to Pparg, estrogen and estrogen levels have been shown
to directly repress lipoprotein lipase (LPL) gene transcription
and decrease LPL activity through posttranscriptional
modifications (135). For example, clinical analyses of serum
triglyceride levels are increased in postmenopausal women but
are normalized or even reduced in response to HRT (136).
Similarly, in obese women, lower fasting LPL activity was
associated with higher levels of circulating estrogen (137).
Critically, LPL activity is responsible for the conversion of
triglycerides into free fatty acids, allowing free fatty acid uptake
into non-hepatic tissues (138). Thus, reducing LPL expression or
decreasing its activity through posttranscriptional modifications
will dampen free fatty acid uptake. However, it is unclear if
estrogens regulate LPL activity and gene expression in a WAT
depot specific manner. In general, largescale genetic
transcriptional studies examining the role of estrogen signaling
in regulating subcutaneous and visceral adipocyte gene
expression appear to be lacking. Studies focused on
understanding sex-steroid and gene interplay could help
resolve these associations and observational studies to describe
differences in male and female WAT adipose tissue distribution
and activity.

Estrogen may also facilitate adipocyte lipolytic rates. Estrogen
activation of ERa appears to upregulate the antilipolytic
alpha2A-adrenergic receptors only in subcutaneous WAT but
not visceral (139). In addition, examination of fat distribution in
women suffering from polycystic ovarian syndrome (PCOS), a
disease state in which the ovaries overproduce androgens, has
shown a preferential expansion of visceral WAT with a reduction
in subcutaneous WAT (140). These changes in adipose storage
and remodeling in PCOS patients are believed to result from
plasma androgen levels (141, 142), which blocks lipolysis and
stimulate lipogenesis in the visceral compartments (40).
Moreover, estradiol-treated ovariectomized mice showed
enhanced lipolytic responses, favoring free fatty acid oxidation
and not storage. This lipolytic effect could be attributed to
estrogen-induced gene expression changes in the fatty acid
oxidation nuclear hormone receptor, Ppard, and its fatty acid
oxidation pathways (142, 143). Also, lipid oxidation may require
estradiol’s non-genomic activity to activate AMP-activated
protein kinase, rapidly (142). Yet, more information is needed
to understand the full spectrum of estrogen’s effects on lipolysis,
lipolytic rates, and gene expression of lipolytic and
lipogenic genes.

The Role of Estrogens in Regulating WAT
Adipokines
Beyond the gross anatomical placement of adipose tissue,
estrogens also appear to regulate WAT endocrine function.
Notably, changes in adipocyte endocrine function in response
to hypertrophy have considerable effects on appetite, glucose
metabolism, lipid uptake, thermogenesis, and reproduction
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status. Adipocytes regulate physiology and systemic
metabolism by secreting signaling molecules called adipokines.
Adipokines can have paracrine, autocrine, and endocrine
functions, but become disrupted in response to chronic
overnutrition. For example, leptin is an adipokine synthesized
and secreted into circulation from adipocytes, which can regulate
energy balance and appetite suppression through hypothalamic
neurons (144, 145). Leptin expression levels in WAT and
amounts in circulation are tightly correlated with fat mass.
Obese individuals tend to have elevated circulating levels of
leptin and upregulation of leptin gene expression in WAT;
however, these individuals appear to be unresponsive to leptin
action. Indeed, obese patients tend to be leptin resistant and no
longer respond to leptin-induced anorexigenic suppressing
signals. In agreement, patients with leptin resistance and
rodent models lacking leptin or the leptin receptor are
hyperphagic (145). The mechanisms underlying human leptin
regulation and resistance are not yet fully elucidated, but sex
steroids such as estrogen may be an entry point. Consistent with
the notion of elevated fat mass and leptin, ERa knockout mice,
which have superfluous adiposity, also have more leptin in WAT
and circulation. But these animals may be leptin resistant
because they are hyperphagic (38). There are also correlations
between sex steroid abundance and leptin gene expression and
circulating levels. For instance, women tend to have higher
serum leptin levels than men (146). This elevation in leptin
can even be observed in utero and persist throughout sexual
maturity and life (147). The differences in leptin levels between
males and females may not be attributed to changes in fat mass
but rather through direct regulation. For instance, testosterone is
negatively correlated with leptin levels, whereas estradiol
positively regulates leptin levels (148, 149). Interestingly,
postmenopausal women—who have higher visceral adiposity—
tend to have less circulating leptin, which corresponds to less
leptin gene expression within WATs (150). Cell culture studies
on in vitro derived adipocytes from female patients suggest that
estrogen increases leptin production and secretion whereas male
derived adipocytes do not (151). In contrast, treating human
adipocytes with testosterone decreases leptin levels and secretion
(148). Similarly, treating aromatase null mice, which are also
obese and have elevated serum leptin levels, with estradiol can
restore leptin to wild-type levels (152). Moreover, it appears that
estrogen may directly regulate hypothalamic action to regulate
eating behavior by reducing endoplasmic reticulum stress within
the ventromedial nucleus, enhancing the sensitivity to leptin
(145). This effect may also be, in part, due to reducing ceramide
levels within the hypothalamus (153). Yet, why women have
higher levels of leptin remains unidentified.

In addition to leptin, estrogens have been shown to regulate
another WAT specific adipokine, adiponectin (154). Metabolically,
adiponectin has been shown to improve insulin sensitivity by
increasing pancreatic insulin gene expression and enhancing its
secretion (155). Moreover, adiponectin suppresses hepatic glucose
production, promotes anti-inflammatory signals, and enhances fatty
acid oxidation in the liver and skeletal muscle (154). Interestingly,
adiponectin levels are lower in aged and BMI-matched males than
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females (156). During puberty, as androgen levels surge, sexual
dimorphic changes in circulating adiponectin levels can be observed
(157). In agreement, surgical castration increases adiponectin levels,
whereas testosterone supplementation lowers circulating
adiponectin levels (156). Yet modulating estrogen levels do not
appear to be straightforward. For example, ovariectomized rats do
not demonstrate changes in adiponectin levels even though visceral
WAT is augmented. In addition, treating ovariectomized rats with
estrogen reduced fat mass and improved metabolic health but did
not elevate adiponectin levels (158). Yet, Scherer and colleagues
demonstrated that ovariectomized adult female mice had elevated
adiponectin levels (159). Moreover, it was shown that estrogen
treatment suppressed adiponectin in mice and in vitro derived
adipocytes. Interestingly, neonatal castration allowed adiponectin
levels to reach female adult levels (159). Thus, changes in circulating
levels of adiponectin between males and females may be
predominantly driven by male sex steroids. This is further suggested
by changes in adiponectin circulating oligomeric complexes.
Adiponectin circulates in low, medium, and high molecular weight
oligomeric forms in serum (154). The ratio of high molecular weight
forms of total adiponectin may be critical for its ability to regulate
insulin sensitization and cardiovascular function. Changes in
adiponectin levels between males and females have also been
associated with changes in high molecular weight adiponectin forms
(160). Yet, these changes also appear to be governed by androgens, as
testosterone has been shown to reduce highermolecular weight forms
of adiponectin (156). Specific reductions in adiponectin oligomeric
states could be a potential mechanism for higher cardiometabolic
diseases in males than females.

The Role of Estrogens in WAT
Immunological Function
Chronic low-grade inflammation ofWAT is a significant rheostat of
adipocyte function and health. Under homeostatic conditions,
WAT is predominantly associated with M2 macrophages that
maintain tissue health by promoting anti-inflammatory signals.
However, chronic overnutrition forces immunological changes
that favor M1 macrophages to perpetuate pro-inflammatory
cytokine signaling to trigger adipocyte cell death (161). For
example, a dysfunctional adipocyte can recruit M1 macrophages
to WATs by secreting pro-inflammatory adipokines such as
interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNFa).
Recruited M1 macrophages form a crown-like structure,
surrounding the dysfunctional adipocyte then engulfing it. Stored
lipids are then released into circulation for potential ectopic lipid
storage (162). Visceral WAT appears to be more susceptible to
obesity-driven inflammatory signals and is the main culprit in
producing and secreting IL-6 and TNFa than subcutaneous fat
(163). Changes in visceral WAT cytokine and pro-inflammatory,
secretion, and M1 macrophages recruitment and activation, appear
to be a vicious cycle, putting the tissue into a “hyperinflammatory”
state (164, 165). This heightened state of inflammation significantly
fosters and bolsters insulin resistance, hypertriglyceridemia, and
continued chronic low-grade inflammatory responses (161). WAT
inflammation is thought to be one of the major drivers of metabolic
dysfunction and ensuing WAT dysregulation.
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Tissue-specific innate immune responses through pro- and anti-
inflammatory processes appear to be regulated by estrogen
availability. A key determinate of estrogen action is bioavailability
and concentration, immune cell type, immune stimulus, and
receptor expression (166). Yet broadly, it appears that estrogen
may suppress pro-inflammatory signals. For instance, menopause
or surgical menopause, oophorectomy, increases the number of
proinflammatory markers but can be alleviated by estrogen
replacement therapy (167). In agreement, estrogen-treated
ovariectomized mice have increased M2 macrophages
accompanied by elevated anti-inflammatory markers (168). For
WAT, estrogen appears to suppress pro-inflammatory responses
and promotes anti-inflammatory signals. In agreement, mouse
models of either adipocyte or macrophage ERa deletion showed
increased WAT inflammation (67, 169). These results may emanate
from expression patterns of ERs within macrophages. It appears that
macrophages express higher levels of ERa compared to ERb (170).
In alignment with this notion, macrophages lacking ERa have a
significantly higher lipopolysaccharide-induced TNFa release (169).
Specific myeloid deletion of ERa showed altered adipokine and
cytokine levels, glucose intolerance, insulin resistance, and increased
WAT mass. Additionally, in isolated macrophages, ERa appears to
be critical for interleukin-4 mediated alternative macrophage
induction, favoring metabolic and anti-inflammatory protection.
Further, loss of macrophage ERa expression accelerated
atherosclerotic plaque development in female mice (169).
Consistent with estrogen-mediated inflammatory responses,
whole-body aromatase gene ablation resulted in an upregulation in
TNFa and IL-6 and the recruitment of the pro-inflammatory M1
macrophages (99). On the other hand, increasing WAT estrogen
biosynthesis via aromatase overexpression reduced WAT
inflammation (82). Likewise, treating male mice with estradiol
reduced macrophage and inflammatory markers, which was linked
to improved insulin sensitivity (100). In vitromodeling using isolated
macrophages and adipocytes has shown similar results; that is,
estrogen treatments can effectively reduce IL-6 and TNFa levels
(67, 171, 172). Interestingly, ERb null female mice appear to be
protected against inflammation and fibrosis, possibly through
enhanced estrogen-ERa signaling within macrophages (40, 82).
Moreover, the ER-dependent repressive pro-inflammatory
mechanisms within macrophages appear to be driven by
modulating cytokines and genes involved in activating the nuclear
factor kappa b (NFkB) pathway. These effects on NFkB signaling
appear to more well developed in cancer tumor-associated
macrophages (173). Overall, estrogen and ER activity seem to
influence WAT inflammation; however, these effects may be
attributed to changes in macrophages and adipocytes. Further
studies at elucidating specific roles of ER and estrogen in
adipocytes and immunological cell types will provide direct
mechanistic and transcriptional evidence for estrogen regulation.

The Role of Estrogens in WAT
Vascularization
For proper adipose tissue health and growth, vascular expansion by
angiogenesis is required (174). As with most tissues, an appropriate
supply of oxygen and nutrient delivery and removal requires the
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blood vessel system. Moreover, hormones and growth factors
fluctuating into and out of the tissue to support tissue function,
homeostasis, and cellular respiration utilize the vasculature system as
a conduit for transport. But unlike most organ systems within the
body, adipose tissue is highly plastic and can expand from 4% to 50-
70% of an individual’s body composition (44). Thus, the requirement
of angiogenic potential for WAT is considerably high to facilitate
such flexibility. Moreover, the WAT vasculature also serves as a
scaffolding for APCs to reside and interact with to promote
adipogenesis and facilitate angiogenic action (121, 133, 175).
However, upon obesogenic signals, the angiogenic processes within
WAT go awry. Increased caloric consumption can stimulate WAT
growth by hypertrophy, and this demand for WAT expansion
creates “pockets” of hypoxia. Under this state, hypoxic signals and
other vascular stimulating factors are released to promote
angiogenesis by upregulating the expression and secretion of
vascular endothelial growth factor A (VEGFA) (174, 176).
However, this process becomes disrupted in obese WAT for
reasons not entirely understood. What is clear is the notion that
VEGFA can protect against diet-induced obesity (177, 178). For
example, overexpression of VEGFAwithin adipocytes or the adipose
lineage promotes WAT vascularization to suppress lipid
accumulation, inflammation, and HFD-induced insulin resistance
(133, 178). Further complicating this notion is the observation that
subcutaneous and visceral fat depots differ in their amount of
vascularization (179). The changes in vascularity in various depots
could represent variations in nutrient availability, oxygen diffusion,
APC number and interaction, and metabolites. Specifically, when
considering visceral WAT, blood flow and proximity to
metabolically active organs such as the liver and intestine could
influence visceral WAT depot expansion and susceptibility to
metabolic dysregulation. Moreover, this anatomical visceral WAT
proximity further increases its exposure to triglycerides, cholesterols,
and glucose (180).

Because estrogen can regulate subcutaneous growth and block
visceral WAT expansion, researchers have examined if estrogen
modulates the angiogenic potential of various WAT depots. Indeed,
postmenopausal women tend to have a reduction in adipose tissue
blood flow, increasing their susceptibility to metabolic disease. The
data also suggest that ER activation positively regulates VEGFA
gene expression (181). In agreement, blocking ER activity showed
decreased VEGFA gene expression, resulting in adipocyte
hypertrophy, inflammation, and insulin resistance (182). Estrogen
signaling has also been shown to regulate angiotensinogen in the
liver. Angiotensinogen has been shown to regulate blood flow and
pressure and is often elevated in obese patients, augmenting obesity-
induced hypertension. Consistent with this notion, angiotensinogen
is expressed and secreted by adipocytes and becomes elevated
within hypertrophic adipocytes (183). Additionally, in mouse
models, it appears that adipocytes are the major source of
angiotensinogen and can account for changes in systolic blood
pressure in response to HFD (184). Yet, it is unclear if estrogen is a
mediator of angiotensinogen expression and activity (185). It is well
documented that estrogen can regulate blood vessel biology in the
context of atherosclerosis and hypertension and that
postmenopausal women lose protection from these conditions.
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For example, perivascular adipose tissue regulates vascular tone,
but in postmenopausal women, perivascular WAT expands,
augmenting arterial dissection (186). While these clues highlight
that estrogen regulates vascular biology and tone inWAT and other
organ systems, it appears that the molecular and transcriptional
mechanisms remain to be fully determined.

The Role of Estrogens in WAT Fibrosis
In response to overnutrition, uncontrolled WAT expansion and
accumulation can also trigger fibrosis. Typically, fibrosis is
described as the scaring of tissue after injury, occurring
through the development and accumulation of fibrous
connective tissue or nodes (187). While this process occurs
under the normal healing process, fibrosis is also associated
with several pathologies such as obesity and liver cirrhosis that
promote damaging effects on tissue function, integrity, and
homeostasis (188). Nevertheless, adipocytes are normally
surrounded by extracellular matrixes that function as a
mechanical support lattice and allow WATs to be highly
flexible to the body’s energy demands (189). But like with
other fibrotic diseases, fibrotic WAT is a response to the
accumulation and overproduction of extracellular matrix
proteins, creating a thickening web of collagen intertwining
between adipocytes and encasing the WAT depot (119). Once
initiated, WAT fibrosis can accelerate changes in tissue
inflammation, stiffening, and adipocyte cell death. However,
like other aspects of obesity, not all patients will develop WAT
fibrosis. For that matter, it is not completely understood how
chronic overnutrition recruits or stimulates fibrotic signals or the
exact mechanisms sustaining a fibrotic response. Sex steroids
have also been implicated in the development of fibrosis, but this
appears to be complex and heterogeneous and varies among
tissue types. For example, in systemic sclerosis, several studies
have shown that estrogens induce fibroblast dysfunction to
stimulate the production and deposition of extracellular matrix
proteins (190). In contrast, other studies have demonstrated that
estrogen therapy reduces connective tissue buildup (191). In
adipose tissue, the deletion of ERa increases fibrotic tissue
formation along with inflammation (67). But there was no
improvement in ERa knockout mice WAT fibrotic gene
expression in response to ovariectomy (82). While the data are
limited, there may be an association between the ability of
estrogens to regulate vascularity and fibrosis. As noted above,
hypertrophy is often associated with diminished vascularization
and tissue oxygenation, which are thought to be the main drivers
of fibrosis. However, more research aimed at disentangling the
effects of estrogen on vascularity and fibrosis will be needed to
understand the molecular and cellular mechanisms.
A PROGENITOR PERSPECTIVE

Deciphering a Convoluted Lineage
Like many organ systems, adipocytes appear to have a stem/
progenitor cell pool capable of undergoing adipogenesis to create
new adipocytes. While the transcriptional mechanisms
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governing adipogenesis have been elegantly and extensively
elucidated in vitro, our understanding of in vivo adipocyte
differentiation has languished (182). Not until the mid-2000s
did prospective flow cytometric analysis and development
lineage tracing techniques become employed to identify
potential APCs (192). For example, Friedman and colleagues
utilized flow cytometry of potential stem cell markers to identify
a Cd24+ cell population capable of making adipocytes in vitro
and when transplanted into lipodystrophic mice (192).
Extending these findings, Berry and Rodeheffer showed that
APCs expressing Cd24 could become Cd24 negative APCs,
representing a preadipocyte (193). Concurrently, Graff and
colleagues harnessed developmental fate mapping tools to
identify that APCs express Pparg (121). In addition to
expressing Pparg, these APCs also expressed a host of smooth
muscle genes. Indeed, follow-up studies demonstrated that mural
cell genetic tools could mark APCs that had adipogenic potential
in vitro and in vivo (133, 194, 195). These pioneering discoveries
led to an explosion of developmental and fate mapping/lineage
tracing tools to understand APCs and define their developmental
and cellular origins (193, 196, 197). Recently, using the resolving
power of single-cell technologies to examine the adipose lineage,
it has been identified that APCs express bona fide stem cell
markers such as Cd24, Cd29, Cd34, stem cell antigen-and 1
(Sca1)/LY6A (198–202). Beyond classical stem cell markers,
APCs can be further specified because they express platelet
derived growth factor receptor alpha (Pdgfra), Pdgfrb, zinc
finger protein 423 (Zfp423), and Pparg (121, 203–207). The
identification of white APCs provides a new opportunity to
understand if new adipogenesis can facilitate tissue health and
growth in response to a positive energy balance. Moreover,
researchers can now directly investigate if and how sex steroids
control transcriptional programs within APCs to contribute to
fat cell development and maintenance (Figure 3).

Tamoxifen-Inducible Mouse Models to
Study WAT Biology
To investigate adipose lineage dynamics and APC function,
researchers are increasingly using inducible CRE genetic mouse
models that require the synthetic partial ER agonist and
antagonist, tamoxifen (TMX), for activation. Broadly, CRE-
loxP systems offer powerful resolution on lineage analysis,
cellular fate mapping, and gene necessity and sufficiency tests
in animal models (208). Traditional straight CRE genetic
strategies, while helpful, have significant caveats when
assessing gene function and lineage analysis on tissue
development and homeostasis (209). This is mainly because of
the inability to selectively modulate the CRE-driver expression
and activity within a specific cell type at a particular time. TMX-
inducible CRE systems bypass these caveats to target genes
within specific cell populations at precise developmental and
adult time points. To provide this type of precision, inducible
CRE mouse models contain an estrogen ligand-binding domain
fused to a CRE recombinase, CRE-ER (210). Subsequently, these
Cre-ERs have been modified to allow specific binding of TMX
(CreERT2) and to reduce endogenous estrogen binding (211).
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Nonetheless, because TMX is a biologically active compound,
several effects on WAT biology have been reported. For example,
the administration of TMX can influence the appearance of beige
adipose tissue withinWAT. Yet, these effects of TMXmay also be
dependent on the mode of administration, for instance,
intraperitoneal (IP) injection versus oral gavage. Typically,
TMX is metabolized in mammalian systems in five to seven
days, but within WAT, TMX metabolism may be delayed (~15
days) (212). Further, it was reported that CRE expression
remains within the nucleus after TMX, yet it is unclear if this
is related to CRE expression or activity? What is lacking
regarding TMX inducible systems is the optimization of TMX
dosage and duration for each unique driver and reporter
combination. Typically, researchers use a TMX dose of 100
mg/Kg administered for five days by IP (197, 213). But this
may be unnecessary. For example, flow cytometric analysis of
WAT stromal vascular cells from the alpha-Smooth muscle actin
(Sma)-CreERT2 mouse model combined with the indelible
reporter model, Rosa26tdTomato, showed a 75% recombination
efficiency (Sma-RFP+/total Sma+ cells) after two days of 100 mg/
Kg IP TMX administration (195). This equates to 2.5x less
tamoxifen than typically used. Therefore, careful examination
of recombination efficiency and dosage should be considered
when using TMX-inducible genetic models to avoid untoward
side effects.

The Role of Estrogen in Regulating WAT
Development
But how might sex steroids regulate APC biology during WAT
organogenesis and homeostasis? In humans, adipocytes are
specified and lipid-filled during gestation, whereas in rodents,
adipocyte lipid filling occurs postnatally (195, 214, 215).
Critically, in humans, fetal fat development directly affects
childhood fat mass accumulation and their susceptibility to
obesity (216). The developmental origins of white adipocytes
have been suggested to emanate from a mesodermal cellular
source; however, this notion had never been rigorously tested.
Recent findings by Sabo and Rodeheffer provided direct genetic
fate-mapping evidence to show that subcutaneous and visceral
adipocytes originate from a mesodermal origin (217).
Interestingly, not all fat derives from mesodermal cells. Using
chick-embryo chimeras, elegant studies from Billon and
colleagues, identified that adipocytes surrounding salivary
glands develop from a neural crest cellular origin (218).
Adding further to the fray was the identification that distinct
mesodermal progenitors develop visceral WAT but not
subcutaneous adipocytes. Hastie and colleagues demonstrated
that Wilms Tumor 1 (Wt1) expressing cells within the
mesothelium generate only visceral adipocytes (219). Yet, it is
not entirely understood how sex steroids regulate WAT
development, adipose lineage specification, and WAT depot
patterning. As early as puberty, changes in body fat mass and
distribution can be observed in humans, suggesting that sex
steroids can influenceWAT organogenesis and homeostasis (54).
Still, again, the actions mediating WAT development by sex
steroids remain unknown. Additionally, sex steroids may not be
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the only driver of fat remodeling; Chen et al. showed that the
number of X and Y chromosomes affect adiposity and
metabolism, independent of sex-steroid levels (220). For
example, mice with a lone X chromosome have a growth
defic i ency compared to XX and XY mice due to
haploinsufficiency (221, 222). In humans, women with a lone
X chromosome, known as Turner syndrome, have impaired
hormone levels resulting in a 4-fold increased risk of
developing type 2 diabetes and metabolic syndrome (223).
Another example is Klinefelter syndrome (XXY), a common
sex chromosome disorder resulting in hypogonadism in males,
in which patients will have a five-fold increased risk of
developing abdominal obesity, elevated fasting blood glucose
levels and triglyceride levels, reduced HDL, and hypertension
(224, 225). Additionally, they have an increased risk of
developing type 2 diabetes (226). Collectively, WAT
development appears to be complex and varies among depots,
but research efforts directed at elucidating sex steroid action
would be beneficial in understanding body fat distribution and
implications on adult WAT homeostasis and energy balance.

The Role of Estrogen in Regulating WAT
Depot APCs
The observation that ovariectomy—increases WAT mass
whereas estrogen replacement therapy decreases it—
demonstrated that estrogen could significantly control
adiposity. However, what are the cellular and molecular
mechanisms determining these outcomes? While studies on
adipocytes have yielded compelling evidence that estrogen-ER
can regulate lipid storage and lipolysis, recent efforts have
focused on investigating the role of estrogen-mediated APC
kinetics to control adipocyte number and WAT health.
Estrogen has been shown to stimulate APC proliferation,
specifically within subcutaneous fat (68, 227). Moreover, there
appears to be an intrinsic proliferative difference between female
and male APCs. For instance, an observational study examining
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non-obese men and women revealed a 10% and 33% increase in
the appearance of preadipocytes within the stromal vascular
fraction of women’s abdominal and femoral subcutaneous fat,
respectively (228). Further complicating this notion is the
appreciation of inter-depot-specific effects on APC
proliferation and differentiation determined by the WAT
microenvironment (229). Transplantation studies have
established functional differences between visceral and
subcutaneous WAT APC function (229). For example,
transplanting visceral APCs into subcutaneous depots changes
the characteristics of this depot towards visceral WAT and
impairs metabolic function (230). In reverse, transplanting
subcutaneous APCs into visceral fat changes the visceral fat
depot towards subcutaneous characteristics while improving
metabolic performance (231). While these studies are
intriguing, it is still unclear how the WAT microenvironment
can alter APC function in a sex-dependent and depot-specific.
The answer to this question may be multifaceted. These effects on
depot-specific APCs could be attributed to variations in WAT
developmental origins, innervation, vascularization, adipokine
profiles, immunological composition, and extracellular matrix
arrangement, all of which could be influenced by sex steroids.

The Role of Estrogens in Regulating WAT
Adipogenesis
Sex steroids also appear to impact adipogenic potential; however,
this appears to be less straightforward. Studies have shown that
estrogen can inhibit and promote adipogenesis in vitro (132, 232,
233). These differences in adipogenic action in response to
estrogen may reflect estradiol concentrations, timing, type of
APC tested (subcutaneous vs. visceral APC), or cell line (3T3-
L1). Interestingly, at high concentrations and exposure, the
estrogen mimetic BPA has been suggested to promote
adipogenesis; yet environmentally relevant concentrations have
shown no impact on adipogenesis (234, 235). Moreover, these
effects on adipogenesis may be secondary as estrogen can
FIGURE 3 | Adipocyte Lineage progression. Adipocyte stem cells can generate committed progenitors which can undergo adipogenesis to become lipid-laden
adipocytes. Developmental fate mapping, flow cytometry, and single-cell sequencing methodologies have identified unique and overlapping markers for each step
during lineage maturation. Estrogen has been shown to regulate various aspects of the adipocyte lineage progression and mature adipocyte function. Yet, estrogens
role may vary depending on depot and sex.
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attenuate the conversion of cortisone to cortisol, blunting
receptors that bind glucocorticoids, which can facilitate
adipocyte differentiation (236). For example, changes in the
conversion of cortisone to cortisol could suggest implications
for the activation status of the mineralocorticoid receptor (MR).
Aldosterone activates MR in epithelial tissues to control and
regulate plasma volume, blood pressure, and fluid homeostasis
(237, 238). Interestingly, MR has a 10-fold higher affinity for
glucocorticoids than aldosterone but relies on converting cortisol
to the inactive metabolite cortisone by 11b-hydroxysteroid
dehydrogenase 2 (11b-HSD2) (239). This conversion by 11b-
HSD2 guarantees aldosterone-MR activation, but if estrogens
disrupt this conversion process, MR activation alters adipogenic
potential and adipocyte function. Indeed, MR expression
increases with adipogenesis and appears to drive Pparg
expression (237). Interestingly, obese subjects have higher MR
expression in visceral WAT than subcutaneous WAT (240). In
agreement, mice carrying an adipocyte-specific deletion of MR
were protected from diet-induced obesity and had improved
energy balance (241). Moreover, in vitro adipogenic assays
demonstrated that adipose stromal cells lacking MR had
impaired adipocyte differentiation but could be rescued by a
Pparg agonist (241).

Only a few studies have assessed the effects of sex on in vivo
adipogenic kinetics. Guertin and colleagues have shown that
developmental subcutaneous and visceral adipocytes appear to
arise from distinct progenitors in a sex-dependent manner (196).
In agreement, Rodeheffer and colleagues have demonstrated sex-
dependent WAT depot differences in APC proliferation and
differentiation potential (124). Using adipose lineage tracing and
deletion tools, Graff and colleagues demonstrated that ERa
regulates adiposity by controlling APC proliferation, adipose
lineage fate, and beige fat formation (68). It was found that the
loss of ERa within the adipose lineage results in lipodystrophy due
to cellular lineage fate switching from adipogenic to myofibrotic.
While these studies inform the cellular regulation and requirements
of ERa activity, it does not entirely demonstrate how estrogen
signaling and transcriptional activity regulate APC fate,
proliferation, or adipogenic potential. For that matter, it is unclear
what the molecule regulators are that control ER activity in APCs or
adipocytes. It would be critical to evaluate signaling and
transcriptional networks that control ER availability to determine
how estrogen alters APC kinetics and overall adipogenic potential.
Elucidation of these pathways will provide essential insight and new
inroads into the regulatory functions of estrogen receptor signaling
in adipose tissue biology.
THERMOGENIC FAT: BURNIN’ FOR YOU

The evolutionary adaption of brown and beige adipose tissue was
essential for mammalian survival in response to temperature
fluctuations. Unlike white adipocytes, brown and beige
adipocytes (thermogenic fat) are capable of futilely burning
substrates to generate heat rather than chemical energy (242).
To do so, these cells rely on specialized mitochondria that express
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uncoupling protein 1 (Ucp1), which can collapse the proton
gradient, thereby “uncoupling” the electron transport chain
(243). However, the ability to activate and/or recruit
thermogenic fat requires exposure to cold temperatures (15°C
humans) or the use of b3-adrenergic receptor agonists (244, 245).
The latter appears to have contraindication in human health due
to potential cardiovascular disorders and changes in blood
pressure (246). Yet, because of this unique ability, thermogenic
fat is clinically desirable and may possess anti-obesity and diabetic
properties and has been the focus of intense research in the past
decade. While brown and beige adipocyte share hallmarks of
thermogenesis and are recruited and activated by cold temperature
exposure they appear to emanate from different lineage. For
example, brown adipocytes reside in distinct stereotypical
locations throughout the body that originate from the muscle
developmental lineage (247). In contrast, beige adipocytes are
recruited within WAT upon cold temperature stimulation from a
smoothmuscle cell lineage (194, 248). Critically, adult humans can
generate cold temperature induced thermogenic fat cells; however,
it is debatable if they are brown or beige adipocytes (249, 250). Sex
steroids have also been implicated in thermogenic fat development
and thermogenic action. Graff and colleagues demonstrated that
smooth muscle cells could generate beige fat cells but not brown
fat (194). Further, they showed that the deletion of ERa within the
adipose lineage results in a fate switch favoring smooth muscle
cells that were accompanied by beige fat formation (68). Yet, in
opposition, Clegg and colleagues demonstrated that the activation
of ERa alpha promotes thermogenic fat cell formation within
WATs (251). In agreement, studies in aromatase knockout mice
demonstrated a reduction in brown adipose tissue (BAT), and this
phenotype could be rescued in response to estradiol replenishment
(100). As discussed above, ERa null mice have increased adiposity
and have reduced energy expenditure which could be associated
with a decline in mitochondria electron chain genes (252).
However, the effects of estrogen on thermogenic fat and its
activity may be indirect. For instance, sympathetic denervation
of BAT drastically reduces the ability of estrogen to initiate
thermogenesis (253). Another observation stemmed from ERa
specific deletion within the medial amygdala neurons, which
resulted in decreased energy expenditure and increased adiposity
(254). An additional observation showed that melanocortin
receptors are expressed along neuronal projections that can
stimulate Ucp1 expression and may also be activated by
estrogens (255, 256). However, it appears that estrogen’s role in
thermogenesis may be more complex than initially hypothesized,
and further studies aimed at specific tissues and cell types might be
more informative. Because of the therapeutic ability of
thermogenic fat, it will be critical to continue to evaluate the
role of estrogen and ERs in controlling thermogenesis and
energy expenditure.
CONCLUSION

Obesity is a devastating global public health issue that is
multifaceted, relying on multiple disciplines to counteract its
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adverse effects (4). Yet, central to the obesity problem is WAT
expansion and accumulation; thus, understanding the
influencing factors and molecules that can regulate fat growth
is a clinical ideal. Unequivocally, men and women differ in body
fat accumulation and distribution. Overall, studies have
demonstrated that modulating sex steroid bioavailability
controls body fat determination, specification, expansion, and
distribution. Throughout this review, we have attempted to
highlight various aspects and questions that we think need
critical attention and resolution to develop how estrogen and
ERs regulate WAT health. While recent efforts have begun to
untangle some of these roadblocks, significant gaps in the
identification of the cellular, molecular, and transcriptional
mechanisms governing sex steroid action still exist (27, 37).
What is clear is the notion that estrogen fosters subcutaneous fat
growth and blunts visceral fat expansion both at the adipocyte
and APC levels. Contributing toWATmetabolic health, estrogen
blocks WAT hypertrophy, increases WAT vascularization,
protects WAT immunological cell composition, prevents WAT
fibrosis, and promotes healthy WAT adipokine expression
profiles. In addition, recent evidence suggests that estrogen and
ER activity regulate APC kinetics and adipogenic progression.
However, with the recent identification of multiple adipogenic
cellular pools, it will be critical to ascertain which aspects of the
adipose lineage estrogen targets. For that matter it would be
critical to identify factors regulating estrogen bioavailability and
receptor expression and activation. Moreover, because estrogen
can regulate vascular growth, how might this affect APC biology
Frontiers in Endocrinology | www.frontiersin.org 13
and WAT hyperplasia? These questions become diagnostically
essential for modulating estrogen bioavailability and could
suggest alternatives to HRT in postmenopausal women.
Collectively, more research is needed to understand the
biological roles and regulation of sex steroids and estrogen on
adipose tissue biology to foster metabolic health.
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