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Abstract

Aims

Immune endothelial inflammation, underlying coronary heart disease (CHD) related pheno-

types, could provide new insight into the pathobiology of the disease. We investigated DNA

methylation level of the unique CpG island of HLA-G gene in CHD patients and evaluated

the correlation with cardiac computed tomography angiography (CCTA) features.

Methods

Thirty-two patients that underwent CCTA for suspected CHD were enrolled for this study.

Obstructive CHD group included fourteen patients, in which there was a stenosis greater

than or equal to 50% in one or more of the major coronary arteries detected; whereas sub-

jects with Calcium (Ca) Score = 0, uninjured coronaries and with no obstructive CHD (no

critical stenosis, NCS) were considered as control subjects (n = 18). For both groups, DNA

methylation profile of the whole 5’UTR-CpG island of HLA-G was measured. The plasma

soluble HLA-G (sHLA-G) levels were detected in all subjects by specific ELISA assay. Sta-

tistical analysis was performed using R software.

Results

For the first time, our study reported that 1) a significant hypomethylation characterized

three specific fragments (B, C and F) of the 5’UTR-CpG island (p = 0.05) of HLA-G gene in
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CHD patients compared to control group; 2) the hypomethylation level of one specific frag-

ment of 161bp (+616/+777) positively correlated with coronary Ca score, a relevant parame-

ter of CCTA (p<0.05) between two groups evaluated and was predictive for disease

severity.

Conclusions

Reduced levels of circulating HLA-G molecules could derive from epigenetic marks. Epige-

netics phenomena induce hypomethylation of specific regions into 5’UTR-CpG island of

HLA-G gene in CHD patients with obstructive non critical stenosis vs coronary stenosis

individuals.

1. Introduction

Coronary heart disease (CHD) shows a complex nature resulting from several interacting

genetic/epigenetic risk factors, which are strongly affected by individual lifestyle [1,2]. Since

genome-wide association studies (GWASs) present several limitations in explaining the geno-

type-phenotype relationship, major efforts have been made to design an epigenetic map able

to bridge the gap between genome and environment providing novel useful non-invasive bio-

markers for CHD [3–7]. In the last years, advanced network-oriented analysis unveiled specific

molecular pathways underlying CHD-related endophenotypes, mainly endothelial inflamma-

tion, providing novel insight in disease pathobiology [8–12]. Some authors emphasized the

key role of DNA methylation in regulating the human leukocyte antigen-G (HLA-G) gene

expression involved in inflammatory-related pathways underlying CHD onset [13,14]. HLA-G

belongs to nonclassical Ib antigen of the major histocompatibility complex (MHC) represent-

ing a crucial immune checkpoint for the maintenance of self-tolerance and modulation of

innate immune response [15]. At molecular level, DNA methylation is a covalent binding of a

methyl (-CH3) group to the 5th position of cytosine residue in the CpG dinucleotides enriched

in CpG islands, which range from 200bp to several Kb, and are generally located near active

genes. Besides, changes in CpG island DNA methylation profiles may affect tissue-specific

gene expression at transcriptional level leading to higher risk for cardiac injury already in the

early phase of fetal development [2,4–5,16]. Our previous study has demonstrated that periph-

eral blood cells from CHD patients presented differential DNA methylation changes in tar-

geted genomic segments correlating with gene expression and disease severity vs controls [4].

Therefore, we hypothesized that CpG island HLA-G DNA methylation profile in peripheral

blood cells may provide putative useful non-invasive predictive biomarkers and drug targets,

which may improve CHD precision medicine and personalized therapy [17–19]. Besides, our

manuscript reports the first study aiming to investigate the methylation status of the single

CpG island of HLA-G gene by using CHD patients that resulted positive to cardiac computed

tomography angiography (CCTA). Along with a targeted DNA methylation map, we aim to

find a putative association between HLA-G CpG island DNA methylation changes and specific

CCTA parameters. Since CCTA is not invasive and offers a good diagnostic performance

[20,21], the integrated analysis of plaque load changes and DNA methylation signatures affect-

ing HLA-G gene regulation may represent a useful approach to improve risk stratification for

CHD patients.
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2. Methods

2.1 Power analysis

During the experimental design, a power analysis was performed using G�Power software.

The minimum sample size was calculated with a priori power analysis comparing two groups

(critical and non-critical stenosis) and using unpaired Mann-Whitney U test with a power of

about 0.8, an alpha level of 0.05 and medium effect size (d = 0.7). Based on the assumptions,

the minimum total sample size was 32.

2.2 Patient selection

The study was approved by the institutional ethics committee in accordance with the ethical

guidelines of the 1975 Declaration of Helsinki and approved by ethical committee of IRCCS

SDN (Protocol no. 7–13). A written informed consent was obtained from all subjects included

in the study. At IRCCS SDN, during a period of one year, 90 consecutive patients were

enrolled in the study. Patients with diagnosed history of malignancy disorders, active infec-

tions, chronic or immune-mediated diseases were excluded from the study to avoid confound-

ing effects due to other variables. Moreover, subjects with cardiomyopathy, known CHD,

previous percutaneous transluminal coronary angioplasty and coronary artery bypass grafting,

systemic atherosclerosis, such as lower extremity peripheral arterial disease or supra-aortic

arterial disease were not included in the study. After all these exclusion criteria, 32 subjects

without a history of cardiovascular (CV) events and underwent to IRCCS SDN institution for

suspected CHD, were considered for the study. Obstructive CHD was defined by the presence

of a coronary stenosis�50% in one or more of the major coronary arteries detected by CCTA

(n = 14). Patients with Calcium (Ca) Score = 0, uninjured coronaries and with no obstructive

CHD (defined as the presence of a stenosis minor of 50% in one or more of the major coronary

arteries) were considered as control patients (n = 18).

All clinical characteristics such as laboratory parameters, presence of cardiovascular risk

factors, and medical history were accurately recorded. Dyslipidemia was defined as treatment

with drugs or fasting serum total cholesterol�200 mg/dL, or LDL cholesterol�70 mg/dL, or

high-density lipoprotein cholesterol <40 mg/dL, or triglyceride�150 mg/dL [22].

Hypertension was defined as treatment with drugs or systolic blood pressure (SBP)�140

mmHg or diastolic blood pressure (DBP)�90 mmHg [23]. Anthropometrical measurements

including body weight and height were recorded and body mass index (BMI) was calculated.

Blood pressure and resting heart rate were measured after� 5 min rest with a sphygmoma-

nometer (Table 1).

2.3 Sample collection and molecular analysis

From all suspected patients, peripheral venous blood samples were collected in EDTA tubes

after 6–8 hours fasting. All experimental procedures were performed at 4˚C within 1 hour of

collection to separate plasma and cellular components. Peripheral blood mononuclear cells

(PBMNCs) were isolated by Ficoll gradient using HISTOPAQUE-1077 (Sigma Diagnostics,

USA) according to manufacturer’s instructions and frozen at -80˚C at the IRCCS SDN

Biobank.

2.4 CCTA and image analysis

All subjects underwent a CCTA by a third-generation dual source multidetector computed

tomography scanner (Siemens Healthcare AG, Germany). After an ECG-triggered high pitch

spiral acquisition (FLASH) without contrast medium was performed for calcium score
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evaluation (slice thickness of 3mm, increment of 3 mm, small FOV), an angiographic Cardiac

CT scans with IV contrast material (Iodinated contrast agent—Iomeprol 400 mg I/ml—

Iomeron 400) (Bracco, Italy), followed by saline flush, was performed. Then, scans were exe-

cuted with retrospective ECG gating and with prospective ECG-tube current modulation

(window 25%-75% of the R-R interval). Imaging parameters were restructured with a 3rd

generation advanced modeled iterative reconstruction (ADMIRE, Siemens) with a strength

level of 3 using different convolution kernels (Bv36, Bv40, Bv44 and Bv49) with the smallest

FOV possible. CCTA derived features, such as Ca Score, stenosis degree, expressed in percent-

age of lumen reduction, plaque composition, specified as calcified, non-calcified, or mixed

subtypes, and total number of plaque segments were investigated. A consensus interpretation

was obtained according to the international SCCT guidelines [24]. A reduction in the luminal

diameter of�50% in one or more of the major coronary arteries represented a critical coro-

nary stenosis. In order to stratify patients with critical stenosis (CS) (�50%) and non-critical

stenosis (NCS) (<50%), stenosis degree was calculated.

2.5 Methylated DNA Immunoprecipitation (MeDIP)

For DNA extraction and immunoprecipitation from isolated PBMNCs was used MagMeDIP

kit™ (Diagenode, Belgium). Genomic DNA was extracted, and 30 μg were sheared (10 cycles,

15 s “ON”, 15 s “OFF” at 20% of amplitude) in fragments between 100–800 bp using the Q125

sonicator (Qsonica, USA). Shared DNA was analyzed on agarose gel. MeDIP was performed

using α-50methyl-cytosine antibody; samples were rotated overnight at 4˚C in the presence of

magnetic beads. The 10% of IP incubation mix of each DNA shared sample was stored as

input for the comparison with immunoprecipitated DNA. Immunoprecipitated DNA was

eluted in TE buffer. The amount of methylated DNA enrichment in MeDIP samples compared

to the respective INPUT sample was detected by qRT-PCR CFX96 Touch Real-Time PCR

Detection System (BioRad Laboratories, Ltd, USA) with iQ™ SYBR1 Green Supermix (BioRad

Laboratories, Ltd, USA). A set of specific primer pairs provided in the kit and targeting specific

DNA sequences were used for checking MeDIP efficiency. The Methyl DNAIP controls

revealed IP efficiency. qRT-PCR data were expressed as percentage of methylated DNA IP

Table 1. Baseline characteristics of patients with Non-Critical Stenosis (NCS) and Critical Stenosis (CS).

Variables Control group (NCS<50%) (n = 18) Critical Stenosis group (CS�50%) (n = 14) p value

Age (years)� 55.11±10.62 61.78±11.87 0.11

Gender (M/W) (M/W%) 11/7 (61.1/38.9%) 13/1 (92.9/7.1%) 0.04

BMI (kg/m2)� 27.59 ±3.88 29.84 ±5.89 0.23

Total Cholesterol (mg/dL)� 190.33±33.07 187.20±46.29 0.90

LDL Cholesterol (mg/dL)� 121.00 ±20.16 126.75±41.66 0.81

HDL Cholesterol (mg/dL)� 50.4±6.188 44.0±5.70 0.13

Pericardial fat (mL)� 155.45±70.61 211.05±115.91 0.13

CHD familiarity (%) 10 (55.6%) 7 (50.0%) 0.75

Smoking (%) 5 (27.8%) 4 (28.6%) 0.96

Diabetes (%) 1 (5.6%) 2 (14.3%) 0.40

Hypertension (%) 15 (83.3%) 8 (57.1%) 0.10

Dyslipidemias (%) 6 (33.3%) 5 (35.7%) 0.89

Physical Activity (%) 4 (22.2%) 3 (21.4%) 0.96

�Data are represented as mean ± SD. Bold values were considered statistically significant with a p < 0.05.

Abbreviations: BMI: body mass index; CHD: coronary heart disease; HDL: high density lipoprotein; LDL: low density lipoprotein; M: man; W: woman.

https://doi.org/10.1371/journal.pone.0236951.t001
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compared to input (% of DNAIP/total input). Each sample was analyzed in triplicate and data

expressed as mean ±standard error (SE).

Genome Browser tool (https://genome.ucsc.edu) were used to select genetic region and

design DNA methylation specific primers for CpG island of HLA-G gene (Table 2).

2.6 ELISA assay

The determination of HLA-G soluble forms was performed by sandwich enzyme linked

immunoassay (ELISA) kit (Exbio, Czech Republic) using microplates pre-coated with anti-

sHLA-G monoclonal antibody. After 16–20 hours of incubation and repeated washing, the

horseradish peroxidase-labeled human anti-β2-microglobulin monoclonal antibody (HRP)

was added to all wells and incubated for 60 minutes with captured sHLA-G. The HRP conju-

gate reacted with the substrate solution (TMB). Absorbance was detected on the standard plate

reader Infinite 200 PRO (Tecan Group Ltd., Switzerland). sHLA-G concentration was deter-

mined according to the standard curves and expressed as U/mL or ng/mL [25].

2.7 Statistical analysis

Statistical analysis was performed using R software (version 3.03, Austria). Continuous vari-

ables were expressed as mean ±standard deviation (SD) or standard error (SE). Data were

tested for normality through the Shapiro-Wilk test. Unpaired Student’s t-test or Mann-Whit-

ney U test, as required, were used for comparison between two groups, CS and NCS. Categori-

cal variables were expressed as percentage and were compared using the Chi-Square test or the

Fisher’s exact test. A p-value less than 0.05 was considered significant. Bonferroni’s correction

was used for multiple hypothesis correction if necessary.

We identified significant variation in HLA nucleotides methylation levels between the two

groups (NCS vs CS) and then we investigated the prognostic power of the HLA-G statistically

significant methylation levels for relative CpG islands in order to predict the severity of dis-

ease (CS). For this purpose, we considered a Generalized Linear Model (GLM) and we evalu-

ated the performance using a 3-fold cross validation. Finally, the association between CCTA

variables and significant HLA nucleotides methylation levels were investigated in CS group.

Spearman’s rank correlation was conducted for continuous CCTA variables and linear

regression analysis was carried out for categorical CCTA variables. A Spearman’s ρ or regres-

sion’s R value greater than 0.8 and significant p-value (p-value<0.05) was set as threshold to

identify strong agreement between CCTA parameters and HLA nucleotides methylation

levels.

Table 2. DNA methylation specific primers for CpG island of HLAG gene.

Primer name identifier Forward Reverse Product size (bp) chr6 position

HLAG_A GCGGTCCTGGTTCTAAAGTC GAGAGTAGCAGGAAGAGGGT 102 1096146+1096247

HLAG_B CTCTTCCTGCTACTCTCGGG CTCATGGAGTGGGAGCCT 194 1096231+1096424

HLAG_C ATGAGGTATTTCAGCGCCG GTGTTCCGTGTCTCCTCTTC 188 1096420+1096607

HLAG_D GAAGAGGAGACACGGAACAC GGGGTTACTCACTGGCCT 103 1096588+1096690

HLAG_E AGGCCAGTGAGTAACCCC GCAGGGATTTTGGTAAAGGC 172 1096673+1096844

HLAG_F GCCTTTACCAAAATCCCTGC AGGCATACTGTTCATACCCG 161 1096825+1096985

HLAG_G TCCGCGGGTATGAACAGTAT CTCTCCTTTGTTCAGCCACA 144 1096962+1097105

HLAG_H GTGGCTGAACAAAGGAGAGC CTCAGGGTGGCCTCATAGTC 151 1097087+1097837

https://doi.org/10.1371/journal.pone.0236951.t002
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3. Results

3.1 Study population

Our manuscript reports the first study aiming to investigate the methylation status of the single

5’-CpG island of HLA-G gene by using Methylated DNA Immunoprecipitation (MeDIP) tech-

nique performed on peripheral blood mononuclear cells (PBMNCs) extracted from subjects

that underwent CCTA for suspected CHD. A total number of 32 patients were enrolled in this

study. Fourteen patients showed a critical stenosis (CS) (�50%), of which the 50% (n = 7)

showed a critical stenosis of>75%, the remaining eighteen patients showed a stenosis degree

<50% (NCS).

The mean age was 61.78±11.87 years in CS compared to 55.11±10.62 years in NCS group

(p = 0.110). The percentage of male was significantly higher in patients with CS (92.9%) com-

pared to NCS (61.1%, p = 0.041).

The mean body mass index (BMI), the pericardial fat and cardiovascular risk factors (CHD

familiarity, smoke, diabetes, hypertension and dyslipidemia, total cholesterol, LDL- and HDL-

cholesterol plasmatic concentrations) were comparable between two groups, but they were not

significantly different between CS and NCS patients (Table 1).

3.2 CCTA

For all subjects imaging features were extracted by CCTA (Fig 1). Specifically, Ca score, plaque

composition, specified as calcified, non-calcified, or mixed subtypes, total number of stenotic

vessels and plaque segments were investigated between NCS and CS groups. Table 3 shows the

results from the statistical analysis. All CCTA features changed significantly (p-value less than

0.05) between NCS and CS individuals. Mean (SD) values for Ca score and counts (%) for cate-

gorical CCTA features were zero for control patients (NCS).

3.3 Differential methylation of HLA-G 5’-CpG island

This pilot study allows us the analysis of unique 5’UTR-CpG island of gene coding for HLA-G.

An epigenome analysis of DNA methylation from PBMCs was performed in n = 14 angio-

graphically positive subjects (cases), who were age matched with n = 18 angiographically nega-

tive controls. Specifically, the cases reported a CS (�50%) at coronary level, whereas NCS

showed a non-critical stenosis (<50%). By statistical analysis, significantly lower (Fig 2)

(Table 4).

The distance of fragments was positioned from the ATG initiation codon of HLA-G gene.

The amplified fragments B- and C-related regions were located into exon 1 and exon 2 respec-

tively, whereas F region was in the second intron of the gene. In addition, we investigated

whether significant CpG methylation levels of HLA-G gene (as reported in Table 4) could be

considered as a prognostic value to predict the severity of disease associated to CS. The results

showed that HLA-G methylation for F fragment reported the best performance in sensitivity

and specificity values in order to predict CS condition (Table 5).

3.4 Correlation analysis between methylation of HLA-G 5’-CpG island and

imaging parameters

The statistical analysis for the quantitative features showed that all CCTA variables, such as Ca

score, plaque composition, number of stenotic vessels and number of plaque segments,

changed significantly between NCS and CS patients (Fig 3) (Table 3). In addition, we per-

formed a correlation analysis and linear regression in order to evaluate possible association
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between imaging and molecular features. The results of correlation analysis (S1 Table) showed

a significant association of Ca Score with methylation level of the fragment F (+616/+777) in

5’-CpG region (Rho = 0.57, p = 0.03) as shown in Fig 4, whereas the regression analysis

reported non-significant results (S1–S3 Figs).

Fig 1. CCTA screening. CCTA analysis in subjects screened for suspected CHD. Panel A shows a subject with non-

critical stenosis (<50); Panel B a patient with a critical stenosis�50%; Panel C a patient with a critical stenosis>75%.

https://doi.org/10.1371/journal.pone.0236951.g001
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Table 3. Statistical analysis on quantitative imaging features.

Variables NCS group (NCS<50%) CS group (CS�50%) p value

Ca score 0.14±0.27 550.03±600.17 0.004

Plaque composition 0.010

Calcified 0.00% 28.60% -

Non-calcified 72.20% 28.60% -

Mixed 27.80% 42.90% -

N˚ Stenotic vessel 0.00±0.00 1.71±1.32 <0.001

N˚ plaque segments 1.27±0.46 5.42±4.07 0.002

Bold values were considered statistically significant with a p < 0.05.

https://doi.org/10.1371/journal.pone.0236951.t003

Fig 2. HLA-G gene and relative 5’UTR-CpG island. Graphical representation of HLA-G gene including its relative

5’UTR-CpG island. A) The physical map of the chr6q22.1, showing the genomic region encompassing HLA-G gene, is

depicted. The 5’UTR-CpG island is also shown. B) Ref Seq annotated transcript is shown in blue. C) Methylation levels

of all fragments analyzed are shown. Red, blue and green circles indicate a significant hypomethylation between NCS

and CS group (p = 0.05).

https://doi.org/10.1371/journal.pone.0236951.g002

Table 4. Statistical analysis on molecular features.

Variables (%) Control group (NCS<50%) (n = 18) Critical Stenosis group (CS�50%) (n = 14) p value

HLAG_A_meth 0.67±1.13 0.38±0.29 0.44

HLAG_B_meth 3.84±7.15 1.88±2.94 0.05

HLAG_C_meth 1.29±1.26 0.89±0.94 0.05

HLAG_D_meth 1.19±0.75 2.54±5.28 0.31

HLAG_E_meth 1.80±2.32 2.28±5.30 0.09

HLAG_F_meth 13.34±3.92 11.59±7.07 0.05

HLAG_G_meth 0.65±1.13 0.86±2.19 0.19

HLAG_H_meth 2.65±3.53 4.60±6.33 0.720

Bold values were considered statistically significant with a p < 0.05.

https://doi.org/10.1371/journal.pone.0236951.t004
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3.5 ELISA

All subjects were evaluated for sHLA-G plasma levels. CS group showed higher sHLA-G level

compared to NCS, although not significant (p = 0.30) (Fig 5A). Plasma levels of sHLA-G were

included between 0.0–6.5 U/mL (0.0–23.3 ng/mL) for the NCS group, whereas values included

between 0.0–13.9 U/mL (0.00–50.0 ng/mL) were observed for CS group. We compared

sHLA-G protein distribution with the significant distribution of the relative 5’UTR-CpG

islands (HLAG_B, HLAG_C and HLAG_F) reported in Table 5, grouped by NCS and CS

patients. The results showed an increase in circulating plasma protein for CS group compared

to NCS group (Fig 5A), which corresponded to a decrease in 5’UTR-CpG methylation levels

(Fig 5B). We performed a correlation analysis between methylation levels and circulating

plasma protein for both groups, using Spearman’s correlation coefficient. Unfortunately, the

results did not report statistical significance.

4. Discussion

Our study reported: 1) a status of significant hypomethylation characterizing three specific

fragments of the unique 5’-UTR CpG island (B, C and F) in HLA-G gene of control vs CHD

patients with CS�50%; 2) a strong correlation of hypomethylation levels of the F fragment

(+616/+777) and coronary Ca score between controls and CHD with CS�50% groups

(Rho = 0.57, p = 0.03).

The clinical role of HLA-G has been widely explored in various pathophysiological condi-

tions, such as organ transplantation, viral infection, autoimmune and inflammatory diseases,

and cancer [13,14,26–29].

Moreover, in the literature, it is already known that HLA-G expression is modified by sev-

eral genetic polymorphisms (SNPs)and some reports showed the association between SNPs

and CHD risk although there is no evidence at transcriptomic level [30–32]. SNPs in distinct

regions can play a relevant role both at transcriptional and protein levels, influencing binding

of specific microRNAs and relative gene expression.

It was reported that HLA-G is upregulated in response to rejection of organ transplantation

[33–37], and heart failure (HF) [38], suggesting a putative role to modulate the inflammatory

condition [39,40].

Remarkable, in the literature, there are no studies about correlation between HLA-G meth-

ylation of 5’UTR-CpG island and imaging features. Thus, it was interesting to investigate in

detail its regulation impact in CHD patients.

Table 5. Model performance for relative 5’UTR-CpG island methylation levels of HLA-G gene with statistic sig-

nificant changes between NCS and CS condition.

HLAG_B HLAG_C HLAG_F

Sensitivity 0% 23% 57%
Specificity 100% 100% 89%
Pos Pred Value NaN 100% 80%
Neg Pred Value 56% 63% 73%
Precision NaN 100% 80%
Recall 0% 23% 57%
Balanced Accuracy 50% 62% 73%

�NaN not available number

https://doi.org/10.1371/journal.pone.0236951.t005
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Recently, a pilot study analyzed DNA methylome by including 6 angiographically positive

CHD patients compared to 6 controls. Results suggested that hypomethylation level of a spe-

cific CpG (cg06316104) of HLA-G promoter may be a useful predictive biomarker of disease

[41]. Here, the authors performed an epigenome-wide analysis of methylome by using the

microarray chip having a limited coverage of CpG sites. In our study, for the first time, we

evaluated the differentially methylated regions (DMRs) considering the complete 5’UTR-CpG

island of HLA-G. The mRNA synthesis of a specific gene is mainly regulated by the 5’UTR pro-

moter region of the relative gene, as well as by the degree of degradation, localization and

translation of the specific mRNA [42]. In our study, whole blood sample was chosen as the

starting material method, since it is the least invasive.

It was reported that the epigenetic mechanisms could regulate gene-environment relation-

ship underling individual responsiveness to CHD onset [43,44],For the first time, in the 1997,

Onno et al., reported a status of hypomethylation only in random six fragments of 5’-CpG

island of HLA-G G in peripheral blood [45]. By analyzing the entire 5’UTR-CpG island, we

observed that some DMRs were hypomethylated in accordance with prior discovery [45].

Fig 3. Methylation levels of HLA-G CpG island. Methylation levels of 5’-CpG HLA-G, evaluated by specific oligonucleotides, and gene expression in

NCS and CS patients. (A-I) HLA-G oligonucleotides methylation levels; (J-L) gene expression. NCS: Non-critical Stenosis; CS: Critical Stenosis.

https://doi.org/10.1371/journal.pone.0236951.g003
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Particularly, 4 DMRs were hyper-, whereas 4 DMRs were hypomethylated. Moreover, we

observed a significant reduction of methylation level of B(+22/+216), C (+211/+399) and

F (+616/+777) fragments specifically in CHD patients with CS�50% respect to NCS<50%

(p<0.05). Notable, the regions relative to B- and C-oligonucleotides amplification were located

into exon 1 and exon 2 respectively, whereas F region was positioned in the intron 2 of HLA-G
gene.

In according to Golareh et al. results [46], in order to evaluate the potential role of

DNA methylation to predict CHD risk, we performed a predictive statistical model on

Fig 4. 5’CpGHLA-G methylation and Ca score correlation. Correlation plot for Ca score continuous variables and

HLA-G nucleotides methylation levels (B, C, F).

https://doi.org/10.1371/journal.pone.0236951.g004

Fig 5. Evaluation of plasmatic sHLA-G and relative CpGs methylation levels. sHLA-G levels were analyzed by

ELISA assay in the plasma samples of NCS and CS patients. A) Levels of plasmatic sHLA-G expressed as ng/mL; B)

HLA-G methylation levels for relative 5’UTR-CpG-B,—C and -F were reported.

https://doi.org/10.1371/journal.pone.0236951.g005
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hypomethylated DMRs and we evaluated good performances considering 5’UTR-CpG island

for F fragment characterizing disease severity in term of CS.

The statistical analysis for the quantitative features showed that all CCTA variables, such as

Ca score, plaque composition, number of stenotic vessels and number of plaque segments,

changed significantly between NCS and CS patients. In addition, in order to evaluate possible

association between imaging and molecular features, a correlation analysis and linear regres-

sion were performed. The results of correlation analysis showed a significant association of Ca

Score with methylation level of the F fragment(+616/+777) in 5’UTR-CpG region of HLA-G
(p = 0.03) as shown in Fig 3, whereas the regression analysis reported no significant results

(S1–S3 Figs). Finally, in order to understand whether epigenetic modifications could regulate

circulating levels of HLA-G molecules, we detected plasma concentrations of sHLA-G in all

subjects. To date, there are mixed data regarding its circulating levels during inflammatory dis-

eases, such as rheumatoid arthritis (RA), Chron’s disease (CD) and systemic lupus erythemato-

sus (SLE) [47–49]. Most recently, it was demonstrated that sHLA-G levels were significantly

lower in RA patients respect to healthy subjects [47];Rizzo et al. showed a higher secretion of

sHLA-G in CD patients [48]; no significant difference was detected between plasma levels of

SLE patients and control group, although a reduced plasma concentration of sHLA-G was

observed when the patients were stratified according to clinical manifestations [49]. Regarding

CVDs, higher levels of circulating sHLA-G were observed in heart transplantation [50],

whereas there are no data about sHLA-G concentrations in CHD patients. In our study, for all

subjects, plasma levels of sHLA-G were evaluated, but a not statistically significant difference

of sHLA-G level was detected into CS group compared to NCS individuals (p = 0.09). In

according to recent study reporting that changes in DNA methylation states are also associated

with CVD pathophysiology [51], we evaluated that the decreasing in HLA-G methylation levels

of relative 5’UTR-CpG island corresponded to the increasing of circulating sHLA-G protein

concentration. The principal limitation of this study was the small sample size. Therefore, after

this pilot study, which helped us to establish an analysis framework, the next step will include a

clinically larger and more recent dataset to verify and validate these preliminary results in

order to investigate possible correlation between imaging and molecular features involving in

CHD.
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