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Abstract: Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease that is frequently
found in athletes and those who have experienced repetitive head traumas. CTE is associated
with a variety of neuropathologies, which cause cognitive and behavioral impairments in CTE
patients. However, currently, CTE can only be diagnosed after death via brain autopsy, and it is
challenging to distinguish it from other neurodegenerative diseases with similar clinical features. To
better understand this multifaceted disease and identify metabolic differences in the postmortem
brain tissues of CTE patients and control subjects, we performed ultra-high performance liquid
chromatography–mass spectrometry (UPLC-MS)-based non-targeted metabolomics. Through multi-
variate and pathway analysis, we found that the brains of CTE patients had significant changes in the
metabolites involved in astrocyte activation, phenylalanine, and tyrosine metabolism. The unique
metabolic characteristics of CTE identified in this study were associated with cognitive dysfunction,
amyloid-beta deposition, and neuroinflammation. Altogether, this study provided new insights
into the pathogenesis of CTE and suggested appealing targets for both diagnosis and treatment for
the disease.

Keywords: chronic traumatic encephalopathy (CTE); non-targeted metabolomics; astrocyte
activation; catecholamines; tyrosine metabolism; phenylalanine metabolism

1. Introduction

Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease that is ob-
served in people with a history of repetitive head trauma. This disease was first recog-
nized as “punch drunk” and “dementia pugilistica” to describe the common neurological
and neurobehavioral issues found in professional boxers due to a series of traumatic
head blows during their boxing careers [1]. Similar clinical signs and symptoms were
reported in athletes of other contact sports including American football [2], wrestling [3],
rugby [4], soccer [5], ice hockey [5], as well as in non-sports-related personnel including
war veterans [6], circus performers [7], and victims of domestic abuse [8].

CTE has a wide range of clinical symptoms that negatively affect cognition, behaviors,
and mood. In mild cases, common symptoms are attention and concentration difficulties,
depression, headache, mood swings, and short-term memory loss. In serious cases, cogni-
tive impairment, dementia, disturbance, executive dysfunction, explosive behavior, gait
disturbance, language impairment, parkinsonism, suicidality, and visuospatial difficulties
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have been reported [1,5,9]. Despite these symptoms, CTE cannot be diagnosed in a living
person today, but only by evaluating the brain tissues after death.

According to the most recent National Institute of Neurological Disorders and Stroke/
National Institute of Biomedical Imaging and Bioengineering (NINDS/NIBIB) consensus
meeting [10], the minimum requirement for CTE diagnosis is the presence of a single
pathognomonic lesion in the cortex: “Hyperphosphorylated tau (p-tau) aggregates in
neurons, with or without thorn-shaped astrocytes, at the depth of a cortical sulcus around a
small blood vessel, deep in the parenchyma, and not restricted to the subpial and superficial
region of the sulcus.” To determine the severity of the disease, the presence of neurofibrillary
tangles (NFTs) in 10 different regions of the brain including the side and crest of the gyrus,
superficial cortical laminae, CA4 and CA2 of hippocampus, entorhinal cortex, amygdala,
thalamus, mammillary body, and cerebellar dentate nucleus are evaluated. The disease is
considered mild (“Low CTE”) or severe (“High CTE”) depending on the number of NFTs
in the brain [10]. “Low CTE” is equivalent to stages I and II and “High CTE” is equivalent
to stages III and IV of the pathological stages proposed by McKee et al. [5,10].

Though many studies recognized CTE as a distinct disease [5,9,11], distinguishing it
from relatively well-understood neurodegenerative diseases such as Alzheimer’s disease
(AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS), it is still a major
diagnostic challenge. Many efforts have been devoted to diagnosing CTE in a living person
by observing structural and physiological changes via neuroimaging techniques, namely
magnetic resonance imaging (MRI), positron emission tomography (PET), and flortaucipir
(FTP) [12–16]. However, not only does the significance of the findings of CTE remain to be
elucidated since most studies focus on traumatic brain injury (TBI) rather than CTE [13,14],
the imaging technologies also lack specificity and sensitivity for diagnosing CTE in a living
person [12].

Since CTE has a complex, multifaceted nature similar to other neurodegenerative
diseases, metabolomics can be a useful tool for studying the dynamic interactions be-
tween different types of molecules in multiple biological pathways that are specific to CTE
pathophysiology [17]. In this study, we employed non-targeted metabolomics to detect a
wide range of metabolites in the postmortem brain tissues of CTE patients and control
subjects. With the non-targeted metabolomics approach, we discovered a variety of com-
pounds involved in brain functions and uncovered metabolic characteristics of CTE, which
can advance our knowledge and help with early diagnosis of the disease.

2. Materials and Methods
2.1. Chemicals and Reagents

HPLC-grade acetonitrile (ACN) and ethanol were purchased from Burdick & Jackson
(Burdick & Jackson, Muskegon, MI, USA). The following buffer solutions were purchased
from Sigma-Aldrich (Sigma-Aldrich, St. Louis, MO, USA): formic acid, ammonium acetate,
and phosphate-buffered saline (PBS). A milli-Q purification system (Millipore, Bedford,
MA, USA) was used to obtain deionized water for making aqueous solutions.

2.2. Human Brain Samples

Neuropathological processing of control and CTE human brain samples were per-
formed according to the procedures previously established for the Chronic Traumatic
Encephalopathy (CTE) Center. Stages of CTE were determined according to Dr. McKee’s
criteria [18], which is based on the density and regional deposition of p-tau pathology, and
the criteria for pathological diagnosis was adopted from and refined by NINDS/NIBDB.
Next of kin provided informed consent for participation and brain donation. The study
was performed in accordance with the institutional regulatory guidelines and principles of
human subject protection in the Declaration of Helsinki. Clinical and demographic infor-
mation of postmortem brain tissues from control subjects and CTE patients is summarized
in Table S1. McKee et al. (2015) had reported that the temporal lobe exhibits an increase in
phosphorylated Tau (p-Tau) in stage IV of CTE while the region does not show prominent
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signals of p-Tau at the early stage of CTE [18]. Accordingly, it is proposed that the temporal
cortex reflects the pathological progression of CTE through the spreading of p-Tau after the
head injury. In this context, we chose to study the temporal cortex to determine whether it
shows metabolomic changes, similar to the progressive pathological change in response to
repetitive brain trauma.

2.3. Sample Preparations

In total, 100 mg of frozen postmortem brain tissue was extracted using 500 µL of de-
gassed extraction solvent (ethanol/10 mM PBS; 85:15, v/v) in a Safe-Lock tube (Eppendorf,
Hamburg, Germany) containing ceramic beads. The purpose of using degassed extraction
solvent was to eliminate oxygen in the solvents and prevent oxidation of thiols or antiox-
idant metabolites that may be present in the samples [19]. After the extraction, samples
were homogenized at 25 Hz for 5 min using a TissueLyser (Qiagen, Hilden, Germany). The
samples were then centrifuged at 12,000× g for 10 min at 4 ◦C. Then, 100 µL of supernatant
was collected and transferred into another clean test tube and evaporated to dryness under
a gentle stream of nitrogen. A total of 100 µL of 0.1% formic acid in 5% ACN/95% water
solutions was added to reconstitute the residue and 5 µL of each sample was injected to
UPLC-LTQ-Orbitrap MS for analysis.

2.4. LC-MS Analysis

LC-MS analysis was performed using an Ultimate 3000 UHPLC system coupled with
an LTQ-OribitrapVelos Pro hybrid mass spectrometer (Thermo Fisher Scientific, Waltham,
MA, USA). Prepared samples were kept at 4 ◦C in an autosampler and injected onto an
AcquityTM UPLC BEH C18 (2.1 × 100 mm, 1.7 µm) column at 40 ◦C with a flow rate of
0.35 mL/min for reversed-phase separation in both positive (ESI+) and negative (ESI−) ion
modes. The mobile phases were solvent (A) 0.1% formic acid in 5% ACN/95% water and
solvent (B) 0.1% formic acid in 95% ACN/5% water. The total run time was 14 min with
gradient elution as described in Table S2. The same elution program was used for both ESI+
and ESI− to detect metabolites with the same retention time in both ion modes. Samples
were analyzed using Fourier transform mass spectrometry (FTMS) full scan mode with
resolving power 100,000 at m/z ranges 50–1200 in centroid mode. The capillary temperature
was 320 ◦C. The spray voltages were 5 and 4 kV for ESI+ and ESI−, respectively.

2.5. Validation

A pooled quality control (QC) sample was prepared by thoroughly mixing small
aliquots of each sample for system stability and repeatability validation. In total, 10 QC samples
were injected before the sample analysis in order to equilibrate the system to acquire
reproducible data [20]. The solvent blank and QC sample were injected in every 9 samples
to validate the repeatability within an analytical batch.

2.6. Data Processing and Statistical Analysis

The raw data acquired from LC-MS were processed by Thermo Scientific SIEVE
software v2.1 with “Small molecule”, “Chromatographic Alignment and Framing”, and
“Non-differential single class analysis” options [21]. As a pretreatment process, all data
was scaled using the Pareto scaling method to diminish the mask effect from the abundant
metabolites and achieve better results in statistical analyses [22].

For the univariate analysis, fold-change analysis and t-test were performed using
MetaboAnalyst 5.0 (www.metaboanalyst.ca, accessed on 7 February 2022). Changes in
metabolite concentrations were determined by fold-change ratios, and the significant differ-
ences between the means of the healthy control group and the CTE group were determined
by p-value using a t-test and Wilcoxon rank-sum test [23]. For multivariate analysis (MVA),
SIMCA software v16 (Umetrics, Umeå, Sweden) was used to perform a principal compo-
nent analysis (PCA) and orthogonal projection to latent structures–discriminant analysis
(OPLS-DA). First, PCA was performed to observe the sample pattern and detect outliers

www.metaboanalyst.ca


Biomedicines 2022, 10, 1718 4 of 17

without considering the group membership [24]. Next, OPLS-DA was performed to opti-
mize the group separation between the groups and identify the metabolites contributing
the most to the separation based on the Variable Importance in Projection (VIP) values [25].
Metabolites with VIP > 1 and p-value < 0.05 were considered significant.

2.7. Metabolite Identification and Pathway Analysis

For the putative identification of selected significant metabolites, experimentally
determined accurate masses were submitted and matched to the compounds in databases
using the web server MassTRIX (www.masstrix.org, accessed on 24 January 2022). The
identification was performed with the following parameters: scan mode for each positive
and negative ionization; maximum error of 0.05 Da; “KEGG/HMDB/LipidMaps without
isotopes” databases; and Homo sapiens (human) as the reference organism [26]. Putatively
identified metabolites were presented on the KEGG pathway map to observe their position
in metabolic pathways using the KEGG Mapper-Search and Color Pathway tool [27]. Then,
pathway analysis was conducted using MetaboAnalyst 5.0 to identify the most significantly
affected pathways by the selected metabolites. The interaction between the significant
metabolites in significantly altered pathways were visualized by performing network
analysis using Cytoscape 3.8.2.

2.8. RNA Sequencing and Analysis

RNA seq data retrieved from our published data was analyzed [28]. The RNA se-
quencing data are available under the European Nucleotide Archive (ENA) accessions no.
ERP110728. In brief, the normal and CTE brain samples were prepared for sequencing
using the Illumina TruSeq RNA sample preparation kit (Illumina, San Diego, CA, USA)
according to the manufacturer’s instructions and sequenced on a HiSeq 2000 platform. The
101 bp sequenced paired-end reads were mapped to the hg19 reference human genome
using the STAR 2-pass method. We used HTSeq to count the reads aligned to each gene
based on the Ensembl gene set. We excluded samples that failed in the library preparation
or sequence process. We also excluded samples with fewer than 10 million reads sequenced.
Overall, 10 CTE subjects and 9 control subjects were examined. The normalized read counts
were applied to principal component analysis or clustering analysis, which was conducted
through R and Cluster 3.0 and visualized via Java Treeview (Version 1.1.6r4).

2.9. Immunohistochemistry (IHC)

Neuropathological processing of normal and CTE postmortem brain samples was
performed using procedures previously established by the Boston University Alzheimer’s
Disease Center (BUADC) [29]. Briefly, endogenous peroxidase activity in the deparaffinized
sections was inactivated by the solution (BLOXALL, Vector Laboratories, Burlingame, CA,
USA, SP-6000) for 10 min. The tissue sections were blocked with blocking solution (5% BSA
(BSAS 0.1; Bovogen Biologicals, Keilor East, VIC, Australia) in TBST) for 1 h and then
further incubated with specific antibodies for SHMT2 (1:200, ab224427; Abcam, Waltham,
MA, USA) for 24 h. Then the sections were incubated in the biotinylated IgG (1:200,
DI-1594; Vector Laboratories, Burlingame, CA, USA), and with 3% normal goat serum in
TBS for 90 min. After washing, the sections were incubated in prepared VECTASTAIN
Elite ABC reagent (PK-6100; Vector Laboratories, Burlingame, CA, USA) for 30 min. Then,
the sections were incubated in peroxidase substrate solution (DAB, 3,3′-diaminobenzidine
tetrahydrochloride hydrate, D5637; Sigma, St. Louis, MO, USA) for 3 min. Next, the
sections were incubated with astrocyte maker GFAP (1:400, ab7260; Abcam, Waltham,
MA, USA) in the same blocking solution for 24 h. The sections were then incubated with
alkaline phosphatase reagent (ImmPRESS-AP REAGENT, MP-5041; Vector Laboratories,
Burlingame, CA, USA) for 2 min and rinsed and mounted. Images were acquired using light
microscopy (BX63, Olympus, Tokyo, Japan). Then, they were analyzed using Fiji software
(NIH, Bethesda, MD, USA) with color deconvolution which is a function of separation
of IHC images into DAB (brown) and alkaline phosphatase (red) signals. To analyze
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the co-localization of GFAP and SHMT2, images were applied to the intensity profile in
Fiji software (NIH, Bethesda, MD, USA) [30].

3. Results
3.1. Metabolic Profiling of Postmortem Brain of the CTE Patients

Based on the non-targeted metabolomics analysis, a total of 458 variables were de-
tected in the postmortem brain of the 10 CTE patients and 9 normal subjects. For the
method validation, a total of 13 QC samples were used to evaluate the repeatability of the
metabolic profiling. The clustering and a clear separation of QC samples from the rest
of the experimental samples in the unsupervised PCA plots (both positive and negative
ion modes) demonstrated that the data was acquired with a good repeatability (Figure S1).
As part of the quality assurance (QA) procedure, variables detected in fewer than half
of the QC samples with RSD more than 30% were considered unreliable, and so omitted
from future multivariate analysis [20,31]. In this study, it was observed that more than
half of the variables detected in QC samples in both positive (65.0%) and negative (69.3%)
modes showed RSD values below 30% (Figure S2). Taken together, a reliable set of data
was obtained in this study, and a total of 251 variables were analyzed further to evaluate
their significance in distinguishing the CTE group from the control group.

3.2. Multivariate Analysis

The multivariate analysis was performed to observe the group pattern and identify
metabolic characteristics of the postmortem brain of the CTE patients. Although not
completely separated, clustering of data with the evident separation tendency between
the CTE and control groups was obtained in both positive (R2X = 0.852 and Q2 = 0.549)
and negative (R2X = 0.517 and Q2 = 0.061) ion modes, as shown in the score plot of our
PCA models (Figure 1A,B). Following that, supervised OPLS-DA was used to optimize
group separation and extract metabolites capable of distinguishing between the CTE and
the control groups. In our OPLS-DA model, a complete group separation was observed
in both positive (R2X(cum) = 0.450 and Q2(cum) = 0.337) and negative (R2X(cum) = 0.543 and
Q2(cum) = 0.708) ion modes (Figure 1C,D). In targeted metabolomics, R2 and Q2 values
above 0.4 were considered as a robust model with a strong predictive power [32]. Given
that our model was based on non-targeted metabolomics, our OPLS-DA model in both ion
modes demonstrated a high explained variance with a moderate predictive ability, and
69 metabolites showed VIP > 1.

3.3. Identification of Significant Metabolites

Out of 69 differential metabolites, 27 metabolites showed significant differences be-
tween the CTE and healthy control groups with p-value < 0.05. The putative identification
of significant metabolites (VIP > 1 and p-value < 0.05) was performed using the accurate
mass and all the metabolites except 5 metabolites were identified with the maximum error
of 0.05 Da (Table 1). Compared to the control group, the concentrations of 21 metabolites
were significantly higher in the CTE group while only 6 metabolites including cyclic GMP,
1-pyrrolidine-5-carboxylic acid, 3,4-dihydroxyphenylacetaldehyde, carbon dioxide, and
two unknown metabolites were detected with significantly lower levels in the CTE group
(Figure 2).

3.4. Metabolic Pathway Analysis

Metabolic pathway analysis was performed in order to investigate the impact of
significant metabolites in metabolic pathways. The result showed that a total of eight
metabolic pathways were significantly altered (Raw p < 0.05, Impact > 0.1) in the CTE
patients (Figure 3). The affected pathways include tyrosine metabolism, arginine and pro-
line metabolism, glycine, serine and threonine metabolism, aminoacyl-tRNA biosynthesis,
phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, nicotinate
and nicotinamide metabolism, and retinol metabolism (Table S3). The network analysis was



Biomedicines 2022, 10, 1718 6 of 17

performed with the results of the metabolic pathway analysis in order to see the connection
between the metabolites. As shown in Figure 4, phenylalanine and tyrosine were involved
in the pathways with the highest impact values, namely phenylalanine, tyrosine and tryp-
tophan biosynthesis, phenylalanine metabolism, and tyrosine metabolism. Based on this
finding, it is reasonable to conclude that disruptions in these pathways were responsible
for the accumulation of phenylalanine, tyrosine, vanylglycol, and norepinephrine in the
brains of CTE patients, though the precise mechanism underlying the changes in metabolite
concentration requires further investigation.
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Table 1. The summary of putatively identified significant metabolites.

No. Rt MW Ionization
Method VIP p-Value Fold

Change

Fold
Change

Direction
Name

1 1.06 118.93 Negative 1.71 0.0003 5.17 Down Unknown 1
2 1.25 123.04 Positive 1.69 0.0030 0.92 Up Niacinamide
3 9.26 204.10 Positive 1.63 0.0279 1.20 Up Tyrosine
4 1.17 120.07 Positive 1.62 0.0172 2.44 Up Threonine
5 1.27 132.10 Positive 1.58 0.0350 4.13 Up Creatine
6 1.00 104.11 Positive 1.56 0.0435 2.37 Up Gamma-Aminobutyric acid
7 1.27 86.10 Positive 1.55 0.0435 2.57 Up 2-Pyrrolidinone
8 0.95 225.99 Negative 1.45 0.0101 1.35 Up L-Glutamic acid 5-phosphate
9 9.87 187.10 Negative 1.44 0.0220 7.01 Up N6,N6,N6-Trimethyl-L-lysine

10 1.09 343.99 Negative 1.43 0.0030 0.15 Down Cyclic GMP
11 0.94 104.03 Negative 1.41 0.0101 3.00 Up Serine
12 12.07 329.23 Negative 1.36 0.0076 1.47 Up Deoxycorticosterone



Biomedicines 2022, 10, 1718 7 of 17

Table 1. Cont.

No. Rt MW Ionization
Method VIP p-Value Fold

Change

Fold
Change

Direction
Name

13 1.22 353.03 Positive 1.34 0.0452 2.89 Up 5′-Phosphoribosyl-N-
formylglycinamide

14 1.16 219.08 Negative 1.34 0.0217 2.48 Up Vanylglycol
15 9.80 679.51 Positive 1.33 0.0279 1.32 Up Unknown 2
16 1.04 136.05 Positive 1.33 0.0022 2.38 Down 1-Pyrroline-5-carboxylic acid
17 13.90 335.22 Negative 1.24 0.0425 0.72 Up Retinoic acid
18 1.35 187.00 Negative 1.23 0.0002 0.69 Down 3,4-Dihydroxyphenylacetaldehyde
19 0.94 96.92 Negative 1.23 0.0279 2311.30 Up Phosphoric acid
20 1.08 135.03 Negative 1.21 0.0435 8.82 Up Hypoxanthine
21 1.55 164.07 Negative 1.17 0.0006 2.47 Up Phenylalanine
22 1.25 78.96 Negative 1.15 0.0279 1.12 Down Carbon dioxide
23 1.00 204.00 Negative 1.14 0.0350 0.43 Up Norepinephrine
24 0.97 134.89 Negative 1.13 0.0172 0.67 Up Unknown 3
25 0.99 167.02 Negative 1.13 0.0030 1.27 Up Uric acid
26 0.92 160.91 Negative 1.07 0.0350 1.79 Up Unknown 4
27 12.57 316.25 Positive 1.06 0.0181 1.84 Down Unknown 5
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The colors blue to red indicate the concentration of metabolites from the lowest to the highest.
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3.5. Alterations of Serine Pathway-Related Gene Expression

Because only a limited number of metabolites were detected in each metabolic path-
way, the expression patterns of specific candidate genes involved in significantly altered
metabolic pathways were examined to see if expression levels correlated with changes in
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metabolite concentrations (Figure 5). Importantly, serine pathway-associated genes such as
SHMT1, SHMT2, and THA1P were upregulated in CTE patients (Figure 5A). Additionally,
catecholamine pathway-associated genes such as COMT and MAOA were upregulated
in CTE patients (Figure 5B). In contrast, tyrosine pathway-associated genes such as DBD,
TH, and DDC were downregulated in CTE patients (Figure 5C). A phenylalanine pathway-
associated gene such as PAH was slightly increased but it was not significant (Figure 5D).
The scheme in Figure 5E was drawn to show that two enzymes such as SHMT1 in the
cytosol and SHMT2 in the mitochondria are involved in producing serine. SRR (serine
racemase) expression was slightly increased in CTE patients but it was not statistically
significant (p = 0.316) (Figure S3). Considering that we used brain tissues of control subjects
and CTE patients, it seems likely that cell-type-specific change in SRR expression may be
diluted and biased with many cell types in the brain.

Biomedicines 2022, 10, 1718 10 of 18 
 

 

 
Figure 5. Amino acid neurotransmitter-associated genes are altered in CTE patients. (A) The expres-
sion levels of SHMT1, SHMT2, and THA1P were increased in CTE patients. (B) The expression levels 
of COMT and MAOA were increased but PNMT was decreased in CTE patients. (C) The expression 
levels of DBH, TH, and DDC were decreased in CTE patients. (D) The expression level of PAH was 
not different between CTE patients and normal subjects. (E) A scheme illustrating that serine is pro-
duced by SHMT1 in the cytosol and SHMT2 in the mitochondria. Significantly different from the 
normal subjects at * p < 0.05; ** p < 0.01. 

3.6. Immunoreactivity of SHMT2 in Astrocytes of CTE Patients 
Since the serine pathway is linked to the pathological progress of neuronal damage, 

immunoreactivity of SHMT2 was analyzed to examine whether SHMT2 protein expres-
sion is increased in CTE and which cell type is involved in SHMT2 expression in the cortex 
of CTE patients (Figure 6). Concurrent with the increase in SHMT2 RNA level, a signifi-
cant increase in SHMT2 immunoreactivity was detected in glial fibrillary acidic protein 
(GFAP)-positive reactive astrocytes in the white matter and neurons in the gray matter 
(Figure 6A,B). Further co-localization analysis showed that the SHMT2 signal was found 
in the cell soma and processes and strongly co-localized with GFAP-positive reactive as-
trocytes (Figure 6C). 

Figure 5. Amino acid neurotransmitter-associated genes are altered in CTE patients. (A) The
expression levels of SHMT1, SHMT2, and THA1P were increased in CTE patients. (B) The expression
levels of COMT and MAOA were increased but PNMT was decreased in CTE patients. (C) The
expression levels of DBH, TH, and DDC were decreased in CTE patients. (D) The expression level
of PAH was not different between CTE patients and normal subjects. (E) A scheme illustrating that
serine is produced by SHMT1 in the cytosol and SHMT2 in the mitochondria. Significantly different
from the normal subjects at * p < 0.05; ** p < 0.01.

3.6. Immunoreactivity of SHMT2 in Astrocytes of CTE Patients

Since the serine pathway is linked to the pathological progress of neuronal damage,
immunoreactivity of SHMT2 was analyzed to examine whether SHMT2 protein expression
is increased in CTE and which cell type is involved in SHMT2 expression in the cortex of
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CTE patients (Figure 6). Concurrent with the increase in SHMT2 RNA level, a significant
increase in SHMT2 immunoreactivity was detected in glial fibrillary acidic protein (GFAP)-
positive reactive astrocytes in the white matter and neurons in the gray matter (Figure 6A,B).
Further co-localization analysis showed that the SHMT2 signal was found in the cell soma
and processes and strongly co-localized with GFAP-positive reactive astrocytes (Figure 6C).
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Figure 6. SHMT2 immunoreactivity is significantly increased in the cortex of CTE patients.
(A) SHMT2 (brown) was co-localized with GFAP (red) in the cortical white matter of CTE patients.
White dotted lines indicate the border of white matter and gray matter. Black dotted lines were
drawn to analyze the colocalization of SHMT2 and GFAP. Black arrows indicate co-localization foci
of SHMT2 with GFAP. Scale bars: top 2 mm, middle 20 µm, bottom 20 µm. (B) SHMT2 immunoreac-
tivity was significantly increased in GFAP-positive astrocytes of the white matter and also found in
GFAP-negative cells of the gray matter in CTE patients (cell counting: a total of 30 cells (10 cells/case);
Normal, N = 3; CTE, N = 3). Significantly different from the normal subjects at * p < 0.05; ** p < 0.01.
(C) Co-localization analysis showed that SHMT2 and GFAP double immunoreactivity was markedly
increased in the cortical white matter of CTE patients.

4. Discussion

CTE is undoubtedly a distinct neurodegenerative disease, but many aspects of it,
especially the pathophysiology of the disease, are not yet fully understood and clearly
defined [33]. Consequently, despite many efforts [12–16], there is still a lack of validated
biomarkers to detect and diagnose CTE during life, impeding subsequent discovery of
treatment and prevention of CTE [34]. We, therefore, employed LC-MS to identify metabolic
profiles from the postmortem brain of CTE patients and control subjects in hopes to
provide new insights into the pathophysiology of CTE. To our knowledge, analyzing the
postmortem brain of CTE patients using LC-MS is a novel approach to exploring metabolic
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features of CTE. In this study, we discovered that the concentrations of 27 metabolites in
the superior temporal cortex of CTE patients and controls were significantly different, and
that the differences in metabolite concentrations resulted in significant abnormalities in
eight metabolic pathways.

4.1. Astrocyte Activation

One of the neuropathological characteristics of CTE is astrocyte activation, also known
as reactive astrogliosis [35]. Astrocyte activation refers to the molecular, cellular, and
functional changes in astrocytes in response to all sorts of CNS injuries [36]. Astrocyte
activation following TBI can have both neuroprotective and neurotoxic effects on the
brain [37], but the findings of our study showed astrocyte-associated neurodegenerative
metabolic changes in the brain of CTE patients.

In the brain tissue of CTE patients, higher levels of serine were detected compared
to the control subjects. Specifically, D-serine was elevated, which was determined by
measuring the expression level of serine racemase (Figure S3), the biosynthetic enzyme
converting L-serine to D-serine [38]. D-serine is a gliotransmitter that regulates synaptic
transmission and plasticity by acting as a co-agonist for synaptic N-methyl-D-aspartate
receptors (NMDARs) [39]. However, one study revealed that TBI disrupts the normal
function of astrocytes by increasing the production and release of D-serine in astrocytes,
which contributes to the slow excitotoxic synaptic damage and cognitive impairment asso-
ciated with TBI [40]. Moreover, D-serine at pathological level mediates neuronal cell death
in neurodegenerative diseases such as AD and ALS by over-activating NMDAR [39,41].
Previous studies have shown that reactive astrocytes exhibit an expression of SRR in vitro
and in vivo [38,42]. Our data also suggests that SHMT is induced in astrocytes of CTE. Ac-
cordingly, we propose that the increase in SHMT and SRR can contribute to the elevation of
D-serine in reactive astrocytes of CTE. These findings suggest that inhibiting the production
and release of D-serine has the potential to be a therapeutic target attenuating synaptic and
cognitive damage after TBI and prevent the development of the CTE.

Another metabolic change associated with astrocyte activation in CTE is the increased
level of gamma-aminobutyric acid (GABA). GABA is a major inhibitory neurotransmitter
and its secretion and metabolism are regulated by astrocytes [43]. Similar to D-serine,
abnormal production and release of GABA by reactive astrocytes were reported in neurode-
generative disease and were responsible for memory impairment in AD mice [44]. Since
reactive astrocytes were also found in CTE [35], it is possible that elevated GABA levels
in CTE are the result of the astrocyte activation. Considering the consequence of the high
level of GABA in the brain, a study showed that GABA can exacerbate the brain injury,
especially in traumatized neurons, by raising intracellular level of Ca2+ [45]. Moreover, it is
well understood that increased influx of Ca2+ has devastating effects on brain health by
impairing neuronal plasticity, activating catabolism of proteins and nucleic acids, synthe-
sizing nitric oxide, and stimulating hyperphosphorylation of tau [46–48]. Therefore, GABA
may play a role in developing CTE in people with multiple head injuries by increasing
neuronal damage by raising Ca2+ in the brain.

4.2. Phenylalanine Metabolism

According to the results of our study, the most perturbed pathway in CTE patients
was phenylalanine metabolism. Phenylalanine is an essential aromatic amino acid involved
in the synthesis of tyrosine and catecholamines. In the CTE patients, level of phenylalanine
increased by more than two-fold compared to the control subjects. It has been reported
that a high level of phenylalanine can disrupt mood, impair sustained attention [49], and
increase depressive symptoms [50], which are all common symptoms of CTE. Although not
specifically characterized, deposition of amyloid β-peptide (Aβ) is associated with patho-
physiology of CTE, since CTE patients exhibit unique Aβ deposition compared to normal
aging people [51]. Elevated levels of phenylalanine may accelerate the production of Aβ in
CTE patients because there is evidence that the aromaticity of phenylalanine triggers pro-
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tein aggregation and generation of higher-order structures, especially in β-sheet motifs [52].
This elevation of phenylalanine may be due to the interference in epinephrine and nore-
pinephrine neurotransmitter pathways following repetitive brain trauma (RBT) [53], which
is commonly experienced by many CTE patients during their sports career. The elevation
may also have resulted in the elevation of its down-stream metabolite tyrosine, suggested
by the higher expression of PAH genes in CTE patients (Figure 5).

4.3. Tyrosine Metabolism

The second most perturbed pathway in CTE patients is tyrosine metabolism. Tyrosine
metabolism is closely associated with many aspects of brain function because the first step
of this metabolism is the hydroxylation of tyrosine into dihydroxyphenylalanine (DOPA)
by the enzyme tyrosine hydroxylase (TH), the rate-limiting enzyme in biosynthesis of
catecholamine that act as neurotransmitters in the brain [54]. In CTE patients, elevated
levels of tyrosine and low expression of TH were observed (Figure 5), suggesting a dis-
ruption in tyrosine degradation. The low expression of TH in the brain of CTE patients is
probably due to the repetitive head traumas because significantly reduced expression of
TH and TH-positive neurons were observed in the midbrain of mice after chronic TBI [55].
Moreover, a decrease in TH activity has also been discussed in other neurodegenerative
diseases, such as AD [56] and PD [57]. Although the effect of elevated tyrosine levels on
CTE pathology is still unknown, there is evidence that administration of high doses of
tyrosine is detrimental to cognitive function in elderly people [58], suggesting that tyrosine
in excess may contribute to cognitive impairment in CTE patients.

Another metabolic change observed in the tyrosine metabolism in CTE patients is the
increased amount of norepinephrine (NE). NE is a neurotransmitter that is synthesized from
dopamine by dopamine-β-hydroxlase (DBH) in the locus coeruleus (LC) in the brain [59].
However, the expression levels of DDC and DBH were lower in the brain of CTE patients
compared to that of control subjects (Figure 5), suggesting the existence of an unidentified
alternate mechanism causing the abnormal elevation of NE in CTE.

One of the interesting functions of NE is synthesizing neuromelanins in LC [60]. In
CTE, brain injuries induce iron deposition that leads to oxidative stress and tau protein
phosphorylation [61]. This suggests a compensatory increase in NE in order to synthesize
more neuromelanins as they can scavenge toxic substances such as metal ions [60,62]. How-
ever, neuromelanin synthesis from NE can have detrimental effects on brain function. Even
at physiological pH, NE may be easily oxidized to o-quinones even at physiological pH dur-
ing the synthesis, and o-quinones can produce neurotoxic compounds when they react with
cysteine or glutathione [60]. Furthermore, when released into the extracellular environment,
neuromelanins can cause neurodegeneration and chronic neuroinflammation [61,63].

In line with the elevated NE, its downstream metabolite vanylglycol, also known as
3-methoxy-4-hydroxyphenylglycol (MHPG), as well as its producing enzyme catechol-O-
methyltransferase (COMT), were found in higher amounts in the CTE group. While the
relationship between elevated level of NE and CTE pathology is equivocal, an elevated
level of MHPG has been reported to be associated with higher accumulation of p-tau and
memory deficits [64], the major neuropathological features of CTE [1,5,9,10]. In addition,
elevated levels of NE and MHPG have also been consistently observed in patients with
advanced AD, suggesting highly active noradrenergic function despite the decreased
number of cells in LC [65]. Therefore, despite the loss of neurons in LC in CTE patients, it is
anticipated that the noradrenergic system can be activated abnormally as well. Our results
of abnormal activation of the noradrenergic system in CTE can be an interesting target
for future study as abnormal hyperactivation of LC has been discussed as a biomarker
of AD [66], and increased NE can contribute to many symptoms of CTE. For example,
dysregulation in LC is associated with aggressive behavior [67], and increased NE can
deprive rapid eye movement (REM) sleep which can further increase aggressiveness, lack
of concentration, and memory loss [68].
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Of all the metabolites detected in tyrosine metabolism, 3,4-dihydroxyphenylacetaldehyde
(DOPAL) is the only metabolite that was reduced in the CTE patients. This is interesting
because it has been widely reported that DOPAL is a neurotoxic metabolite of dopamine,
and high level of DOPAL leads to the death of neurons in substantia nigra and accumulation
of α-synuclein in PD [69–71]. Depigmentation and accumulation of NFTs in substantia
nigra is a neuropathological feature of CTE [5,10], and many symptoms and pathological
features are overlapping between CTE and PD [72]. This raises the possibility that there
may be a unique mechanism that causes damage to the substantia nigra in CTE, which
does not include the neurotoxic effects of DOPAL. Although the reason for the decline in
DOPAL levels is currently unclear, once the mechanism of this change is elucidated in future
studies, DOPAL has great potential to become a strong biomarker that can distinguish CTE
from PD.

4.4. Limitations and Future Directions

Although we uncovered unreported biochemical pathways associated with CTE using
non-targeted metabolomics, some metabolic changes could not be explained due to the
lack of current knowledge in CTE. For instance, a high level of creatine, threonine, and
L-glutamic acid 5-phosphate and low level of 1-pyrroline-5-carboxylate (P5C) in arginine
and proline metabolism were not discussed in this study as we were unable to relate these
changes to the pathophysiology or clinical features of CTE with current knowledge.

Another limitation of this study is the small sample size. Since a non-targeted
metabolomics-based study has not been applied in studying CTE, it is difficult to em-
phasize the reliability and show consistency of this study by comparing the results of our
study with other research. In order to improve the reliability of our results, expression of
genes associated with significantly altered metabolic pathways was quantified to bridge
the gaps in a metabolism. However, a limitation still exists as not all the metabolites in
metabolism were detected via non-targeted metabolomics and some metabolic changes
could not be explained even with the results of RNA sequencing. Larger sample size may
therefore provide more information and increase the statistical confidence of the results.

5. Conclusions

We report, for the first time, the metabolic profile of postmortem brain tissue from CTE
patients. Through a non-targeted metabolomics approach, we revealed detrimental conse-
quences of astrocyte activation and significant alterations in phenylalanine and tyrosine in
CTE. These findings may provide new insights into understanding the pathophysiology of
CTE and offer novel therapeutic and diagnostic targets for the disease.
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