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Abstract: Sickle cell disease (SCD) and other hemoglobinopathies are a major health concern with a
high burden of disease worldwide. Since the implementation of newborn screening (NBS) for SCD
and other hemoglobinopathies in several regions of the world, technical progress of laboratory
methods was achieved. This short review aims to summarize the current practice of classical
laboratory methods for the detection of SCD and other hemoglobinopathies. This includes the
newborn screening technologies of high-performance liquid chromatography (HPLC), capillary
electrophoresis (CE), and isoelectric focusing (IEF).
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1. Introduction

Newborn screening (NBS) for sickle cell disease (SCD) as one element of prevention programs for
hemoglobinopathies has been in place in several regions in the world for more than 40 years now. First
attempts were made in the United States of America (USA) and Jamaica, as well as in Great Britain
in the 1970s [1,2]. Starting with alkaline electrophoresis, the development of faster and more precise
methods permitted the development of extended and more sophisticated prevention programs of
hemoglobinopathies. The aim of NBS for SCD is to prevent major health complications of SCD from
early childhood onward. SCD in this context comprises all forms of relevant sickling disorders,
originating from different genetic constellations (e.g., homozygous HbS (HbSS) and compound
heterozygous forms as HbS/β0 thalassemia, HbS/β+ thalassemia, HbS/HbC, HbS/HbDPunjab,
HbS/HbE, HbS/HbOArab, HbS/Hb Lepore, and HbS/δβ thalassemia). As life-threatening events can
occur in children with SCD from three months of age onward, early diagnosis is desirable to establish
preventive measures. Patients with thalassemia and other major hemoglobin disorders do not benefit
in the same way from early diagnosis. However, these disorders have important implications for
family health, and the burden of disease is very high in several regions of the world, thus demanding
preventive action. In this context, many newborn screening programs make use of the possibility to
detect carriers of hemoglobin variants as a by-product to provide families with reproductive knowledge
and informed decision-making regarding hemoglobinopathies.

Laboratory methods to detect disease states and carrier states (if included in the program) should
be very sensitive and highly specific. To prevent harm, they should not miss patients and should not
falsely identify patients. Psychosocial and logistic burdens to families from screening or diagnostic
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evaluation, an increased risk of unnecessary medical treatment, or a delayed diagnosis from false
negative results, as well as psychosocial harm from false positive results and uncertainty of clinical
diagnosis, should be minimized and be outweighed by the benefits [3].

While laboratories for newborn screening for endocrine and metabolic disorders mainly
use tandem mass spectrometry (MS/MS) or photometric assays, technologies, which are
commonly established for NBS for hemoglobinopathies include HPLC, isoelectric focusing (IEF),
and capillary electrophoresis (CE). They were developed for larger sample sizes from routine
hemoglobinopathy testing and permit the clear separation of hemoglobin variants of interest in
an automated or semi-automated way. Recent developments of screening methods like tandem
mass spectrometry (MS/MS) and Matrix-assisted laser desorption/ionization time-of-flight mass
spectrometry (MALDI-TOF MS) or molecular genetic testing are explained elsewhere.

2. Technologies

Technologies are based on the separation of hemoglobin species (Hb) and the quantification of
respective hemoglobin fractions from dried blood spot (DBS) or fresh cord blood samples. They should
be able to detect HbS and HbC, and separate HbF and HbA, as well as being able to detect other
hemoglobin variants of clinical relevance, such as HbDPunjab, HbE, Hb Lepore, and HbOArab. The
screening methods reviewed here provide provisional results and identify putative abnormal fractions
of hemoglobin and have to be confirmed to give a definite diagnosis.

In contrast to the diagnosis of carriers and patients with hemoglobinopathies in clinical routine or
carrier screening programs, where a complete blood count with erythrocyte indices and parameters
of iron metabolism are included, newborn screening is only based on the separation of hemoglobin
from DBS or cord blood. Additional tests such as the solubility test for HbS are not applicable. As
symptoms usually do not occur before two months of age, results of screening should be provided
within this period. An algorithm designed to clearly state when parents should be informed and a
defined follow-up help avoid reduced effectiveness of the whole process.

2.1. HPLC

Automated cation-exchange high-performance liquid chromatography (HPLC) is a widely used
method to screen for hemoglobinopathies with a clear separation and quantification of hemoglobin
fractions [4–11]. The method is based on the elution of hemoglobin bound to a solid phase over
time by buffers with a pH gradient. The time from the injection of the sample into the column to
the elution of the hemoglobin fraction is called the retention time. Eluted hemoglobin is detected
by a dual-wavelength detector and quantified by integrating the area under curve of the produced
chromatogram, expressed as a percentage of the total area (Figure 1). A characteristic retention time
(window of detection), together with the relative quantification, permits presumptive identification
of all relevant hemoglobin species: HbF, HbA, HbA2, HbS, HbC, HbDPunjab, HbE, Hb Lepore, and
HbOArab. Hb Bart’s is also detected. HPLC analysis is very precise and reproducible with an inter-run
coefficient of variation (CV) of <5%. The detection limit for HbA and HbS was shown to be around
1% of total hemoglobin [4,6,12]. Calibrators and material for internal quality assurance containing Hb
FAES and FADC (where letters represent different Hb species) are available.
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Figure 1. Chromatogram of HPLC (Variant™ newborn screening (nbs), Bio-Rad laboratories, Europe):
the x-axis represents the time in minutes, and the y-axis represents the response in volts; retention
times of integrated peaks are shown above the peaks, and peaks of Hb variants included in the
pattern are named and indicated with an arrow: (a) pattern of HbF/HbA/HbS (FAS); (b) pattern of
HbF/HbS/HbC (FSC).

2.2. CE

Capillary electrophoresis (CE) combines two principles of separation of hemoglobins, the
electrophoretic mobility in alkaline buffer and the electro-osmotic flow resulting in excellent separation.
High voltage applied to an in silica glass capillary prompt hemoglobin molecules to migrate toward
a detector of 415-nm wavelength. Detected hemoglobin fractions can be relatively quantified and
produce a pherogram. HbF is centered in the neonatal system (note: it is HbA in the adult system),
followed by the automated integration of peaks and defined migration zones (N1 to N13—specific to
the neonatal system) which allow the easy interpretation of pherograms and help identify hemoglobin
patterns (Figure 2).
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Figure 3. Isoelectric focusing gel picture (RESOLVE™, Perkin Elmer, Finland); from left to right: 

patterns of FAC, FAS, FS, and FA, adopted from Reference [14]. 
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Figure 2. Pherogram of capillary electrophoresis (CE; Capillarys™ neonat fast, Sebia, France); zone
from left to right: N13–N1. Peaks of Hb variants included in the pattern are named: (a) pattern of FAS;
(b) pattern of FSC.

CE is able to detect and relatively quantify HbF, HbA, HbA2, HbS, HbC, HbDPunjab, HbOArab,
HbE, and Hb Lepore. Hb Bart’s is also detected. Many other Hb variants may be detected including
γ- and α-chain abnormalities with an overlap in the zones of the more common hemoglobins, e.g.,
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HbDPunjab and Hb Korle Bu in zone N5 [13]. Interpretation has to be diligent with regards to reporting
named hemoglobin variants following the presumptive identification of the system. Controls for
internal quality assurance are provided containing HbF, HbA, HbS and HbC. The detection limit for
HbA and HbS was found to be around 1% of total hemoglobin.

2.3. IEF

IEF is a very sensitive method and is widely used at relatively low costs. IEF separates hemoglobin
species according to their isoelectric point on a gel medium with very high resolution. Hb variants
migrate in a pH gradient to the point where their net charge becomes zero. Bands are narrow compared
to classical electrophoresis and give a precise picture (Figure 3). HbF and HbA, as well as relevant
hemoglobins HbS, HbC, HbDPunjab, HbE, and HbOArab, can be separated. Hb Bart’s can also be
detected. IEF separates post-translationally modified variants, which sometimes makes interpretation
difficult; thus, an experienced staff is needed to read results.
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Figure 3. Isoelectric focusing gel picture (RESOLVE™, Perkin Elmer, Finland); from left to right:
patterns of FAC, FAS, FS, and FA, adopted from Reference [14].

IEF is a semi-automated system, which allows the parallel run of several gels entailing some
labor-intensive steps. Easier work-up and documentation of gels are achieved using a scanning
software. Controls for internal quality assurance contain HbF, HbA, HbS and HbC.

3. Interpretation of Newborn Screening Results and Hemoglobin Patterns

Normal newborn samples mainly contain HbF (α2/γ2) and a smaller amount of HbA (α2/β2).
HbA levels range from 6 to 40% with an average of 19%, showing inter-individual variations. HbA
levels in newborns are dependent on gestational age and date of sampling, reflecting the stage of
hemoglobin switch [6,12]. In Table 1, patterns of the detected hemoglobins are listed in the order
of highest percentage to the lowest. One has to be aware that relevant Hb variants may present an
abnormal pattern similar to those consistent with a target disease. Today, there are more than 1000
variants of hemoglobin known. Software solutions for HPLC and CE suggest a pattern, which has
to be verified by the technician reviewing the chromatogram or pherogram. In IEF, an experienced
staff reviews the gel, and densitometry helps quantify hemoglobin variants to determine the pattern.
Guidelines and lab handbooks can be used to interpret hemoglobin patterns, specifying the significance
of a found pattern and the possible pitfalls according to the methods applied. An abnormal result with
the screening method (first line) is repeated from the sample using a secondary method (second line),
or using the same method if another is not available.
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Table 1. Hemoglobinopathies relevant in newborn screening (NBS) and their respective patterns.

Target Disease Pattern

Sickle cell disease Primary target

HbSS, FS 1

HbS/β0 thalassemia,
HbS/δβ thalassemia,
HbS/HPFH
HbS/C FSC
HbS/β+ thalassemia FSA
HbS/DPunjab FSD 2

HbS/E FSE
HbS/other variant 3 FSX

Thalassemia syndromes and other hemoglobinopathies Secondary target

β0 thalassemia F only
β+ thalassemia FA 4

HbEE
HbE/β0 thalassemia FE

HbE/β+ thalassemia FEA
HbCC or
HbC/β0 thalassemia FC

HbC/β+ thalassemia FCA
HbDDPunjab or
HbDPunjab/β0 thalassemia

FD

HbDPunjab/β+ thalassemia FDA
Hb variant not specified homozygous
Hb variant/β0 or β+ thalassemia

FX
FXA

Severe α thalassemia,
HbH disease FABart’s 5

Severe α thalassemia,
HbH disease with other variants 6

FE Bart’s (e.g)
FAX Bart’s

Traits Secondary target

HbS FAS
HbDPunjab FAD
HbC FAC
HbE FAE
Other Hb variant 7 FAX

Normal FA
1 Hb variants migrating similarly to HbS may be hidden; 2 HbD has to be verified as HbDPunjab, as many other
variants run like HbDPunjab; 3 Hb variants not specified during screening, or specified with second-line methods,
e.g., Hb Lepore, or HbOArab if included in the program; 4 HbA <5% or <1.5% (overlap of premature newborns and
normal newborns) depend on cut-off used; 5 detected Hb Bart’s (over cut-off or qualitative); 6 includes detected Hb
Bart’s with combined α- or β-variants and, e.g., HbE with Hb Bart’s; 7 Hb variants not specified during screening or
specified with second-line methods, e.g., Hb Lepore, or HbOArab if included in the program.

3.1. Target Diseases

Patients with sickle cell disease and non-sickling disorders, as well as carriers of abnormal
hemoglobin variants, can be detected by NBS. Choosing primary and secondary target diseases
influences false negative and false positive results of the overall screening program and, therefore, are
important to the evaluation of the screening process. NBS for hemoglobinopathies has sensitivity and
specificity close to 100% for SCD with regards to the different genetic forms defined as target diseases
(see below); however, it loses sensitivity and specificity when non-sickling disorders are included.
Furthermore, pre-analytic factors like prematurity and blood transfusions prior to sampling influence
the sensitivity. The positive and negative predictive values vary with prevalence of the abnormal
variants and thalassemia syndromes.



Int. J. Neonatal Screen. 2018, 4, 39 6 of 10

3.2. Sickle Cell Disease

Sickle cell disease is a severe hematological disorder with acute and chronic manifestations caused
by a complex pathomechanism of hemolysis and recurrent vaso-occlusive events. Life-threatening
early complications can be largely avoided by initiating simple and effective prophylactic measures
such as penicillin, vaccination, and parent education. Primary target diseases are all common and are
generally severe sickling disorders (see Table 1).

HbS/hereditary persistence of fetal hemoglobin (HPFH) is included as a very mild disorder, as
it cannot be distinguished from homozygous HbS and β0 thalassemia/HbS. This is accepted, as the
disorder seems relatively rare. The definite diagnosis should be ruled out by confirmatory diagnostics
for appropriate counseling and treatment [15].

For the distinction between the disease states of HbS/β+ thalassemia or HbS/β++ thalassemia
and a simple carrier state for HbS, the relative quantification of HbA and HbS and the ratio between
HbA/HbS is used (mainly a cut-off of <1). This approach bears the risk of false positive and false
negative results, as there is an overlap between HbS/β+ thalassemia or HbS/β++ thalassemia and
a simple carrier state for HbS, especially in premature babies. In these cases, HbA is present, but at
different levels depending on gestational age. Additionally, precise quantification is a problem close
to the detection limit of a variant for HPLC and CE [5,7]. To standardize quantitative interpretation
of screening results, cut-offs and ratios can be expressed as multiples of median (MoM) [12]. IEF is
a method with a very high resolution, but it sometimes hampers precise quantification and correct
classification of bands, and there is a slight tendency to over-detect variants of no significance, e.g.,
modified HbA or γ-variants [5,16].

For all described methods, there are difficulties due to the fact that, with over 1000 known
abnormal Hb variants, some of them will migrate, differently from HbA, but together with HbS or
other common variants (HbC, HbD, and HbE). Genetic constellations like Hb Hope and HbS can lead
to false positive screening results for SCD, which can then be excluded by a second-line method or by
confirmatory testing [17]. Unusual analytical pictures may occur, depending on whether these rare
abnormal variants with migration properties similar to HbS (or other common variants) derive from
γ-, α-, or β-globin chain mutations. Heterozygous α-globin chain variants produce additional peaks or
bands and comprise about one-fourth of HbF and HbA (or HbS if an additional β-mutation is present)
if all four α-genes are functional, or about one-third if one α-gene is missing, or one-half if two α-genes
are missing, provided the α-variant is stable. From all possible genotypes for SCD, the suitable target
diseases should be defined according to the whole screening process, in both the screening laboratory
and the confirmatory laboratory. With regards to this definition, cases of SCD caused by very rare
genotypes, such as dominant HbS with a double mutation, are missed by classical NBS [17]; moreover,
milder disorders such as HbS/β++ thalassemia or HbS/HPFH might be detected.

3.3. Non-Sickling Disorders

Other hemoglobinopathies with clinical relevance, including severe disorders such as
β-thalassemia major and severe α-thalassemia (HbH disease), are often also included in NBS for
SCD as secondary target diseases.

3.3.1. β-Thalassemia Major and Intermedia

β-thalassemia major or intermedia results from homozygous or compound heterozygous β0 or β+

mutations. Patients suffer from severe anemia, which requires regular or irregular blood transfusion
and chelation therapy to prevent iron overload. Early detection is wanted to prevent babies from
becoming severely anemic and to support family health in social and medical aspects by giving
the possibility of informed choice for future pregnancies and by including the affected child in a
comprehensive care program for thalassemia. β-thalassemia major can be expected in samples with a



Int. J. Neonatal Screen. 2018, 4, 39 7 of 10

hemoglobin pattern of HbF only, or HbF and HbA below a certain cut-off from 0–5% (<1.5% in the
United Kingdom (UK)) [18,19].

3.3.2. Severe α-Thalassemia, HbH Disease

HbH disease has a variable phenotype ranging from mild microcytic anemia to severe
transfusion-dependent anemia. HbH disease is caused by deletion or inactivation of three α-globin
genes with an imbalance of chain synthesis, leading to the association of β-chains in adults (β2/β2),
known as HbH, and of γ-chains in newborns, known as Hb Bart’s (γ2/γ2). Clinically significant
hemolytic anemia, which possibly necessitates blood transfusion, can occur during fever, infections,
and pregnancy. Severe aplastic crises after infection with parvovirus B19 or growth retardation during
childhood, as well as iron overload in adults with or without previous transfusion, are possible
complications in a minority of patients. In regions with high prevalence and also in some low
prevalence areas for α-thalassemia, HbH disease is included in the newborn screening program as a
target disease. Technologies such as IEF, HPLC, and CE are able to detect Hb Bart’s [20–24]. Several
cut-offs were evaluated for HPLC or a qualitative detection of Hb Bart’s in the fraction of fast-eluting
hemoglobins (≥15% or ≥20% or ≥25% for the FAST fraction on the Bio-Rad™ nbs System, evaluated
on different integration principles). IEF and CE represent a qualitative analysis of Hb Bart’s. Detection
of Hb Bart’s shows considerable overlap between HbH disease and heterozygous α0 thalassemia.
Literature about the sensitivity and the specificity for Hb Bart’s is scarce. Specificity seems lower than
that for β-thalassemia and positive predictive values in a low-prevalence region will be unsatisfactory.
Screening policy should decide on whether false negative results outweigh false positive results or
vice versa. As Hb Bart’s is unstable, sensitivity also depends on material (DBS vs. fresh-cord blood),
the day of sampling, and the storage of samples until measurement.

Including HbH disease in a neonatal screening setting is still controversial, as over-diagnosis
is probable [20]. It seems more acceptable in high-prevalence areas and if the definite diagnosis
by verifying deletional and/or non-deletional α-thalassemia through DNA analysis is done in the
screening center [10,23]. Asian publications show a higher detection rate using DNA analysis in the
first line [25].

3.4. Carrier Detection

With IEF, CE, and HPLC, carriers of relevant Hb variants can be incidentally detected. HPLC and
CE provide presumptive identification of a variant. Variant peaks occur in their respective windows
or zones and, together with the percentages of HbA and the variant peak, a presumptive result can
be reported. All screening programs which include carrier detection recommend two independent
methods as first- and second-line laboratory methods (e.g., IEF and HPLC or HPLC and CE). Whereas
carriers of heterozygous β-thalassemia are not detectable in newborns by measurement of HbA2, the
measurement of HbA and a cut-off <15% may be indicative for the β-thalassemia trait in newborns [19].
Confirmatory diagnostic follow-ups using a new sample with blood count, hemoglobin separation
analysis, and, if necessary, DNA analysis then provide a definite result. These inexpensive methods
can be used for carrier detection to improve family health, as well as in states where no antenatal
screening program is in place; however, they can also lead to stigmatization and counterproductive
effects [26–28].

4. Pre-Analytics

Limitations of the aforementioned methods lie often in the pre-analytical phase. The used material
can be fresh cord blood or dried blood spot from a heel prick. Storage of cord blood should not exceed
seven days at 4 ◦C and that of dried blood spots should not exceed 1 month. Older samples show
lower elution of samples from the DBS and, often, the degradation of hemoglobin, resulting in a high
baseline, increased noise, and unclear peaks with difficulties in zone adjustment and quantification,
especially in Hb species present at low percentage.
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Blood from premature babies contains lower percentages of HbA or other β-chain variants, which
may lead to false negative results in screening for SCD. Although an exact gestational age for requesting
a second sample is not defined, premature babies under 33 weeks of gestational age should receive
repeated testing.

Babies who received blood transfusions show increased percentages of adult hemoglobin HbA
and HbA2 and the presence of a severe hemoglobinopathy may be masked. Therefore, it seems
essential that transfused babies can be identified using either HbA levels above the 2.5 multiples of
median (MoM) dependent on gestational age or ratios of HbF/HbA [12].

5. Conclusions

HPLC, CE, and IEF have proven to be suitable methods for NBS for sickle cell disease and other
hemoglobinopathies in several different states and regions with specific legal and economic conditions.
They have very high sensitivity and high specificity regarding SCD with patterns of FS, FSC, and
FSE, and just slightly lower for patterns of FSA and FSD. Other non-sickling hemoglobinopathies
were successfully included in newborn screening programs, and future developments must match the
achievements of this recent era of hemoglobin analysis systems and will add new flexibility.
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