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A simple model for electrical charge in globular macromolecules
and linear polyelectrolytes in solution
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We present a model for calculating the net and effective electrical charge of globular macromolecules
and linear polyelectrolytes such as proteins and DNA, given the concentration of monovalent salt and
pH in solution. The calculation is based on a numerical solution of the non-linear Poisson-Boltzmann
equation using a finite element discretized continuum approach. The model simultaneously addresses
the phenomena of charge regulation and renormalization, both of which underpin the electrostat-
ics of biomolecules in solution. We show that while charge regulation addresses the true electrical
charge of a molecule arising from the acid-base equilibria of its ionizable groups, charge renor-
malization finds relevance in the context of a molecule’s interaction with another charged entity.
Writing this electrostatic interaction free energy in terms of a local electrical potential, we obtain
an “interaction charge” for the molecule which we demonstrate agrees closely with the “effective
charge” discussed in charge renormalization and counterion-condensation theories. The predictions
of this model agree well with direct high-precision measurements of effective electrical charge of
polyelectrolytes such as nucleic acids and disordered proteins in solution, without tunable parame-
ters. Including the effective interior dielectric constant for compactly folded molecules as a tunable
parameter, the model captures measurements of effective charge as well as published trends of
pKa shifts in globular proteins. Our results suggest a straightforward general framework to model
electrostatics in biomolecules in solution. In offering a platform that directly links theory and exper-
iment, these calculations could foster a systematic understanding of the interrelationship between
molecular 3D structure and conformation, electrical charge and electrostatic interactions in solu-
tion. The model could find particular relevance in situations where molecular crystal structures
are not available or rapid, reliable predictions are desired. © 2017 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4983485]

I. INTRODUCTION

The electrostatic properties of macromolecules—
specifically, their electrical charge and interior dielectric
characteristics—are a vital component of their function, con-
tributing to the physical basis of mechanisms ranging from
molecular recognition, signaling, and enzymatic catalysis,
to protein folding and aggregation, and are of fundamental
relevance in experiment and theory.1–4 “Supercharged” iso-
forms of evolutionarily conserved proteins are known to confer
extreme physiological capacities on certain species, presum-
ably owing to their enhanced stability to aggregation at high
concentration.5,6 It is also well known that the addition and
removal of small amounts of structural charge in the form
of phosphate groups or other post-translational modifications
modulates not only such basic phenomena as protein sta-
bility but also sub-cellular localization or function and can
regulate macroscopic processes such as metabolism at the sys-
temic level.4 Given the dominant role of an electrical charge
in macromolecular interactions and function, theoretical
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models capable of predicting molecular electrical properties,
e.g., effective electrical charge in solution, interior dielectric
function and interaction free energies under arbitrary condi-
tions, and making a direct connection to experiments are of
great interest.

Contrary to the situation in vacuum, the electrical charge
of a macromolecule in solution is governed strongly by ther-
modynamic processes in the electrolyte that render both the-
oretical predictions and experimental measurements of the
quantity non-trivial. At the simplest level, a direct sum over a
macromolecule’s charged groups yields a qualitative estimate
of its formal structural electrical charge, at a given solution pH

qstr =
∑

i

zie

1 + 10zi(pH−pKi)
. (1)

Here i denotes each ionizable group, pKi is the negative log-
arithm of its acid dissociation constant, zi = +1 or �1 indi-
cates the formal valence of charge of a basic or an acidic
group, respectively, and e is the elementary charge. In practice
however, collective interactions in a densely packed system
of charges can dramatically modify the molecule’s effective
charge in solution via two separate phenomena, namely, charge
regulation and charge renormalization. The former concerns an
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alteration in the charged state of an ionizable group in the con-
text of the molecular environment, while the latter deals with
the highly non-linear screening of molecular charge by coun-
terions in the surrounding electrolyte phase. Both phenomena
generally result in a reduced “effective” charge of an electri-
cally charged object, and have each received extensive theoret-
ical attention, from polyelectrolytes and proteins to colloidal
particles and charged surfaces in solution.7–17 Nonetheless,
experimental situations, particularly those involving proteins,
would be expected to entail contributions from both charge reg-
ulation and renormalization. As a result, a theoretical analysis
focusing on one or the other phenomenon will not necessar-
ily lead to fruitful comparisons with experiment. Previous
work has used mean field electrostatics to simultaneously
address both the chemical reaction aspect of charge creation
and charge renormalization for colloidal spheres carrying sur-
face charge.18 Efforts have also been directed at calculating
forces between charge regulating flat surfaces and spheres
in solution.15,19 At the molecular level, atomistic simulation-
based approaches can be used to determine the regulated
charge20,21 and calculate interaction free energies between
arbitrary macromolecules but are often resource-intensive and
time-consuming.

To our knowledge, few studies thus far have integrated
both charge regulation and renormalization phenomena into
a comprehensive theoretical picture of an electrical charge
for a generic macromolecule and its interactions, using mean
field theory alone. An approach that uses mean field the-
ory and yet permits the incorporation of a more fine-grained
level of chemical and geometric detail on the macromolecule
would be useful for comparison with experiments. Here we
describe a finite element based numerical mean field electro-
static model of macromolecular electrostatics based on the
non-linear Poisson-Boltzmann (PB) equation. In conjunction
with interaction free energy calculations, we present a coher-
ent picture of macromolecular electrostatics that includes the
effects of both charge regulation and renormalization. We show
that charge regulation deals with the true charge of an object
in solution—a physically straightforward quantity represent-
ing the net electrical charge actually carried by ionized groups
in the molecular context, depending on the pH and salt con-
centration in solution. The renormalized charge in turn is an
effective quantity that manifests physically, for example, in
the context of an interaction of the molecule of interest with
another charged entity. Our approach thus not only enables
quantitative predictions of the true net structural charge of
macromolecules but can also be used to determine their effec-
tive or renormalized charge in solution. The model takes into
account of 3D molecular geometry, finite-size effects in lin-
ear polyelectrolytes, the spatial distribution of charged groups
within a molecule and can also be adapted to perform pKa shift
calculations.

The manuscript is organized as follows: in Section II A,
we focus on general principles of charge regulation in a
spherical dielectric medium representing a globular macro-
molecule and derive a rule of thumb criterion for the onset
of charge regulation. In Section II B, we lay out the gov-
erning equations in our model and validate the results
against analytical expectations. Section III A examines and

explains charge renormalization in the context of electrostatic
interaction free energies and is followed by a comparison of
results of our model to previous theoretical predictions of
effective charge. Finally, Section IV compares our model pre-
dictions with a variety of experimental data. We find excellent
agreement between the model predictions and experimental
measurements of the effective charge of linear polyelectrolytes
such as double-stranded DNA and disordered proteins, with no
tunable parameters. Using the effective internal dielectric con-
stant as a tunable parameter, we further demonstrate that the
model predicts net charge values that agree well with mea-
surements of globular macromolecules such as the tetrameric
protein β-Glucuronidase (Gusβ—290 kDa). Further the net
charge predictions agree well with those from a fully atom-
istic approach both for the large multimeric Gusβ as well as
for the small monomeric lysozyme (14.3 kDa).22 Finally, we
modify our approach to incorporate a variable local dielec-
tric constant in order to model pKa shift measurements in
proteins. We specifically consider recent measurements of
pKa shifts in variants of SNase containing single amino acid
substitutions.23,24

II. A COMPREHENSIVE MODEL
OF MACROMOLECULAR ELECTROSTATICS I:
CHARGE REGULATION
A. Charge regulation in globular macromolecules
and linear polyelectrolytes—Analytical
considerations

Our model regards a globular protein as a uniform dielec-
tric sphere housing a uniform spatial distribution of ionizable
groups, unless otherwise noted. These groups acquire or lose
charge via protonation/de-protonation equilibria that depend
on experimental conditions such as electrolyte ionic strength
and pH. The charge of an isolated ionizable group in solution
is a function of the group’s acid dissociation constant (Ka),
solution pH, and local dielectric environment, as reflected in
Eq. (1).

For a hypothetical molecule carrying identical ionizable
groups on its surface, interaction among the solvent-exposed
groups would lead to a local non-zero surface electrical poten-
tial, ψs. Since the chemical potential of the protons is constant
throughout the system, the non-zero potential in the vicinity of
the groups results in a local pH, different from that in the bulk.
The greater the magnitude of electrical potential at the charged
groups, the stronger the departure of their degree of ionization
from that in isolation, as given by the following equation:15,25

α =
1

1 + 10zi(pH−pK)exp (zieψs/kBT )
. (2)

This behaviour essentially embodies the phenomenon termed
“charge regulation.”

In our model, the sphere representing the protein is trans-
parent to the protons in solution but impervious to the salt
ions which remain in the external electrolyte phase. The pro-
tein thus acquires a net charge in solution that is the sum of
the charges of its individual ionizable groups resulting from
ionization equilibria modified by the local environment and
intramolecular coulomb interactions. For an ionizable group
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embedded at a location r within a dielectric medium of uniform
dielectric coefficient εp, Eq. (2) can be modified as follows:

α (r) =
1

1 + 10zi(pH−pK)exp
{

zieψ(r)+φs+φ0
kBT

} , (3)

where ψ(r)represents the local electrical potential at the ion-

izable group and φs
kBT =

lB,m
2rA−

(
εm
εp
− 1

)
≥ 0 represents the dif-

ference in the solvation energy of the ionized group between
the exterior electrolyte and interior dielectric environment.
Here lB,m =

e2

4πεmε0kBT is the Bjerrum length in a medium of
a dielectric constant, εm, rA− is the molecular radius of the
ionized group and φ0 can be used to incorporate additional
non-electrostatic energy contributions to the ionization equi-
librium but is set to zero in this work. For example, for εp = 40,
εm = 78.5 and taking rA− = 0.25 nm for the ionized carboxyl
group, we obtain φs

kBT = 1.4.
Analytical considerations based on the volume-averaged

interior potential of a dielectric sphere can be used to arrive
at a threshold charge criterion that defines the onset of charge
regulation for a molecule in solution. For an initial analysis of
limiting behavior, we consider a hypothetical globular protein
carrying only acidic groups so that zi =�1. Inspection of Eq. (3)
suggests an expression for a threshold local electrical potential,
|ψt | above which the net charge of a given ionizable group,
and by implication that of the macromolecule as a whole, may
begin to depart from the structural value, Q e. Denoting the
total number of charges on the molecule at the threshold as Qt

and defining αt = ηt =
Qt
Q < 1, we have

|ψt | =
kBT

e

�����
2.303 (pH − pKa) + ln

(
1
ηt
− 1

) �����
−
φs

e
. (4)

In order to estimate the magnitude of ψt within a protein,
we consider a sphere of radius R, composed of a material of
dielectric coefficient εp, enclosing a uniformly distributed total
charge Q e which in this analysis synonymous with qstr for a
molecule of known chemical composition. The charge has a
uniform density, ρ, and the sphere is bathed in a monovalent
electrolyte of concentration, c, in moles/liter. The electrolyte

is characterized by an inverse Debye length, κ =
√

2NAce2

εmε0kBT ,
where NA is the Avogadro’s number, εm = 78.5 is the dielec-
tric constant of water, and ε0 is the permittivity of free space.
The local internal electrical potential of the charged sphere
under consideration has contributions both from the charge
distributed in its interior and from the surface potential and is

given by ψ (r) =
(

ρ
3εpε0

) (
R2 − r2

2

)
+ ψs. Here ψs is the elec-

trical potential at the surface of the sphere that results from
screening of the molecule’s charge by counterions in the bulk
electrolyte, where the potential at an infinite distance from the
molecule,ψ∞ = 0. In the linear regime,ψs is well approximated
by QlB,w

R(1 + κR) , while the volume-averaged dimensionless interior

potential of the sphere, e〈ψ(r)〉v
kBT , in turn works out to

QlB,p

5R .
In order for charge regulation to take place, we postu-

late that the magnitude of the average interior potential of the
sphere, ψint = ψs + 〈ψ (r)〉v equals or exceeds the threshold
potential in Eq. (4). We thus arrive at the following thresh-
old charge criterion for the onset of charge regulation in our

representative spherical charge distribution:

|Qt |

R

{
lB,p

5
+

lB,w

(1 + κR)

}
≥

e |ψt |

kBT
. (5)

At pH 7 and pKa = 4, for ηt = 0.95, φs = 0, and for small
values of |ψs | ≈ 2 kBT , which is a reasonable estimate at high
salt concentrations, we thus obtain

|Qt | lB,p

R
∼ 10 (6)

This relation could serve as a rule of thumb criterion
for the onset of charge regulation in a globular molecule in
solution. Including an anion solvation energy contribution
of φs = 1.4 kBT would shift this threshold even lower to
|Qt |lB,p

R < 5. Still larger values of φs = 10 kBT encountered
for εp = 10, would imply that ionization is only relevant for
pH − pKa ≥ 5, and that otherwise interior ionizable groups
will be completely discharged.

The result in Eq. (6) is similar to the renormalization
result for spheres carrying a surface charge,8 except that here
lB,p characterizes the sphere interior whereas in the renormal-
ization approach lB is a property of the exterior solvent. The
simple analytical result for a sphere thus suggests that charge
regulation could be expected to occur even in very weakly
charged globular proteins, say Q < 3 and R ∼ 1 nm. In practice
however, the extent of charge regulation will depend strongly
on the pH and ionic strength of the solution, pKa of the ioniz-
able groups, and the 3D geometry of the molecule, the exact
spatial distribution of charged groups within the molecule and
additional molecular structural details that contribute to local
electrical polarizability of the molecule. The ability to readily
incorporate many of these descriptive features into our numeri-
cal model described below renders the framework immediately
applicable to real experimental situations.

B. Numerical approach to calculating
the regulated charge of a globular macromolecule
or a linear polyelectrolyte

We proceed to compare the above analytical charge reg-
ulation threshold criteria with numerical calculations of the
same quantity for a spherical charge distribution representing
a protein immersed in an electrolyte (Fig. 1). In order to do
so, we build our model based on a “discretized continuum”
approach,20,26–28 where at the simplest level the protein is rep-
resented by a sphere of radius R, whose total structural charge
is given by

qstr =
∑

i

R∫
0

zi ρi

1 + 10zi(pH−pKi)
4πr2dr. (7)

Here ρi represents a uniform volumetric density of charged
species, i. Since the charge of an ionizable group depends on
the local electrical potential according to Eq. (3), the local
charge density in the globular distribution carrying both acidic
and basic groups is given by ρ (r) =

∑
i

ziαi(r)ρi where αi

denotes the fractional ionization of an acidic or basic group
with a proton dissociation constant, K i. Note that in our model,
electrolyte ions remain in the aqueous phase and are not per-
mitted to enter the dielectric sphere representing the globular
protein.
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FIG. 1. (a) Schematic illustration of our model of a charged globular macromolecule (red sphere) and a linear polyelectrolyte (red cylinder) immersed in an
electrolyte (blue). Grey spheres denote protons both in free solution and in the interior dielectric environment of the globular molecule. The surface integral of
an electric field, E, over the sphere or cylinder yields the true net (regulated) charge of the molecule, qs. Far away from the molecule, the corresponding surface
integral in the electrolyte goes to zero, as a result of electroneutrality within the domain enclosing both molecule and electrolyte. ρ and σ—volumetric and
surface charge densities in the spherical and cylindrical cases, respectively; εp and εm—static dielectric constants of the protein interior and external electrolyte,
respectively; κ−1—Debye length; R—radius of the sphere or cylinder representing the molecule. (b) Left: Graphic representation of a spherical and cylindrical
molecule in 2D. The dashed line denotes the axis of cylindrical symmetry and the grey shaded region depicts the counterion density surrounding the molecule.
Right: Spatial electrostatic potentials, ψ (r) for a spherical and cylindrical molecule calculated using the non-linear PB equation. The cases presented are those
of Gusβ (top) and 60 bp dsDNA (bottom) in 1 mM monovalent salt, pH 8.8.

In order to obtain the spatial electrostatic potential, ψ(r),
in the entire system, given a set of parameter values for pH, c,
and εp, we numerically solve the governing differential equa-
tions for each spatial domain (Fig. 1), subject to boundary
conditions as detailed below:

Globular (sphere) interior (Poisson equation):

∆ψ(r) = −
ρ(r)
εpε0

.

Electrolyte phase (Poisson-Boltzmann equation):

∆ψ(r) = κ2 sinhψ(r)

Boundary conditions for the electric field, E, are as
follows:

1. Overall electroneutrality: n.E = 0 for r ∼ R + 10κ−1

2. Regulating surface charge (e.g., for cylindrical polyelec-
trolytes):

n.εmε0E (R) = σ (R) =
∑

i

ziαi(R)σi,

where σi (R) is the local charge density due to ionizable
species i, r = R denotes the cylinder’s surface, and n is the
outward pointing surface normal. Note that ρ(r) and σ (R)
above are themselves functions of ψ(r) as given by Eq. (3).

We describe the electrolyte phase with a uniform dielectric
coefficient of εm = 78.5 representing water at 25 ◦C, and pH
and bulk salt concentration, c, corresponding to the experimen-
tal conditions. Similar to traditional treatments, our dielectric

sphere is impervious to salt ions in the aqueous phase.20,26–28

But by contrast, protons are permitted to penetrate the sphere,
enabling us to account for the pH- and interior dielectric
coefficient-dependent titration of charged groups in a single
calculation. The transparence to protons of our sphere rep-
resenting a globular protein seems justified on account of
independent experimental observations such as the well known
pH-dependent emission of the buried chromophore in green
fluorescent protein,29 measured pH-dependent NMR shifts of
ionizable interior groups, and the alteration of protein stability
due to titration of internally buried charged groups,23,24,30 to
name a few. The principle is also commonly used in atomistic
modelling of the protonation of interior ionizable groups in
proteins.21,22,31

Furthermore we treat linear polyelectrolytes, polypeptide
chains, and single-stranded and double-stranded nucleic acids
as rigid, hollow cylinders of diameters, D = 0.5 nm, 1 nm,
and 2 nm, respectively, whose lengths, L, correspond to full
extension. We consider the charge of the molecule as a uniform
density, σi, distributed all over the cylindrical surface repre-
senting the molecule, unless otherwise required. Importantly,
since the ionizable groups here are fully exposed to the exterior
electrolyte phase,ψ(r) in Eq. (3) is just the local surface poten-
tial on the cylinder and the “interior dielectric coefficient,” εp

is not a relevant model parameter.
We numerically solve the governing equations subject

to the relevant boundary conditions using COMSOL Multi-
physics. In almost all cases, except that of inhomogeneously
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charged molecules, a 2D axisymmetric model suffices to
describe the molecule. The geometry was meshed using a tri-
angular mesh which was refined until the computed free energy
values converged. A typical value for the maximum linear size
of a mesh element was 0.5 nm. Boundary layer meshes with at
least an order of magnitude smaller element size were used at
all charged surfaces where strong spatial variations in electri-
cal potential were expected. The estimated numerical error on
the computed values is less than 5%, and typical computation
times were of the order of 1 s or less on a standard PC (Intel
Core i3-2120 processor).

Knowing ψ(r) in the whole system, we obtain the reg-
ulated charge of the molecule, qs by integration. Specifi-

cally, we have qs =
R

∫
0
ρ(r)4πr2dr for globular molecules and

qs =
L

∫
0
σ(R)2πRdl for cylindrical polyelectrolytes. We empha-

size that qs includes the effect of the local electrical potential
on the ionization equilibrium of each group and is therefore
different from the nominal structural charge, qstr defined in
Eq. (7).

Our numerical finite-element based computational
approach goes much beyond predicting charge regulation
threshold criteria; it also enables a direct, rapid (<1 s) esti-
mate of the true net charge of the molecule given experimen-
tal conditions such as pH, solution ionic strength, molecular
geometry, amino acid composition, and spatial charge distribu-
tion patterns, in one direct computational step. The approach
does not require the implementation of free energy cycles,
which can turn cumbersome for molecules with many charged
groups.20 When the calculation is fine-tuned against a mea-
sured quantity such as the effective charge or isoelectric point
of a globular molecule in solution, the model also yields an esti-
mate of the interior dielectric coefficient (as described later).
The dielectric coefficient in turn reflects the density of atomic
packing in the molecule or in other words, the folded state of
a macromolecule such as a protein.

The results of the numerical model confirm analytical
considerations and show that charge regulation in globular pro-
teins is expected under a wide range of conditions (Fig. 2(a)).

FIG. 2. (a) Comparison of the numerically calculated and analytically deter-
mined threshold charge, Qt corresponding to ηt = 0.95 at which the onset of
charge regulation occurs in a spherical charge distribution of radius, R, with
φs = 0. Symbols denote calculations and lines denote the result of Eq. (5).
Color denotes different salt concentrations: ∼100 mM (black) and ∼1 mM
(green). Open symbols and dashed lines denote R = 5.1 nm, while closed
symbols and solid lines represent R = 2.55 nm. (b) Histogram of Q/Rg values
for ∼11 000 globular monomeric proteins, where Rg denotes the calculated
radius of gyration of each molecule based on its atomic structure.

FIG. 3. (a) Calculated charge regulation factor, ηg as a function of Q/R
for spherical charge distributions of radii, R = 5.1 nm (open symbols) and
2.55 nm (closed symbols) and various values of the interior dielectric con-
stant, εp = 78.5 (black), 40 (red), 20 (green), and 4 (blue). Square symbols
represent calculations including the contribution of the Born solvation energy
term, φs (see Eq. (3)), but φs = 0 for all other cases. All lines are guides
to the eye. c ∼ 100 mM, pH = 7 and pKa = 4 for all calculations except
the dashed lines presented for εp = 78.5 and 4 for which c ∼ 1 mM. (b)
Comparison of the net charge, qs of the protein lysozyme predicted by our
model (closed symbols) and an atomistic calculation using the H++ platform
(http://biophysics.cs.vt.edu/H++, version 3.2) (Ref. 22) (open symbols), at
pH = 5 (black), 7 (red), and 9 (blue), as a function of εp. Dashed and dot-
ted lines represent nominal values from Eq. (1), including and excluding the
contribution of the 8 cysteine residues in lysozyme, respectively.

Fig. 3(a) presents the calculated fractional charge regulation,
ηg = qs/eQ at pH 7 for a dielectric sphere housing Q acidic
groups of pKa = 4, as a function of Q/R. Comparing the cal-
culated ηg values over a wide range of Q/R for different values
of εp at low (1 mM) and high (100 mM) salt concentrations
reveals an interesting feature, namely, the lower the interior
dielectric constant, the weaker the influence of the salt con-
centration in the electrolyte on ηg. The reason is evident upon
recognizing that for low values of the interior dielectric coeffi-
cient, the dominant contribution to the interior electrical poten-
tial arises from strong electrostatic coupling of the charges
within the low dielectric medium. Here, the surface potential
of the sphere, ψs, which reflects the electrolyte environment,
is generally small in comparison to the interior potential and
thus does not have much of an effect on ηg. On the contrary,
for high values of εp, say ≥40, decreasing c has a much greater
effect on ηg and can lower it by up to a factor of 2, as the con-
tribution of ψs to ψint is now higher in a relative sense. Thus
the model predicts that a compactly folded protein with Q/R
= 2.5 nm−1 and charged groups distributed in a medium of the
interior dielectric constant εp = 20 experiences 78% charge
regulation in a solution containing 100 mM monovalent salt at
pH 7 (open green square symbols in Fig. 3(a)). This could, e.g.,
refer to a molecule of radius R = 1 nm carrying a net structural
charge of 2.5 e. An analysis of Q/Rg values of ∼11 000 globu-
lar monomeric proteins and∼800 globular multimeric proteins
in the Protein Data Bank (PDB) reveals that >50% and >65%,
respectively, fall in the range Q/R = 2.5 nm−1 (Fig. 2(b)). This
strongly suggests that charge regulation could be a ubiquitous
effect, important to consider in accounting for the electro-
static interactions of all but the most weakly charged globular
macromolecules.

Finally, Fig. 3(b) presents a comparison of the net charge,
qs, of the protein lysozyme (PDB code: 1W08) predicted by
this model and an atomistic calculation using the H++ plat-
form22 (http://biophysics.cs.vt.edu/H++, version 3.2) which

http://biophysics.cs.vt.edu/H++
http://biophysics.cs.vt.edu/H++
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employs the methodology of Bashford and Karplus.20 In our
model, we exclude the charge contribution of the 8 cysteine
side-chains (pKa ' 8.2) as lysozyme is known to possess 4
native disulfide bonds. The values of molecular charge pre-
dicted by the two approaches agree within 20% over a wide
range of pH and εp. Thus, despite the lack of atomistic detail,
our model is able to capture essential features of the underly-
ing electrostatics. The results further suggest that our model
could additionally permit facile interrogation of the net charge
of a molecule in response to deletion or inclusion of specific
charged residues, which may not be straightforward using the
atomistic approach.

Once the net (regulated) charge of a molecule is known
from the above calculation, we may question the interaction
free energy of the molecule with another entity, say a like-
charged plate. In fact the magnitude of this interaction energy
leads us to a new definition of the effective or renormalized
charge of the molecule as described below.

III. A COMPREHENSIVE MODEL
OF MACROMOLECULAR ELECTROSTATICS II:
CHARGE RENORMALIZATION
A. Using interaction free energies to calculate
charge renormalization

Charge renormalization, or counterion condensation, has
been known for at least 50 years in linear polyelectrolytes.7

More recently it has been theoretically shown to be relevant
not only for charged cylinders but also for other geometries
such as spheres and planes.10,32 The phenomenon at the heart
of charge renormalization is the highly non-linear spatial distri-
bution of the counterions enveloping a strongly charged entity
in solution. Electroneutrality requires that the charge carried by
the object is exactly balanced by counterions both loosely and
tightly held in the surrounding electrolyte phase. For a highly
charged object, the counterion-object interaction energy can
be much larger than kBT very close to the surface. Thus the
fraction of counterions closest to the object and interacting
strongly with it are in some sense “unavailable” to participate
in physical processes, where they would otherwise result in
measurable differences in experimentally accessible quanti-
ties. From a “far-field” perspective, the strongly interacting
counterions may also be thought to neutralize a portion of the
charge carried by the object. As a result, various physical prop-
erties sensitive to the activity of the counterions are predicted,
and even observed in experiment, to behave as if the object
carried an “effective charge” much smaller than its structural
charge.11 For example, in an electrostatic interaction, a highly
charged entity would behave like it carried a much lower, renor-
malized or effective charge, qeff. In fact, the far-field (κr >> 1)
electrostatic interaction energy between two charged spheres
in the regime κR << 1 is given by the screened coulombic
form, (qeff

e

)2
lB

exp(−κr)
r

, (8)

where the prefactor is an effective charge, qeff, rather than the
true charge Q e of the spheres.11

There are many different approaches to calculate qeff, the
effective charge of an object in solution. These range from a

far-field electrical potential matching procedure,8,9,33 to more
thermodynamic definitions involving free energy minimiza-
tion in the partitioning of ions between the condensed and free
states,10,30 as well as estimates based on equivalent osmotic
pressures in particle mixtures and diffusion coefficients of
counterions.11 In general all of these approaches yield com-
parable but not identical results, which has made it difficult
to provide a unique physical definition of the renormalized
charge.

The quantity that is not only readily measurable in our
experiments,34 but of general importance in the interaction
of a molecule with its environment, is an interaction free
energy. We therefore introduce the electrostatic interaction
free energy as a means to determining an effective or renor-
malized charge that can not only be directly measured in
experiment but also readily calculated and therefore compared
with predictions of effective charge calculated using other
approaches.

We solve the non-linear Poisson-Boltzmann equation and
calculate interaction free energies, F (z∗) at a fixed inter-
surface separation, z∗ ≥ κ−1 between a charged object of
interest situated midway between parallel flat plates carrying
uniform, constant surface charge, as previously described.35

In particular we use the following expression for the electro-
static free energy of a charge distribution, derived previously
by Overbeek36 and implemented recently for our parallel-plate
system:35

F(z∗) =
∫
V

{
εmε0

2
(E · E) − 2c0kBT (−ψ sinhψ

+ coshψ − 1)
}

dV
����z∗

. (9)

The slit surfaces are composed of like-charged walls
and create a potential distribution in the gap, which in
the absence of the molecule and far away from the
walls is well approximated by the expression, ψ (z) =ψwall[
exp(−κz) + exp (−κ(2h − z)

]
(Fig. 4). We determine two

quantities: (1) the average of the electrical potential, ψ ′(s) due
to the slit alone over a virtual contour s representing the object’s
surface (dashed curves in Fig. 4), for values of inter-surface
separation z∗ ∼ κ−1, and (2) the object-slit interaction free
energy, Fos(z∗) = F(z∗ ∼ κ−1) − F(z∗ ∼ ∞) using Eq. (9).

Comparing the calculated object-slit interaction free
energy, Fos(z∗), with the electrostatic energy of an equivalent
charged test object placed at z = z∗ + R, we find that the for-
mer is almost always significantly smaller than the latter, in
keeping with the expectation created by the charge renormal-
ization concept. Note that our test entity has the same geometry,
spatial charge distribution, and total charge, Q, as the object
of interest but does not perturb the spatial electrostatic land-
scape in which it is placed. In other words, we find in general
F (z∗) < eQ〈ψ ′ (s)〉z∗ .

We therefore write Fos(z∗) in terms of an effective charge,
qeff, rather than the true charge, Q, and a local electrical
potential, ψ ′ (s), such that

qeff〈ψ
′ (s)〉z∗ = Fos(z

∗). (10)
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FIG. 4. Schematic depiction of the interaction free energy method to cal-
culate charge renormalization in macromolecules. The electrostatic potential
distribution in an electrolyte-filled parallel-plate slit of height 2h is obtained
by solving the non-linear Poisson-Boltzmann equation using constant charge
boundary conditions, both with (left) and without the object (right). The aver-
age electrical potential 〈ψ′ (s)〉z∗ in the slit is evaluated over the dashed circular
contour representing the “virtual” surface of an object placed at z = z∗+ R = h
(right). Electrostatic interaction free energies, F(z∗), are calculated for an
object of charge, Q, and radius, R, located at the mid-plane of the slit, at an
inter-surface separation, z∗ = h − R, using the ψ(r) distribution (left) and Eq.
(9). Dashed vertical lines denote axes of cylindrical symmetry.

Thus qeff may be thought to represent an “interaction charge.”
Interestingly we find that qeff agrees well with the values of
an effective or renormalized charge calculated using charge
renormalization and counterion condensation theories7,9,10,35

(Fig. 5). Importantly, when Q is small, as for a weakly charged
entity, we find that F (z∗) = eQ〈ψ ′ (s)〉z∗ , implying no charge
renormalization.

Furthermore we have verified that in the regime κR ≤ 1,
Eq. (10) can be used to describe the interaction energy—and
therefore also the repulsive force—between a sphere and a sin-
gle flat plate, which is a sphere of an infinite radius. Thus it is
clear that our effective charge is physically the same quan-
tity as that defined based on the Debye-Hückel interaction
between two isolated spheres, where the interaction energy
in the far-field is given by the product of the effective charge
of one entity and the potential created by other, as shown in
Eq. (8).11 This renormalized charge is also fundamentally the
same as that obtained by the far-field potential matching pro-
cedure.9,33 It is also worth noting that this definition of the
effective electrical charge of a molecule in solution is thus
founded in the basic definition of the electrical field, f = qE,
where f is the force on a test charge, q, due to the local
field, E.

FIG. 5. Comparison of our calculated charge renormalization factor, ηn, with
that calculated using other approaches. Symbols denote our results; solid,
dashed, and short-dashed lines represent results of Refs. 10, 9, and 7, respec-
tively. (a) ηn for spheres of radius, R in the regime κR ≤ 1. (b) spheres in the
regime κR ≥ 1. (c) Cylinders in the regime κR ≤ 1.

Finally, we point out that the object-plate separation, z∗

does not influence the calculation over a wide range, namely,
z∗ ∼ 1 – 8κ−1, but in general, values of z∗ satisfying κz∗ ∼ 3 – 5
are optimal for the calculation. In other words, the calculation
is not sensitive to the particular value of the local potential
ψ ′ (s), as long as it is non-zero. In particular, in the point-object
regime, where κR < 1, ψ ′(s) tends to the potential at a point in
the slit given by the center of the object. This is an important
result since it enables the spatial interaction free energy of a
particle in the slit to be expressed in terms of the product of an
effective charge parameter, qeff and the electrical potential at a
point in the slit. The relation in Eq. (10) is expected to hold in
general, except at separations κz∗ << 1 where the “near-field”
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or highly non-linear region of the counterion distribution is
probed.

We further define a quantity ηn = qeff/eQ that denotes
the extent of charge renormalization and can be directly com-
pared with values obtained using other theoretical approaches.
While it is not always clear how some of the previous defini-
tions and calculations of qeff can be directly and quantitatively
related to particular experimental situations, our interaction-
energy-based definition of qeff can be readily related to
measurements.34 Importantly, our approach supports direct
incorporation of geometric and chemical information on the
molecule, e.g., shape, non-uniform charge distribution, finite
length in polyelectrolytes, which is vital for comparison with
experiments.

B. Charge renormalization in spheres and cylinders

We calculate electrostatic free energies of interaction,
F (x) and determine the effective charge, qeff of charged
spheres and cylinders by the procedure described above, and
illustrated in Fig. 4. For this analysis, we bestow on all sur-
faces, namely, those of the sphere or cylinder of interest and
the parallel flat plates—a uniform, constant surface charge.
Interaction free energies are calculated for various values of
object charge, Q, geometric parameters, R and x, as well as
salt concentrations, c as previously described.35

In order to directly relate our results to other theoretical
approaches, we consider spheres and cylinders of fixed sur-
face charge, i.e., the charge regulation aspect of the model,
described in Sections II A and II B, is switched off. Fig. 5
compares our calculated values of ηn for objects of constant
charge with the values obtained in three other theoretical
approaches, namely, those of Manning, Netz, and Aubuoy
et al. Manning’s prediction for one-dimensional polyelec-
trolytes is supposed to be valid for all salt concentrations
(dashed line in Fig. 5(c)). Aubouy et al. provides calcula-
tions for spheres and cylinders of radius R in the regime
κR ≥ 1.

Overall there is good to excellent agreement between our
calculations and previous work. Interestingly we find that for
spheres, good agreement can be expected over a wide range
of κR = 0.001 to 5 (Figs. 5(a) and 5(b)). For example, κR ∼ 5
corresponds to a relatively large globular macromolecule, 5
nm in radius in 90 mM monovalent salt.

We further calculate ηn as a function of lB/λ, for infinite
cylinders of radius, R and linear charge density, λ. We find
reasonably good agreement in the regime κR ≤ 1, with the
regime κR > 1 generally resulting in qeff > qstr for the lower
range of lB/λ values. In Fig. 5(c), for example, for κR = 1
and lB/λ < 2, we find that the calculated interaction free
energy exceeds the expectation based purely on the electro-
static argument in Eq. (9) with qeff = qstr, yielding ηn > 1. In
contrast, for strongly charged polyelectrolytes in the regime
lB/λ > 2 (for example, dsDNA has lB/λ = 4.2), the rms devi-
ation between our calculation and the nearest other theoretical
prediction is <10%.7,9,10 Note that the κR < 1 regime should
indeed well describe one-dimensional macromolecules under
most experimental conditions of interest. For example, in 100
mM monovalent salt, where κ−1 = 0.9 nm, R ranges from
0.25 nm for polypeptide chains to 1 nm for dsDNA. Thus

for most polyelectrolytes, κR substantially exceeds 1 only
for c >> 100 mM, where the Debye length approaches the
Bjerrum length, ion-ion correlations become important and
it is not clear that PB theory retains general validity in this
limit.37

To conclude this section, we point out that for spheres
of constant charge in very low salt, counterion-condensation
analysis predicts the re-entrant behavior for η.10,32 Here the
object’s charge is renormalized at intermediate salt concen-
trations but increases towards its full structural value in both
limits as κ → 0 as well as ∞. However when both regula-
tion and renormalization are at play, as in our full model and
in actual experiments, we do not expect this non-monotonic
behavior as κ → 0. Decreasing c increases the magnitude of
the sphere surface potential monotonically, which in turn expo-
nentially damps the net charge of a regulating ionizable group
driving down the sphere’s net charge, as evident from Eq. (3).
Departures from this expectation are of course possible for
objects composed of a mixture of ionizable groups with vastly
different pKas.

IV. COMPARING MODEL PREDICTIONS
WITH EXPERIMENTS
A. Effective charge measurements on biomolecules

Table I compares predictions of effective charge from
our full model, including both charge regulation and renor-
malization, with experimental measurements of effective
charge using our recently developed method, “escape-time
electrometry” (ETe),34 for several classes of biomolecules
such as DNA and intrinsically disordered and globular
proteins.

In order to determine the regulated charge, qs, and the
effective charge, qeff, for a given biomolecule under a specific
set of solution pH and salt concentration conditions, we solve
the equations outlined in Section II B subject to the relevant
boundary conditions. Using the obtained ψ(r) distribution, we
determine the regulated charge, qs as described. Take Q = qs,
we then determine the effective charge, qeff as described in
Section III A. Note that in our experiments where κh > 3 in
general, we find that the regulated charge, qs, for the molecule
in the slit (κz∗ ∼ 3) is essentially identical to the free solution
value (κz∗ ∼ 10). We therefore perform charge renormalization
calculations using an expression for the free energy, F, corre-
sponding to the case for a particle at constant charge, shown in
Eq. (9).35

We find very good agreement between the measurements
and calculations. Note that in our model of linear polyelec-
trolytes describing nucleic acids and disordered proteins, no
parameters were tuned in order to obtain agreement with exper-
iment. For globular macromolecules, however, we do tune the
value of εp in order to obtain an agreement with the charge
measurement. We further note for a given set of experimental
parameters, namely, pH and salt concentration, the calcu-
lated regulated charge, qs, and corresponding effective internal
dielectric constant predictions from our model agree well with
the results of an atomistic approach for lysozyme (1W08) and
Gusβ.



205101-9 M. Krishnan J. Chem. Phys. 146, 205101 (2017)

TABLE I. The effective electrical charge of nucleic acids and proteins measured using ETe (qm) and compared
with our calculations (qeff) and other theoretical predictions (qtheory).34 qs denotes the net (regulated) charge of
the molecule. qstr is a sequence-based estimate from Eq. (1) at the experimental pH, including the contribution
of fluorescent dye moieties coupled to the molecule. For DNA, the contribution of dyes is taken as an additive in
all theoretical estimates, while for proteins, qstr remains effectively unaltered. qtheory lists the predicted effective
charge from charge renormalization theories and from an atomistic structure-based calculation for the globular
protein. qeff values carry an estimated 1%-5% uncertainty due to numerical error. All values of the charge in units
of �e. Reprinted with permission from Ruggeri et al., Nat. Nanotechnol. 12, 488–495 (2017). Copyright 2017
Springer Nature.34

Model predictions Measurement

Molecule qstr qtheory qs qeff qm

DNA 40 bp 82 30.9a; 21b 80.3 32.4 37.1 ± 0.8
60 bp 124 48a; 31b 121.4 45.7 42.9 ± 2.5

Protein ProTα 46 35a; 34.8b,c 44.5 31 28.5 ± 1.2
Stm-l 102.7 96a; 102.7b 101.8 89.6 88.8 ± 3.5
Gusβ 133.8 24.3d 21.5 21.5 21.5 ± 0.9(

εp = 11
) (

εp = 11
)

aEffective charge predictions of Ref. 10.
bEffective charge predictions of Ref. 7.
cEffective charge predictions of Ref. 38.
dProtein net charge calculated from pK-1/2 values based on PDB structure (http://biophysics.cs.vt.edu/H++, version 3.2) (Ref. 22).

B. Estimating the interior dielectric coefficient
of a globular protein

Computing the net charge of a protein in solution within
the traditional atomistic approach involves correctly assign-
ing the titration state of each group under a given set of
solution conditions. The most popular methods are based on
electrostatic continuum models that numerically solve the
linearized PB equation. The protein is treated at the atom-
istic level described by a molecular mechanics force field,
embedded in a uniform dielectric continuum with dielectric
constants of 80 for the solvent and 4–20 for the protein inte-
rior. A pKa shift is calculated from the difference in elec-
trostatic energy of a residue in its charged and neutral form
and this shift is added to a model pKa value. Once the pKa

shifts of all the ionizable groups have been assigned, the
net charge at any given pH follows directly. For a protein
housing N charged groups, a total of 2N titration states need
to be accounted for, requiring solution of the multiple titra-
tion site problem.39 For example, for a large protein such
as Gusβ, a fully atomistic calculation of net charge for a
given value of the interior dielectric constant and under a spe-
cific set of experimental conditions (pH and c) takes several
hours.

Fig. 6(a) shows our theoretically predicted net structural
charge, qs for the globular tetrameric protein Gusβ, as a func-
tion of average interior dielectric coefficient εp for cases where
the Born term, φs is included and excluded. We find the exper-
imentally measured charge of qm = −21.5 e corresponds to a
value of εp = 11 for the interior of Gusβ. Rather than a true
dielectric constant, εp in our simplified model is an effective
parameter that is expected to capture all physical contributions
to the energetics of charging that are not explicitly reflected
in the model, as discussed further in Sec. IV C. The value of
εp < 78.5 in our model would therefore be expected to serve as
no more than a physical indication of the molecule’s compact
folded state. Nonetheless our measured charge qm = −21.5 e
and corresponding predicted value of εp = 11 for the interior

of Gusβ agree well with the prediction of a fully atomistic
calculation using the H++ platform (q = �24.3 e and εp = 11)
for the relevant experimental conditions. Furthermore, our
calculation takes <1s for a given combination of εp, pH,
and c.

C. pKa shift measurements

Finally we apply our approach to model recent pKa shift
measurements on SNase.23,24 In these experiments, residues
at interior hydrophobic positions in the protein were substi-
tuted by glutamate residues of nominal pKa 4.3. The pKa

shift of these buried ionizable groups was then experimentally
obtained by measuring the pH dependence of the protein’s
thermodynamic stability. pKa shift measurements probe the
local spatially variable dielectric constant in the vicinity of the
substituted residue in the protein.

Our model as described so far treats the protein as a sphere
of a uniform average dielectric constant, glossing over local
variations in εp. In order to capture local dielectric effects
in SNase, we treat the protein as a sphere of radius 2.2 nm
(based on the PDB structure for 3BDC) and create a separate
geometric domain to account for a locally different dielectric
constant around the charged group of interest. We thus treat the
protein as a “core-shell” particle where the core region, which
houses the single introduced glutamate group, is a sphere of
radius rc = 0.6 nm, with a dielectric coefficient εc. This value
has been chosen to represent a region in the protein interior
that houses about 2 amino acids.31 The shell on the other hand
represents the rest of the protein and is treated as a uniform
dielectric as before: it has an outer radius of 2.2 nm and a
uniform dielectric coefficient εs, which is physically the same
quantity as εp. The shell region also carries the entire formal
charge of the SNase molecule. Formally SNase is a positively
charged protein and remains so up to pH > 9. We solve the
model for various values of pH, εs and εc in an electrolyte
containing 100 mM monovalent salt. The calculation takes
approximately 90 s.

http://biophysics.cs.vt.edu/H++
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FIG. 6. (a) Calculated net charge, qs for Gusβ as a function of the interior
dielectric constant, εp for various salt concentrations, c = 0.1 mM, 1 mM,
10 mM, and 100 mM from top to bottom, and pH 8.8. Open symbols denote
calculations with φs = 0 for comparison. The experimentally inferred value
of qs = −21.5 e in 1 mM monovalent salt and corresponding inferred value of
dielectric constant, εp = 11 are displayed. (b) Calculated charge of Staphyl-
lococcus nuclease (SNase) as a function of pH in a solution of monovalent
concentration, c = 100 mM for various values of εp =78.5 (black), 40 (blue),
and 25 (red). The experimentally measured isoelectric point, pI = 9.6 is cap-
tured for εp = 40. All lines are guides to the eye and the atomistic structures are
presented with positive surface residues colored blue and negative residues,
red.

Integrating the charge within the core region and plotting
this value as a function of pH yields a theoretically predicted
value of the pKa of the ionizable group in question. Note that
the core region does not have to be centered in the sphere rep-
resenting the protein but has been so chosen in the present
case after verifying that off-center locations do not substan-
tially change the results of the calculation. We also find that
the calculated pKa shows some dependence on the radius of
the core region. Decreasing the radius rc of the low-dielectric
core region from 0.6 nm to 0.5 nm, for example, shifts the
inferred pKas up by ∼0.1 units. For rc = 0.5–0.6nm, varying
εc and εs we find that the model predicts Ka shifts in the range
4.5 to 9.1 for values of εs = 40, and εc in the range 8 to 20, in
good agreement with the reported values.23 These values for

εc and εs are reasonable when compared with predictions of
the local dielectric coefficients from theoretical models of the
interior of globular proteins.40

Incidentally, although on the comparatively high side, a
value of εp = 40 in our model for SNase reproduces its exper-
imentally measured isoelectric point, pI = 9.6 (Fig. 6(b)).41

Importantly we further find that first principles calculations
of the dielectric constant of SNase also yield a rather high
value of 20-30 which has been attributed to intrinsic backbone
fluctuations originating from the molecule’s structural archi-
tecture.42 Furthermore since in our model, εp is a parameter
representing the average dielectric environment over all ion-
izable groups in a protein, it may be reasonable to expect that
smaller proteins, e.g., SNase (radius, 2.2 nm) with a larger sur-
face to volume ratio, and therefore on average greater exposure
per residue to the external electrolyte (εw = 78.5), require a
larger model value of εp than larger proteins such as Gusβ
(radius, 5.1 nm, εp ∼ 11), all other effects remaining equal.
Thus, calibrating the model against, e.g., an isoelectric point
measurement on a protein of interest would yield the required
value of εp to be input to the calculation. This parameter value
would implicitly account for all effects not explicitly consid-
ered in the model. Moreover, given the atomic structure of a
globular molecule, a facile initial step towards fine-tuning the
spatial charge distribution in the model would be to split the
charged residues into surface and interior groups and explicitly
account for the solvent-exposed surface groups as illustrated
in Fig. 1 for polyelectrolytes.

We further compare our model predictions with the
results of the same experimental study performed with internal
hydrophobic positions replaced by Lysine groups of nominal
pKa 10.4 (Fig. 7(b)). However in this case, we find that the
experimentally measured pKa shifts of 4.5 to 9.0 (Ref. 24) are
only obtained by introducing a multiplicative tunable param-
eter, p, in the Born energy term in Eq. (3), whose value here is
∼0.25. The need to attenuate the solvation energy contribution
in order to capture the experimental measurement in SNase
variants with buried lysines strongly suggests that additional
descriptive ingredients may be necessary in order to improve
the predictive ability of the model.

Currently the model ignores electrostatic contributions
such as hydrogen bonds to protein polar atoms and to site-
bound water molecules, dipole interactions, structural flexibil-
ity and fluctuations, as well as non-electrostatic contributions
such as van der Waals interactions to the ionization equilib-
rium.43 Some or all of these contributions could act to offset the
effect of the large, energetically unfavorable solvation energy
within the protein interior. The fact that the model does not
explicitly consider these contributions could point to a phys-
ical justification for the introduction of a tunable parameter
p < 1, or alternatively, the use of φ0 < 0 in Eq. (3). The
effective dielectric constant in our model not only controls the
(electrostatic) energy of the sphere but the same parameter
also determines the magnitude of the solvation energy. The
need to artificially damp the solvation energy contribution in
order to obtain agreement with experiment becomes evident
in the Lys substitution case because the background charge of
SNase is largely positive, creating an a priori unfavourable sit-
uation for the protonation of a basic group. Nonetheless, our
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FIG. 7. (a) Calculated pKa shifts for an interior Glu residue in SNase. The
total charge enclosed within the “core” domain housing the Glu residue, qGlu,
is plotted as a function of pH, for various values of εs = 25 (squares), 40
(circles) and 78.5 (triangles), and εc = 25 (red), 20 (green), 15 (blue), 10
(black). The pH at which the charge of the residue is half its fully charged
value denotes its pKa in the local dielectric environment within the protein.
For εs = 40, the predicted pKas ranging from 4.5 to 9.1, and corresponding
local dielectric constants εc = 10−25, agree well with Ref. 23. (b) Calculated
pKa shifts for an interior Lys residue in SNase. qLys is plotted as a function of
pH for the same values of εs and εc as in (a). Here, pKa values ranging from
3.8 to 8.8 are obtained for local dielectric constants εc = 10−25, comparable
with the results of Ref. 24, using a multiplicative tunable parameter, p = 0.25
in the Born solvation energy term in Eq. (3). The grey solid lines denote the
charge of an isolated Glu and Lys residue, respectively. All other lines are
guides to the eye.

coarse-grained model yields important physical insight into
the underlying mechanisms of electrical charging in globular
macromolecules.

V. CONCLUSIONS

The key physical features unique to our integrated model
of biomolecular electrostatics in solution are as follows: (1)
the transparence of the globular interior to protons in solution,
(2) chemical equilibrium of the protons in the interior or on
the surface of the molecule with those in the bulk, and (3)
an interaction free energy based definition of the renormalized
charge. We have tested our model against the following experi-
mental cases: (1) strongly charged polyelectrolytes where only
renormalization and almost no charge regulation is expected
(DNA), (2) polyelectrolytes where some renormalization and
very little regulation is expected (highly charged disordered
proteins), (3) globular macromolecules with strong charge reg-
ulation and little renormalization, and (4) pKa shifts in basic
proteins.

We find that our macromolecular electrostatics model suc-
cessfully captures observations in two very different types of
experiment. In escape-time based interaction energy measure-
ments, the model predicts quantitatively accurate values of the
effective electrical charge for several biomolecules in the solu-
tion phase. In pKa shift measurements for globular proteins,
it correctly reflects the experimentally observed trends. The
success of this framework in capturing experimental measure-
ments on macromolecules in solution, ranging from globular
and intrinsically disordered proteins to nucleic acid fragments,
given the monovalent salt concentration and pH, suggests
broad applicability and the potential to interface with exist-
ing platforms for protein electrostatics calculations such as
Delphi and APBS.26,28

For linear polyelectrolytes, the model predicts that the
contribution of charge regulation is small under most condi-
tions of experimental interest. In particular for acidic cylin-
drical biomolecules with ionizable groups with pKas in
the range 2-4, such as DNA, charge renormalization rather
than regulation plays the dominant role in determining the
effective charge. The opposite trend is predicted for glob-
ular matter carrying buried ionizable groups. Here in gen-
eral we expect that charge regulation plays a major role,
though a small contribution from renormalization may also be
present.

In addition to ignoring ion-ion correlations, and the con-
tribution of molecular charge fluctuations to interaction free
energies,16 our mean-field PB model currently also neglects
ion-specific effects, the finite size of ions, and anisotropy in
the dielectric constant of water at interfaces.44,45 However
it should be possible to account for most of these effects
in our model by suitably modifying the PB equation, and
incorporating ion-surface interaction potentials and tenso-
rial dielectric functions available from molecular dynamics
simulations.44,45

Finally, at the level of molecular structure, the model in
its current form does not consider the explicit spatial locations
of individual charged groups and a local, spatially variable
dielectric coefficient within the protein interior. Clearly, further
structural detail can be taken into account in future refine-
ments in order to move towards a more exact description
of the molecule. Despite its simplicity, the approach pro-
vides direct insight into the physical mechanisms underlying
macromolecular electrostatics and captures broad experimen-
tal trends well. The framework we describe is easy to imple-
ment, capable of delivering rapid results of good accuracy,
and could find particular relevance in predicting the properties
of macromolecules whose crystal structures are not available
or are of insufficient quality to reliably apply the atomistic
approach.
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