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ARTICLE

StrVCTVRE: A supervised learning method
to predict the pathogenicity of
human genome structural variants

Andrew G. Sharo,1,2,* Zhiqiang Hu,2,3 Shamil R. Sunyaev,4,5 and Steven E. Brenner1,2,3,*

Summary

Whole-genome sequencing resolves many clinical cases where standard diagnostic methods have failed. However, at least half of

these cases remain unresolved after whole-genome sequencing. Structural variants (SVs; genomic variants larger than 50 base pairs)

of uncertain significance are the genetic cause of a portion of these unresolved cases. As sequencing methods using long or linked

reads become more accessible and SV detection algorithms improve, clinicians and researchers are gaining access to thousands of

reliable SVs of unknown disease relevance. Methods to predict the pathogenicity of these SVs are required to realize the full diag-

nostic potential of long-read sequencing. To address this emerging need, we developed StrVCTVRE to distinguish pathogenic SVs

from benign SVs that overlap exons. In a random forest classifier, we integrated features that capture gene importance, coding re-

gion, conservation, expression, and exon structure. We found that features such as expression and conservation are important but

are absent from SV classification guidelines. We leveraged multiple resources to construct a size-matched training set of rare, puta-

tively benign and pathogenic SVs. StrVCTVRE performs accurately across a wide SV size range on independent test sets, which will

allow clinicians and researchers to eliminate about half of SVs from consideration while retaining a 90% sensitivity. We anticipate

clinicians and researchers will use StrVCTVRE to prioritize SVs in probands where no SV is immediately compelling, empowering

deeper investigation into novel SVs to resolve cases and understand new mechanisms of disease. StrVCTVRE runs rapidly and is

publicly available.

Introduction

Whole-genome sequencing (WGS) can identify causative

variants in clinical cases that elude other diagnostic

methods.1 As the price of WGS falls and it is used more

frequently, researchers and clinicians will increasingly

observe structural variants (SVs) of unknown significance.

SVs are a heterogeneous class of genomic variants that

include copy-number variants such as duplications and de-

letions, rearrangements such as inversions, and mobile

element insertions. While a typical short-read WGS study

finds 5,000–10,000 SVs per human genome, long-read

WGS is able to identify more than 20,000 with much

greater reliability.2–4 This is two orders of magnitude fewer

than the �3 million single-nucleotide variants (SNVs)

identified in a typical WGS study. Still, despite their rela-

tively small number, SVs play a disproportionately large

role in genetic disease and are of great interest to clinical

geneticists and researchers.5,6

SVs are of clinical interest because they cause many rare

diseases. Most SVs identified by WGS are benign, but on

average, a given SV is more damaging than an SNV because

of its greater size and ability to disrupt multiple exons,

create gene fusions, and change gene dosage. In a study

of 119 probands who received a molecular diagnosis

from short-read WGS, 13% of cases were caused by an

SV.7 Similarly, an earlier study that found 7% of congenital

scoliosis cases are caused by compound heterozygotes

comprised of at least one deletion.8 Yet, because SVs

continue to be challenging to identify and analyze, these

figures may underestimate the true causal role that SVs

play in rare disease. Indeed, in some rare diseases, the ma-

jority of cases are caused by SVs. For example, deletions

cause most known cases of Smith-Magenis syndrome,

and duplications cause most known cases of Charcot-

Marie-Tooth disease type 1A.9 This suggests that for rare

disorders, SVs constitute a minor yet appreciable fraction

of pathogenic variants.

To continue discovering SVs which cause disease, re-

searchers face a daunting challenge: prioritizing and

analyzing the tens of thousands of SVs found by WGS.

Best practices for SV prioritization are evolving, and gener-

ally mirror steps used to prioritize SNVs. Few SV-tailored

impact predictors have been developed, but a small

number of published studies have focused on identifying

pathogenic SVs from WES10,11 and WGS7,12,13 and have

identified a handful of important steps. Removing low-

quality SV calls is essential, as short-read SV callers rarely

achieve precision above 80% for deletions and 50% for du-

plications, even at low recall.14 Most studies remove SVs

seen at high frequency in population databases or internal

controls.6,15 Moreover, many studies only investigate SVs
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that overlap an exonic region, as non-coding SVs remain

particularly difficult to interpret. Depending on its sensi-

tivity, a pathogenic SV discovery pipeline may produce

tens to hundreds of rare exon-altering SVs per proband

to be investigated. These values are consistent with a

recent population-level study that estimates SVs comprise

at least 25% of all rare predicted loss-of-function events per

genome.16 Prioritizing SVs will be necessary for the major-

ity of probands, as shown by a study of nearly 500 unre-

solved cases that found one or more SVs that warranted

further investigation in 60% of cases.7 Clinically validating

all SVs of uncertain significance in a genome is currently

infeasible, and cohort size for rare diseases will likely never

reach a scale sufficient to statistically associate these SVs

with disease. Therefore, computational tools are needed

to prioritize and predict the pathogenicity of rare SVs.

Among methods that consider SVs, several annotate the

features of SVs but very few prioritize SVs by pathogenicity.

General-purpose annotation frameworks such as En-

sembl’s Variant Effect Predictor (VEP)17 and SnpEff18

both annotate SVs with broad consequences on the basis

of sequence ontology terms (e.g., transcript_ablation),

which we found are not sufficient for effective prioritiza-

tion. One standalone annotator, SURVIVOR_ant,19

annotates SVs with genes, repetitive regions, SVs from pop-

ulation databases, and user defined features. This and

similar tools put the onus on researchers to provide infor-

mative features and determine how to consider these

features in combination, a difficult challenge. A comple-

mentary approach is to annotate SVs with cataloged SVs

known to be pathogenic or benign. One such SV anno-

tator, AnnotSV,20 ranks SVs into five classes on the basis

of their overlap with known pathogenic or benign SVs

and genes known to be associated with disease or predicted

to be intolerant to variation. This approach can be success-

ful when a disease-causing SV has previously been seen in

another proband and was cataloged as pathogenic, but we

show it has limitations when a disease-causing SV is novel.

In contrast, SNVs can be effectively prioritized by methods

such as REVEL21 and VEST22 that integrate diverse annota-

tions to provide a quantitative score. Similarly powerful

methods are needed to predict SV pathogenicity.

In order to provide a summary pathogenicity score to

prioritize rare SVs genome-wide, a predictor must address

two questions. The first question is whether a gene is

most likely associated with a Mendelian phenotype. This

relationship can be predicted through gene importance

features. The second question is whether an SV impacts

gene function, which requires considering intragenic fea-

tures. Although these are two separate questions, for con-

venience researchers often combine them into a single

summary score. Few methods provide such a summary

score for SV pathogenicity. One standalone impact predic-

tor, SVScore,23 calculates the deleteriousness of all possible

SNVs within each SV (via CADD24 scores by default), while

considering SV type and gene truncation. SVScore then

generates a summary score by aggregating across these

CADD scores (mean of the top 10% by default), and this

approach has shown promise in identifying SVs under pur-

ifying selection.23 Another stand-alone predictor, SVFX,25

integrates multiple features into a summary score but

focuses on somatic SVs in cancer and germline SVs in com-

mon diseases, so we do not discuss it further.

In this manuscript, we introduce StrVCTVRE (structural

tariant classifier trained on variants rare and exonic), a

method that generates a summary pathogenicity score

for exon-altering deletions and duplications.We anticipate

clinicians and researchers will use StrVCTVRE to prioritize

rare SVs associated with Mendelian phenotypes. Since

nearly all pathogenic SVs are rare (minor allele frequency

[MAF] < 1%), the salient challenge in resolving undiag-

nosed cases is to distinguish rare pathogenic SVs from

rare benign SVs.16 Existing SV predictors have been trained

and assessed on common benign SVs,23,25 so they may rely

on features that instead separate common SVs from rare

SVs and may not be optimal for this clinical question.26

Our unique approach is to train StrVCTVRE to distinguish

benign rare SVs from pathogenic rare SVs.

Material and methods

Training, validation, and test datasets
StrVCTVRE was trained on rare SVs from ClinVar,27 gnomAD,16

and a recent great ape sequencing study.28 StrVCTVRE’s perfor-

mance was evaluated with rare SVs from DECIPHER29 and the

1000 Genomes Project phase 330 (1KGP).

We retrieved ClinVar SVs27 on January 21, 2020. SVs were re-

tained if they fulfilled all the following requirements: clinical sig-

nificance of pathogenic, likely pathogenic, pathogenic/likely

pathogenic, benign, likely benign, or benign/likely benign; not so-

matic in origin; type of copy-number loss, copy-number gain,

deletion, or duplication; >49 bp in size; at least 1 bp overlap

with an exon. We retrieved great ape SVs28 mapped to GRCh38

on April 8, 2019. Deletions were retained if they were absent in

humans and homozygous in exactly one of the following species:

chimpanzee, gorilla, or orangutan. Only exon-altering deletions>

49 bp were retained. These deletions are subsequently referred to

as apes. We retrieved gnomAD 2.1.1 SVs16 (build GRCh37) on

June 28, 2019. Only duplications and deletions were retained

that were exon altering, >49 bp, and PASS filter. gnomAD SVs

were divided into three categories: SVs with a global minor allele

frequency (MAF) > 1% (‘‘gnomAD common’’), SVs with a global

MAF< 1% with at least one individual homozygous for the minor

allele (‘‘gnomAD rare benign’’), and SVs with a global MAF < 1%

with no individuals homozygous for the minor allele (‘‘gnomAD

rare unlabeled’’). We retrieved GRCh38 ‘‘DGV Variants’’ from the

Database of Genomic Variants31 release 2016-05-15 on April 08,

2019. MAF of each deletion was calculated as ‘‘observedlosses’’/

(2 3 ‘‘samplesize’’). MAF of each duplication was calculated as

‘‘observedgains’’/(2 3 ‘‘samplesize’’). Only exon-altering SVs >

49 bp were retained. Those SVs with an MAF greater than 1% are

subsequently referred to as ‘‘DGV common.’’ We retrieved

DECIPHER CNVs (build GRCh37) on Jan 27, 2020. Only exon-

altering SVs > 49 bp with pathogenicity of ‘‘pathogenic,’’ ‘‘likely

pathogenic,’’ ‘‘benign,’’ or ‘‘likely benign’’ were retained. We

only considered benign or likely benign SVs without ‘‘full’’ or
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‘‘partial’’ contribution to disease phenotype. These benign and

likely benign SVs were included in all three of the following sets.

Set 1 pathogenic SVs consisted of pathogenic or likely pathogenic

SVs with ‘‘full’’ contribution to disease phenotype (referred to as

‘‘sufficient’’ in this manuscript). Set 2 SVs consisted of pathogenic

or likely pathogenic SVs with ‘‘full’’ or ‘‘partial’’ contribution. Set 3

SVs consisted of pathogenic or likely pathogenic SVs with ‘‘full,’’

‘‘partial,’’ or ‘‘unknown’’ contribution. Identical SVs with conflict-

ing pathogenicity were removed. SVs were then sorted by size

(ascending) and SVs with a reciprocal overlap > 90% were

removed; only the first SV was kept. We retrieved 1KGP merged

SVs30 on October 22, 2019. Only exon-altering deletions and du-

plications with a global allele frequency less than 1% were used

in our analysis. For the above training and testing SVs, we

retrieved SVs mapped to GRCh38 unless noted otherwise. When

only SVs mapped to GRCh37 were available, we converted to

GRCh38 by using the University of California, Santa Cruz

(UCSC) liftover tool.32

To identify exon-altering SVs, we used exon boundaries from

Ensembl biomart,33 genes v96, GRCh38.p12, limited to genes

with HGNC Symbol ID(s) and APPRIS annotation.34 For each

gene, a single principal transcript was used, based on the highest

APPRIS annotation. For transcripts that tied for highest APPRIS

annotation, the longest transcript was used. Exon overlap was

determined with bedtools intersect.

To remove near-duplicate SVs in our training and testing data,

we performed extensive deduplication of data as follows. Dele-

tions and duplications were considered separately. We ordered

benign SVs (n ¼ 23,239) (ClinVar benign, ClinVar likely benign,

apes, gnomAD rare benign, gnomAD rare unlabeled) and removed

duplicates (reciprocal overlap of 90% or greater), keeping the first

appearance of an SV. This removed 577 SVs from ClinVar benign/

likely benign, five SVs from apes, and 408 SVs from gnomAD. The

retained data are subsequently referred to as ‘‘benign.’’ To dedupli-

cate pathogenic SVs (n ¼ 8,378), we considered deletions and du-

plications separately. Exact matches between ClinVar pathogenic

and ClinVar likely pathogenic were removed from likely patho-

genic. SVs were then sorted by size (ascending). SVs with >90%

reciprocal overlap were removed, and the smallest SV was kept.

This removed 2,421 pathogenic SVs. The retained data are subse-

quently referred to as ‘‘pathogenic.’’ Next, exact matches between

the benign and pathogenic datasets were removed from both data-

sets. Finally, duplicates between pathogenic and benign (recip-

rocal overlap of 90% or greater) were removed from the patho-

genic dataset. This removed three benign SVs and 82 pathogenic

SVs.

We processed data as follows to ensure we trained only on rare

SVs. Pathogenic and benign SVs that exactly matched a DGV

common SV were removed. Pathogenic and benign SVs with

reciprocal overlap > 90% with an SV in gnomAD common

were removed. This removed 30 benign SVs and one pathogenic

SV. SVs between 50 bp and 3 Mb were retained and all others

were removed.

We found some evidence of acquisition bias in ClinVar data

due to the SV size sensitivity of different SV detection methods

(see results). To ensure StrVCTVRE was not learning on this acqui-

sition bias, we matched the size distribution of benign and path-

ogenic SVs by using the following procedure. After filtering as

described above, we organized benign SVs into five tiers: ClinVar

likely benign, ClinVar benign, apes, gnomAD rare benign, and

gnomAD rare unlabeled. Each pathogenic SV was then matched

by size and type (DEL or DUP) to a benign SV, iterating through

each tier. Specifically, each pathogenic SV of size N seeks a benign

SV of the same type in the bin ½N�ðN =aþ20Þ; NþðNaþ20Þ�
where a ¼

ffiffiffiffiffiffiffiffi

106101
p

(this bin size derived from Ganel et al.23). A

pathogenic SV first seeks a benign SV in the first benign tier. If

matched, the pathogenic and benign SVs are included in the

training set, and the benign SV cannot match any further patho-

genic SVs. If no match is found in the first benign tier, the same

process is repeated while progressing through further benign

tiers. Pathogenic SVs that do not find a match in any benign

tier are not included in the final training set. This process was

continued for all pathogenic SVs, and the resulting data are

shown in Figure S4.

After SVs were annotated with features (see below), we iden-

tified groups of SVs with identical features, considering patho-

genic and benign SVs separately. We removed all but one of

these feature-identical SVs in order to avoid overfitting. This

removed 37 SVs from the pathogenic training set and 31

SVs from the benign training set. For feature-identical SVs

that were present in both the pathogenic and the benign data-

sets, all feature-identical SVs were removed. This removed

13 SVs.

Structural variant impact predictors
We retrieved VEP17 v96 on April 16, 2019 and used it to annotate

SVs with transcript consequence sequence ontology terms. We

retrieved SVScore23 v0.6 on June 16, 2019. It was run with

CADD24 v1.3, which we retrieved on June 16, 2019 by using

default settings. We retrieved AnnotSV20 v2.3.2 on Feb 27, 2020.

AnnotSV was run with human annotation and default settings.

We retrieved X-CNV35 on September 27, 2021, and it was run

with default settings on variants converted to GRCh37 via the

UCSC liftover tool. We retrieved CADD-SV36 v1.0 on September

13, 2021, and it was run with default settings.

Structural variant features
All gene and exon boundaries used to determine features came

from Ensembl Genes v96 as described above. Each SV was an-

notated with the 17 features listed in Table 1. Expression fea-

tures were derived from transcript data downloaded from the

GTEx Portal v7.37 Exon expression was calculated for each

nucleotide as the sum of the transcripts per million (TPM) of

fragments that map to that nucleotide. Exon inclusion esti-

mated the proportion of transcripts generated by a gene that

include a given nucleotide and was calculated for each nucleo-

tide as the TPM of fragments that map to that nucleotide

divided by the sum of TPM that map to the gene containing

that nucleotide. For both features, adjacent base pairs with

the same value were merged together into genomic intervals.

For SVs that overlapped more than one of these genomic inter-

vals, we calculated exon expression by averaging the 400 high-

est exon expression genomic intervals contained in that SV. The

same was done for exon inclusion. All GTEx tissues were used

in this analysis.

To determine which conservation feature to use, we assessed the

accuracy of both PhastCons39 and PhyloP40 in discriminating be-

tween pathogenic and benign SVs by using the average of the

highest-scoring 200, 400, 600, 800, and 1,000 nucleotides

(Figure S1). The test set consisted of 200 small (<800 bp) SVs

randomly selected from our pathogenic and benign SV training

datasets (as described above). We found the mean PhyloP score

of the 400 most conserved nucleotides in an SV was among the

The American Journal of Human Genetics 109, 195–209, February 3, 2022 197



highest accuracy predictors. For both conservation and expression

features, if the total overlap between the SV and all exons was less

than 400 intervals, then we averaged together the values of the

overlapped intervals to calculate the feature. We used median

imputation to fill in missing feature annotations.

In our feature correlation analysis, features were clustered by

correlation with the linkage and fcluster functions from the

SciPy41 v1.1.0 hierarchical clustering package. The input to this

analysis were the features for all SVs used as training data. We

reversed values for some features to ensure most matrix correla-

tions are positive.

Random forest classification
StrVCTVRE was implemented as a random forest classifier in Py-

thon with scikit-learn42 v0.17 with class RandomForestClassifier.

We performed a grid search to find the optimal hyperparameters

by using a leave-one-chromosome-out cross validation strategy

and validation only on ClinVar data, as described previously.

The hyperparameters searched included the max depth of a tree

(5, 10, 15, no limit), max features considered at each split (1, 2,

3, 4), the minimum samples at each leaf node (1, 2, 4), the mini-

mum samples required to split a node (2, 4), the number of trees

generated (500, 1,000, 3,000), and whether to use out-of-bag sam-

ples to estimate accuracy (true, false). Several combinations of fea-

tures performed similarly well, and we chose one that performed

well while unlikely to over-fit to the training data—max depth,

10; max features considered at each split, 1; minimum samples

at each leaf node, 2; minimum samples required to split a node,

4; number of trees, 1,000; out of bag samples, false. Feature impor-

tance used in figures is also known as Gini importance43 and

was calculated with the feature_importances_ attribute of

RandomForestClassifier.

Statistical methods used in figures
In Figure 1B, we derived 95% confidence intervals (CIs) by gener-

ating 1,000 random forest predictors. In Figure 2A, we generated

the data by using a leave-one-chromosome out approach that

included all chromosomes besides chromosomes 1, 3, 5, and 7

(e.g., SVs in chromosome 2 were assessed with training data from

chromosomes 4, 6, 8, 9, 10, etc.). In Figure 2B, to create the inset

testing set, we began with the benign and pathogenic datasets as

described above and only retained ClinVar SVs from each dataset.

Next, we removed any SVs larger than 3 Mb, and for both the

benign and pathogenic dataset, we randomly sampled SVs without

replacement, such that SVs were retained if they did not overlap

any of the same genes as a previously sampled SV. This resulted

in a reduced dataset for both pathogenic and benign SVs, in which

every gene was overlapped by at most a single SV. Pathogenic and

benign SVs from these reduced datasets were then matched by

size as described above, and only results from testing on SVs on

chromosomes 1, 3, 5, and 7 are shown in the Figure 2B inset. We

note that area under the receiver-operating characteristic curves

(AUCs) are often problematic for the evaluation of single-nucleo-

tide ormissense impact predictors because of the vast imbalance be-

tween pathogenic and benign variants. This imbalance requires

methods with adequate specificity. Due to the much smaller num-

ber of rare SVs in a genome, receiver-operating characteristic (ROC)

plots can be used with care, but with attention still to the leftmost

Table 1. Features used in StrVCTVRE

Feature category Feature description Data type Aggregation method for multiple genes

CDS fraction of CDS adjacent to start codon that is not disrupted by SV float min

CDS fraction of CDS adjacent to stop codon that is not disrupted by SV float min

CDS fraction of CDS overlapping SV float max

conservation average phyloP score of the 400 most conserved overlapping
nucleotides

float N/A

expression exon expression (see material and methods) float N/A

expression exon inclusion (see material and methods) float N/A

expression TAD boundary strength (according to Gong et al.38) float max

gene importance LOEUF of gene float min

gene importance LOEUF of gene where stop codon overlaps SV or > 50% of CDS
overlaps SV

float min

gene importance pLI of gene float max

gene importance pLI of gene where start codon overlaps SV or > 50% of CDS
overlaps SV

float max

other all overlapped exons can be skipped in frame boolean N/A

other any overlapped exon is constitutive boolean N/A

other minimum exon transcript ordera integer min

other number of exons in canonical transcript of gene integer min

other number of exons SV overlaps by 1 or more bp integer max

other SV is deletion or duplication boolean N/A

aExon transcript order was defined as the number of exons preceding a given exon in a gene.
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regions reflecting specificity, rather than the AUC computed over

the entire curve. We derived AUC 95% confidence intervals by

calculating the AUC standard error following Hanley and

McNeil.44 In the results section ‘‘StrVCTVRE performance is higher

when assessed on more reliably classified data,’’ 90% sensitivity

thresholds were derived from StrVCTVRE and SVScore performance

on the ClinVar held-out test set (dotted line, Figure 2B).

Results

StrVCTVRE design and assessment

StrVCTVRE is implemented as a random forest, in which

many decision trees ‘‘vote’’ for whether a given SV is path-

ogenic. The StrVCTVRE score reflects the fraction of

decision trees that ‘‘voted’’ that the SV is pathogenic. The

decision trees are shaped by a learning algorithm in which

each tree sees thousands of example SVs from a training

A

B

Figure 1. Feature clustering and impor-
tance identifies those features providing
unique and predictive information
(A) Correlation matrix of StrVCTVRE fea-
tures in training data. Features were or-
dered by hierarchical clustering, and
some values were reversed to reduce nega-
tive correlation between features. Values
represent Spearman’s rank correlation be-
tween features. Text is colored by feature
category.
(B) Feature importance of StrVCTVRE fea-
tures. Gray bars indicate feature impor-
tance, estimated with mean decrease in
impurity (Gini importance). Black lines
indicate 95% confidence intervals. Note
that exon expression had high importance
yet was uncorrelated with all other fea-
tures, suggesting it captures unique and
predictive information.

dataset of known pathogenic and

benign SVs, and the decision nodes

are optimized for accuracy. To pro-

mote diverse trees, each node of the

decision tree uses only a random sub-

set of the features. Finally, StrVCTVRE

is assessed on a held-out test dataset

and independent test datasets.

Characterization of StrVCTVRE

features

To classify SVs, StrVCTVRE employs

17 features in five categories: gene

importance, conservation, coding

sequence, expression, and exon struc-

ture of the disrupted region (see mate-

rial and methods, Table 1 for details).

We assessed gene importance by us-

ing two features that summarize the

degree of depletion of predicted loss-

of-function (pLoF) variants in

healthy individuals: pLI45 and LOEUF.15 Although LOEUF

is effectively an updated, continuous version of pLI, and

the two are highly correlated, we found better performance

when both were included rather than just one. To explic-

itly capture when an important gene is highly impacted

by an SV, we included two additional features: pLI of a

highly impacted gene and LOEUF of a highly impacted

gene. We define a gene as highly impacted when an SV

overlaps the APPRIS34 principal start codon or 50% of the

coding sequence (CDS). To specifically model CDS disrup-

tions, we used three coding features: percentage of the CDS

overlapped by the SV, distance from the CDS start to the

nearest position in the SV, and distance from the CDS

end to the nearest position in the SV. We included a single

conservation feature, phyloP of 100 vertebrates,40 by

considering the average of the 400 most conserved sites

in the SV. PhyloP produced the best classification among
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the conservation features we investigated (see material and

methods) and was the most informative conservation

feature in a rare missense variant classifier.21 To infer

expression impacts from the SV, we included the average

expression across all tissues for each exon in the SV, the

proportion of gene transcripts that included each exon in

the SV, and the overlap with known topologically associ-

ating domain (TAD) boundaries. To model potential

differences that drive the pathogenicity of deletions and

duplications, we included as a feature whether an SV is a

deletion or duplication. The remaining features were

related to the structure of exons in the SV including the

number of exons in a disrupted gene, the number of exons

disrupted, whether any affected exons were constitutive,

whether all disrupted exons could be skipped in frame,

and the order of the exon in the transcript. Whenmultiple

exons or genes were disrupted, we typically took the value

of the most severely impacted one, as appropriate (see ma-

terial andmethods). Missing or non-applicable feature data

were replaced by the median value of each feature.

Correlation and relative importance of SV features in

StrVCTVRE

Clusters emerged when we calculated these features for our

SV training set, computed the correlation between each

feature, and clustered by correlation (Figure 1A). The most

prominent cluster (labeled i) contains gene importance,

conservation, CDS, and one exonic feature. Most correla-

tions were above Spearman’s r ¼ 0.6. Because both gene

importance of highly impacted gene features are present

in this cluster, the other features in this cluster may also

capture when an important gene is highly disrupted. A

smaller cluster (labeled ii) included the remaining gene

importance features, pLI and LOEUF. Expression features

and deletion/duplication status were the features least

correlated with all other features (all r% 0.26). This low cor-

relation suggests that these features capture unique infor-

mation, which is unsurprising for deletion/duplication

status. But given the relative importance of some expression

features (Figure 1B), our results suggest expression data con-

tains both orthogonal and valuable information for deter-

mining SV pathogenicity. The two features capturing gene

importance of a highly impacted gene were the features

most correlated with each other (r ¼ 0.97), indicating that

pLI and LOEUF are generally interchangeable for assessing

the importance of highly disrupted genes.

By training on thousands of example SVs, StrVCTVRE

discovers which features are useful for discriminating be-

tween pathogenic and benign SVs (Figure 1B). Using Gini

importance (see material and methods), we found gene

importance features were most useful to StrVCTVRE. This

was followed by a group of features with similar

importance that include the number of exons in a gene,

conservation, CDS features, exon expression, and gene

importance of a highly impacted gene. The value of these

features is largely intuitive; gene importance, CDS, and

conservation features are expected to be helpful to assess

pathogenicity. In contrast, we suspect number of exons

in gene is highly ranked due to sampling bias. We found

that many well-studied pathogenic genes have numerous

exons (DMD, NF1, and BRCA2), and these genes have

many representative SVs in our dataset even after

removing near-duplicates (Figure S2, material and

methods). This may lead StrVCTVRE to have improved

performance on these known clinically relevant genes,

but reduced performance genome-wide (discussed further

below). Surprisingly, several exonic features had relatively

low importance, which may have been caused by the spar-

sity of SVs in our dataset that alter just a single exon. The

low importance of TAD boundaries is counter to findings

from a recent cancer SV impact predictor25 and may

reflect StrVCTVRE’s focus on SVs that impact exons. Addi-

tionally, the low importance of deletion/duplication status

suggests that on average, for exon-altering deletions and

A B Figure 2. Evaluation of StrVCTVRE on a
held-out ClinVar test set and comparison
of learned feature importances between
training datasets
(A) Receiver-operating characteristic
(ROC) comparing StrVCTVRE models
trained on two different benign datasets:
ClinVar in dark red and all data (ClinVar,
SVs common to apes but not humans,
and rare gnomAD SVs) in medium red.
When tested only on ClinVar data, perfor-
mance does not significantly differ be-
tween the two training sets. However, the
feature importances (inset) of the classifier
trained on all data (medium red) were
more evenly distributed among feature
categories. This suggests that unlabeled
rare SVs and common ape SVs are a suit-
able benign training set.

(B) ROC comparing StrVCTVRE (red) to other methods on a held-out test set comprised of ClinVar SVs on chromosomes 1, 3, 5, and 7.
Black circle indicates a StrVCTVRE score of 0.37, which we refer to as the ClinVar 90% sensitivity threshold. Inset shows performance on
the same held-out test, modified so that each gene is overlapped by a maximum of one SV. AUC with 95% confidence interval is in
parentheses.
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duplications, the region altered by an SV is more important

than whether there was a gain- or loss-of-genome content.

Characterization of StrVCTVRE training and held-out

test sets

A total of 7,263 pathogenic or likely pathogenic deletions

and 4,551 pathogenic or likely pathogenic duplications

were collected fromClinVar,27 a public database of variants

cataloged by academic institutions and clinical labora-

tories. These deletions and duplications include both

whole-gene losses and gains and intragenic losses and

gains of one or more exons. We restricted our data to dele-

tions and duplications, as they are the only SV types with

more than 500 pathogenic examples in ClinVar. Addition-

ally, deletions and duplications constitute the vast major-

ity (>95%) of rare gene-altering SVs.6 A set of primarily

benign SVs (described in greater detail below) were

collected from ClinVar, gnomAD SVs,16 and a recent great

ape sequencing study.28 Because these ape SVs were map-

ped to the human genome, they may be biased toward

more conserved genomic regions. We retained only rare

(MAF < 1% in general population) SVs in order to match

the challenge faced by SV discovery pipelines. Indeed,

92% of SVs identified through cohort sequencing are

rare,16 so the salient challenge is to distinguish rare patho-

genic SVs from rare benign SVs. Existing SV predictors

have been trained and assessed on common benign

SVs,23,25 which may cause them to instead rely on features

that separate common from rare SVs and result in lower ac-

curacy in clinical use.26

By training on rare SVs, we intend to achieve better accu-

racy in the challenge faced in pathogenic SV discovery. To

create a rare benign dataset that matches the size range of

our pathogenic dataset, we included SVs observed as ho-

mozygous at least once in great apes but rare in humans,

which we assume should be mostly benign in humans

due to our recent shared ancestry with great apes. Our

benign dataset also included unlabeled rare SVs from gno-

mAD SVs. Although we expect a small fraction of these un-

labeled SVs are pathogenic, we made two assumptions that

mitigated this issue: (1) pathogenic SVs have been depleted

by selection, so the large majority of unlabeled SVs are

benign, and (2) the fraction of truly pathogenic SVs in

the pathogenic and benign training sets is sufficiently

different for StrVCTVRE to learn important distinguishing

features. By including these additional data sources, we

brought the ratio of pathogenic to benign SVs closer to

1:1 in our training set, even at small sizes. This would

have been impossible with ClinVar data alone because of

the dearth of small benign SVs in ClinVar.

To assess the appropriateness of including SVs from apes

and gnomAD in our benign dataset, we explored how per-

formance and feature importance changed with these data

included. One predictor was trained only on ClinVar SVs,

and a second predictor was trained on ClinVar SVs, ape

SVs, and gnomAD SVs (altogether 3.83 more SVs than

ClinVar alone). Using leave-one-chromosome-out cross

validation, we found both training sets performed simi-

larly (Figure 2A), supporting our theory that the selected

rare unlabeled gnomAD SVs and great ape SVs are suffi-

ciently depleted in pathogenic SVs to be used as a training

set of rare, benign SVs. Additionally, the predictor trained

on all data showed a distribution of feature importance

that is more evenly distributed among feature categories

and possibly more robust. This includes a decrease in use-

fulness of gene importance features, which are likely to be

overrepresented in ClinVar data, and an increase in impor-

tance in CDS features, which are an important line of evi-

dence for assessing SV pathogenicity.46

Before training, we extensively cleansed all data to re-

move duplicate records within and between datasets, re-

move common SVs, and remove SVs larger than 3 Mb

(see material and methods). Pathogenic deletions and du-

plications were found to have a large size bias, most likely

because of the sensitivity of detection methods to specific

size ranges (Figure S3). To avoid training on this acquisi-

tion bias, putatively benign SVs were sampled to match

the pathogenic SV size distribution (Figure 3; Figure S4).

Specifically, in our training data we included only pairs

of pathogenic and benign SVs that were of similar size

and the same type (deletion or duplication). Using this

matching strategy, we were able to include nearly all path-

ogenic deletions and duplications below 1Mb. By incorpo-

rating ape and gnomAD SVs, we were able to include

pathogenic SVs below 10 kilobases (kb), a range nearly ab-

sent in ClinVar benign SVs. In the benign training set, 26%

of deletions and 75% of duplications came from ClinVar

benign or likely benign SVs.

To accurately assess StrVCTVRE’s performance, we used a

held-out test set of ClinVar SVs on chromosomes 1, 3, 5,

and 7 (�20% of the total ClinVar dataset). Only ClinVar

SVs were used for testing because it is the highest-confi-

dence dataset. The training set consisted of SVs from all

three data sources on all remaining chromosomes. The

training set consisted of 2,463 pathogenic SVs and 2,372

benign SVs, and the test set consisted of 244 pathogenic

SVs and 334 benign SVs. The test set is of reduced size

because pathogenic and benign SVs in the test set were

matched on length. None of the SVs in the test set were

used to develop the trained algorithm.

StrVCTVRE eliminates more than half of benign SVs

from consideration at 90% sensitivity

In discriminating between pathogenic and putatively

benign ClinVar SVs in the test dataset, StrVCTVRE

performed substantially better than published methods.

Performance was measured with the area under the

receiver-operating characteristic curve (AUC). The AUC

for StrVCTVRE was 0.83 (95% CI: 0.79–0.87). By compari-

son, SVScore had an AUC of 0.70 (95% CI: 0.66–0.74).

StrVCTVRE improved notably in the classification of large

duplications and deletions (>1 Mb), a regime in which

SVScore by default classifies all SVs as pathogenic (lower

left corner of Figure 2B). We also evaluated the predictive
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ability of transcript consequence reported by VEP (AUC ¼
0.47; 95% CI: 0.42–0.52), and we found it performed no

better than random. This poor performance was largely

due to VEP annotating more benign SVs than pathogenic

SVs with its most deleterious sequence ontology term,

transcript ablation (Figure S5). The poor performance of

transcript consequence from VEP reinforces the known

limitations of prioritizing variants with sequence ontology

terms in isolation. We also evaluated X-CNV35 and CADD-

SV36 on this test dataset (Figure S6). The AUC for X-CNV

was 0.68, and the AUC for CADD-SV was 0.70.

As we intend StrVCTVRE to be used to prioritize SVs seen

in clinical cases, it needs to perform well in clinically rele-

vant regimes. Clinicians must limit cases in which patho-

genic variants are misclassified as benign (false negatives),

which requires strong performance at high sensitivity.47

When compared to existing methods, StrVCTVRE makes

substantial improvements in the high-sensitivity regime,

as it is able to capture 90% of pathogenic SVs at a 46% false

positive rate (black circle, Figure 2B). StrVCTVRE scores

range from 0 to 1, and higher scores indicate a greater like-

lihood of pathogenicity. In Figure 2B, 90% sensitivity is

reached at a StrVCTVRE score of 0.37, which suggests

that when used on a collection of SVs called from a clinical

cohort, this threshold may identify 90% of pathogenic SVs

while reducing the candidate SV list by 54%. We refer to

this StrVCTVRE score as the ClinVar 90% sensitivity

threshold. StrVCTVRE performed equally well or better

on test sets in which duplicates and common SVs were

not removed or different size limits were imposed

(Figure S7).

We observed apparent clustering in the ClinVar data that

led to additional analysis. Genes that are well studied are

overlapped by multiple pathogenic SVs cataloged in Clin-

Var. This resulted in several genes that were over-repre-

sented in our test set. Because SVs that overlap the same

gene tend to be mostly pathogenic or mostly benign, this

results in clustered test data, whichmay lead to higher vari-

ance in AUC performance. While this may yield improved

performance for genes of particular interest, it may hide

possible deficits in genome-wide performance. To address

this, we randomly generated a test dataset in which each

gene is overlapped by at most one SV (Figure 2B inset).

We found that the StrVCTVRE AUC was reduced when

applied to this dataset, but StrVCTVRE was able to identify

pathogenic SVs better than or equal to SVScore at all sensi-

tivities. On this dataset, StrVCTVRE shows a sensitivity of

90% at a false positive rate of 59%. We also considered

training StrVCTVRE on a dataset in which each gene is

overlapped by at most one SV. We found that this led to

a feature importance distribution that is more evenly

distributed among feature categories (Figure S8). However,

the classifier performance was reduced, so we did not pur-

sue it further.

StrVCTVRE sensitivity threshold is validated on recent

clinical SVs

To assess the accuracy of our ClinVar 90% sensitivity

threshold and evaluate whether StrVCTVRE performs

well on clinical data, we evaluated our method on a set

of SVs identified by researchers at the Broad Institute Cen-

ter for Mendelian Genomics (CMG). These SVs were

recently identified through exome sequencing of cohorts

with undiagnosed neuromuscular or retinal degeneration

disorders.48–52 Clinical researchers determined these rare

SVs were disease causing or likely disease causing. To avoid

overlap between these CMG clinical SVs and StrVCTVRE

training SVs, we used a leave-one-chromosome-out

approach in which 24 separate StrVCTVRE classifiers

were developed, one for each chromosome. For example,

CMG clinical SVs on chromosome 1 were predicted by a

StrVCTVRE classifier trained on chromosomes 2, 3, 4, etc.

The CMG clinical SVs consisted of 32 deletions and two

duplications, were located on 14 chromosomes, and had

a median size of 12 kb (Table S1). For example, in one pro-

band with a retinal degeneration disorder, a 10 kb deletion

on chromosome 19 from 54,121,739 to 54,131,817

received a StrVCTVRE score of 0.85. This variant was

confirmed by CMG researchers as causative of the pro-

band’s disease.51 At the ClinVar 90% sensitivity threshold

A B Figure 3. StrVCTVRE draws training data
frommultiple sources while matching the
size distribution of pathogenic SVs
(A and B) Benign training SVs (blue-shaded
histograms) closely match the size distri-
bution of pathogenic training SVs (red his-
togram outlines) and were drawn from
multiple datasets. Histogram of patho-
genic and benign deletions (A) and dupli-
cations (B). (A) Benign deletions are
composed of 26% ClinVar, 16% apes, and
58% gnomAD. (B) Benign duplications
are composed of 75% ClinVar and 25%
gnomAD. We were able to include more
small pathogenic SVs in our training data
by using apes and gnomAD SVs. Patho-
genic SVs are composed entirely of ClinVar
pathogenic and likely pathogenic SVs and
thus only histogram outlines are shown.
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(StrVCTVRE score > 0.37), StrVCTVRE identified 31 of 34

disease-causing SVs (91%) as potentially pathogenic.

Performance of StrVCTVRE on an independent test set

from DECIPHER

All held-out test SVs, and a large fraction of training SVs,

come from a single database: ClinVar. To independently

test StrVCTVRE, we collected pathogenic and benign SVs

from DECIPHER, a public database to which clinical scien-

tists submit SVs seen in probands with developmental dis-

orders.29 Because there is some overlap between training

ClinVar SVs and DECIPHER SVs, we tested on DECIPHER

by using a leave-one-chromosome-out approach, as

described above. Additionally, to ensure this DECIPHER

test set is independent from our ClinVar test set, we consid-

ered only DECIPHER SVs with a reciprocal overlap of less

than 10% with any SV used in training or testing

StrVCTVRE. This strategy effectively removes any concerns

of training and testing on the same or similar SVs. This test

set included only DECIPHER variants with the highest

classification confidence (set 1, described below). Because

StrVCTVRE was trained on SVs less than 3 Mb, and few

benign SVs larger than 3 Mb have been observed,31 all

SVs larger than 3 Mb were scored as pathogenic (given a

score of 1). Compared to its performance on the ClinVar

test set, StrVCTVRE performed similarly well on the DECI-

PHER test set, although performance varied across SV size

(Figure 4A). On large SVs (>500 kb), StrVCTVRE performed

very well (AUC ¼ 0.91; 95% CI: 0.88– 0.94; N ¼ 297),

partially because most of the SVs larger than 3 Mb are

correctly predicted as pathogenic. StrVCTVRE also

performed very well (AUC ¼ 0.89; 95% CI: 0.81–0.97,

N ¼ 116) on small SVs (<30 kb), although this is tempered

somewhat by the relatively few small SVs in the DECIPHER

dataset. StrVCTVRE performed well (AUC ¼ 0.80; 95% CI:

0.72–0.88, N ¼ 545) on mid-length SVs, identifying path-

ogenic SVs significantly better than SVScore. We also eval-

uated X-CNV and CADD-SV on this these DECIPHER SVs

(Figure S9). X-CNV was the second-best performing

method but had an AUC below that of StrVCTVRE at all

size ranges. CADD-SV, similar to SVScore, performed well

on large SVs, but performance was comparably poor on

small and mid-length SVs.

StrVCTVRE performance is higher when assessed on

more reliably classified data

We expect that some DECIPHER pathogenic SVs are in re-

ality benign. SVs that better explain proband phenotype

are more likely to be pathogenic. To investigate the effect

of SV pathogenicity on predictor performance, we group-

ed DECIPHER SVs into three sets. Set 1 consisted of SVs

that sufficiently explain the proband phenotype, and

these should be reliably pathogenic. Set 2 included SVs

that partially explain the proband phenotype and set 1

SVs. Set 3 included SVs with unknown contribution to

proband phenotype and set 2 SVs, and therefore, their

pathogenicity is less certain. StrVCTVRE was tested with

a leave-one-chromosome-out approach. DECIPHER SVs

were filtered on the basis of overlap with training and

testing data as described above, and only SVs less than 1

Mb in length were retained. We found a consistent trend

toward more accurate StrVCTVRE classification in sets

A B

Figure 4. StrVCTVRE performance is consistent across SV size and performance improves on more reliably classified data
(A) Across three size ranges, StrVCTVRE accurately classified variants in an independent test set. In this ROC comparison of StrVCTVRE
(solid line) and SVScore (dotted line), three size ranges of SVs were considered. StrVCTVRE performed very well on large and small SVs,
while performing well on mid-sized variants. AUC with 95% confidence interval is in parentheses.
(B)When presented with data that aremore reliably classified, StrVCTVRE’s performance improved. ROC plot showing StrVCTVRE’s per-
formance increased as SV contribution to proband phenotype increases from set 3 (includes less confidently classified SVs) to set 2 and
from set 2 to set 1 (most confidently classified SVs). The performance of SVScore did not significantly differ between the sets. AUC with
95% confidence interval is in parentheses.
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that were more enriched for pathogenic SVs (Figure 4B).

This trend was also observed for X-CNV, although to a

lesser degree (Figure S10A). However, the same trend

was not observed for SVScore nor CADD-SV

(Figure S10B). Because StrVCTVRE’s performance im-

proves on presumably more reliably classified data, we

have reason to believe StrVCTVRE is making meaningful

classifications.

StrVCTVRE eliminates the most benign SVs seen in 221

individuals

Typically, probands with a rare disorder caused by homozy-

gous SVs have one or two pathogenic SVs in their genome,

and the remaining SVs are benign. An ideal impact predic-

tor would prioritize the pathogenic homozygous SVs and

eliminate from consideration as many of the benign SVs

as possible. To evaluate StrVCTVRE’s performance in this

scenario, we applied it to SVs called in 2,504 genomes iden-

tified by the 1000 Genomes Project phase 330 (1KGP).

Because 1KGP should be depleted of individuals with se-

vere rare disorders, we treated each genome as if it came

from a proband with a rare disorder whose pathogenic

SVs have been removed. 221 of these genomes had one

or more homozygous rare exon-altering SVs, almost all of

which should be benign. For each genome, we recorded

the fraction of putatively benign SVs that were correctly

identified as benign by StrVCTVRE and SVScore

(Figure 5A). Since many genomes had just one homozy-

gous exon-altering SV, the distribution is bimodal at

0 and 1. We used our leave-one-chromosome-out predic-

tors (e.g., predicting on 1KGP SVs on chromosome 1 and

training StrVCTVRE on all other chromosomes) to score

each SV. At the ClinVar 90% sensitivity threshold

(StrVCTVRE score > 0.37), on average StrVCTVRE identi-

fied 59% of the putatively benign SVs in each genome as

benign, compared to 43% when SVScore was used at the

same sensitivity (Wilcoxon paired-rank p ¼ 8.06 3

10�6). In a clinical setting, StrVCTVRE may classify

more benign SVs as benign than SVScore, allowing clini-

cians and researchers to eliminate the most benign homo-

zygous SVs from consideration.

StrVCTVRE performance is reliable even on SVs that do

not overlap cataloged pathogenic SVs

Since probands with the same disorder often have SVs

altering the same genome element, and recurrent patho-

genic de novo SVs are known to occur,53 one strategy used

to prioritize SVs is to annotate them with overlapping SVs

of known pathogenicity. AnnotSV is a popular method to

identify pathogenic SVs on the basis of their overlap with

both cataloged pathogenic SVs in the National Center for

Biotechnology Information’s dbVar. Because it considers

cataloged SVs, AnnotSV would most likely perform very

well for a probandwhose disease-causing SVoverlaps a cata-

loged pathogenic dbVar SV (Figure S11). Yet, many pro-

bands have disease-causing SVs that are not cataloged. To

address these novel SVs, AnnotSValso considers SVoverlap

with genes associated with disease or predicted to be intol-

erant to variation, and it uses manually determined deci-

sion boundaries to score SVs (e.g., an SV overlapping a

gene with pLI > 0.9 is scored as likely pathogenic). To

compare the performance of AnnotSV with machine

learning SV impact predictors onnovel SVs,we created ada-

taset of set 3 DECIPHER SVs that do not overlap dbVar SVs

used by AnnotSV, and we recorded the prediction accuracy

of each method (Figure 5B). AnnotSV performed notably

worse on these uncatalogued SVs. We tested StrVCTVRE

(with the leave-one-chromosome-out approach) and

SVScore on these uncatalogued SVs, and both methods

showed significant predictive power, which we attribute

to their consideration of features beyond gene intolerance

(such as conservation and expression features) and

A B Figure 5. StrVCTVRE helps remove
benign SVs from diagnostic consideration
and effectively classifies SVs that do not
overlap cataloged pathogenic SVs
(A) StrVCTVRE eliminated a significantly
larger fraction of benign SVs from consid-
eration than SVScore. When tested on
rare exonic SVs from the genomes of 221
putatively healthy individuals, StrVCTVRE
was able to correctly classify 59% of puta-
tively benign variants in each genome.
White dots represent mean values. For
both methods, the threshold for variant
consideration was at the ClinVar 90%
sensitivity (Figure 2B).
(B) ROC comparing two machine-learning
methods with diverse features (StrVCTVRE
and SVScore) to one method (AnnotSV)
that uses limited features and manually

determined decision boundaries. AnnotSV ranks an SV as ‘‘pathogenic’’ or ‘‘likely pathogenic’’ when the SV overlaps a cataloged path-
ogenic SV, known disease-associated gene, or gene predicted to be intolerant to variation. To generate this figure, all SVs overlapping any
of AnnotSV’s cataloged pathogenic SVs were removed from the DECIPHER set 3 dataset, and the remaining SVs were used for testing.
AnnotSV performs relatively poorly on these novel variants. In contrast, themachine-learningmethods perform better, possibly because
they use more diverse features and have decision boundaries trained on real data. StrVCTVRE scores were generated with a leave-one-
chromosome-out approach.
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their use of methods that learn decision boundaries based

on training data rather than manually determined

boundaries.

Interpreting StrVCTVRE scores

StrVCTVRE scores range from 0 to 1, reflecting the propor-

tion of decision trees in the random forest that classify an

SV as pathogenic. Note that StrVCTVRE scores are not

probabilities. Although we used the ClinVar 90% sensi-

tivity threshold for evaluation, we advise against using

StrVCTVRE scores as a threshold. We instead recommend

that greater consideration be given to SVs with greater

StrVCTVRE scores. However, thresholds are currently

required for computational tools when SVs are classified

with the guidelines for sequence variant interpretation rec-

ommended by the American College of Medical Genetics

and Genomics (ACMG; criteria PP3, BP4).46,54 Within the

ACMG framework, StrVCTVRE can be used as supporting

evidence because it uses multiple lines of computational

data. We suspect that higher levels of evidence (e.g., mod-

erate) may be achievable, as shown by Tavtigian et al.55

However, when using StrVCTVRE at higher levels of evi-

dence, users should be careful not to also count other

ACMG criteria that StrVCTVRE already incorporates,

which could lead to double counting. Alternatively, to

resolve concerns of double counting, StrVCTVRE can be

used just to prioritize variants but not used as evidence.

Users then can manually classify SVs of interest by using

the full ACMG criteria.

Discussion

As genome sequencing becomesmore accessible, clinicians

and researchers face a challenge in identifying pathogenic

SVs in the thousands identified by sequencing. The ACMG

recently offered guidelines for classifying SVs, acknowl-

edging that classification is complex andmany pathogenic

SVs will be classified as variants of uncertain significance as

a result of incomplete knowledge.46 SV impact predictors

can address this challenge, but few SV impact predictors

exist. Although SVs comprise a significant fraction of the

loss-of-function mutations that cause rare disease, fewer

than 10,000 pathogenic SVs have been cataloged in Clin-

Var. These SVs have distinct biases toward certain genes

and lengths, which leads to acquisition bias that hinders

predictor development. Additionally, it is not clear which

features are most useful when classifying SVs and how to

address the large size range of SVs. StrVCTVRE was devel-

oped to address these problems by predicting the impact

of exon-altering deletions and duplications in rare genetic

disorders. We overcame data limitations and bias by

combining SVs from multiple data sources as well as

matching pathogenic and benign SVs by size. Because cli-

nicians and researchers must recognize SVs that cause dis-

ease among dozens of rare exon-altering SVs detected in a

proband, we trained only on rare SVs.

Determining whether a single SV is pathogenic requires

consideration of numerous features in combination, as

demonstrated by the recent ACMG SV guidelines. Inde-

pendent of these guidelines, our method identified impor-

tant features in cataloged SVs. Our findings reinforce clin-

ical guidelines, while also highlighting new areas to

explore. Both StrVCTVRE and the ACMG guidelines found

gene importance and CDS disruptions to be critical for SV

interpretation. Additionally, StrVCTVRE highlighted two

features not discussed in the guidelines: conservation

and expression. We found exon expression in particular

is both predictive and poorly correlated with all other fea-

tures, suggesting it captures distinctive information for

determining pathogenicity. More widespread consider-

ation of expression features could be beneficial for SV clas-

sification. StrVCTVRE additionally identified features that

are not useful to classify exon-altering SVs, such as TAD

boundary strength and whether there is a copy gain or

loss. This is consistent with the ACMG guidelines, which

do not consider TAD boundaries and provide very similar

scoring metrics for both copy gain and loss.

Because SVs range from 50 bp to >10 Mb, it is chal-

lenging to accurately classify SVs across this range. Benign

SVs in ClinVar are mainly >10 kb, but accurate classifica-

tion of SVs < 10 kb requires training on benign SVs from

the same size range. We accomplished this by training on

small benign SVs from great apes and gnomAD. When

tested on an independent test set, StrVCTVRE performed

well at all size ranges. To be helpful in a clinical setting, a

method must perform well at moderately high sensitivity.

StrVCTVRE satisfies this requirement and was able to re-

move 57% of homozygous SVs from consideration at a

sensitivity of 90% in the 1KGP dataset. This 90% sensi-

tivity threshold was validated with a dataset of recent

SVs observed to cause neuromuscular and retinal degener-

ation disorders. Overall, we found StrVCTVRE outperforms

SVScore in most tasks, even though SVScore’s underlying

approach, CADD, was trained on >1,000-fold more vari-

ants. Additionally, whereas StrVCTVRE was often assessed

with a leave-one-chromosome-out approach, SVScore

could not be readily modified and thus had the benefit of

possibly training on data that overlapped the testing SVs.

StrVCTVRE is accessible as a downloadable command

line program (see data and code availability). Whereas

SVScore requires users to download an 80 gigabyte (Gb)

CADD file, StrVCTVRE only requires a 9 Gb phyloP file.

Because there are an intractably large number of possible

SVs, each SV must be scored anew (unlike SNVs for which

scores can be pre-computed), and this requires efficient

scoring methods. StrVCTVRE runs rapidly and annotates

100,000 gnomAD SVs in 3 min, while SVScore annotates

the same SVs in 24 h (Figure S12). StrVCTVRE uses 1 Gb

of RAM to annotate 20,000 gnomAD variants. RAM usage

will vary on the basis of the fraction of SVs that are exonic

and their size distribution. We are also working to make

StrVCTVRE scores available through dbNSFP56 and

WGSA.57 Researchers may use our Dryad repository to

The American Journal of Human Genetics 109, 195–209, February 3, 2022 205



retrain StrVCTVRE on updated data (see data and code

availability).

Following existing predictors, StrVCTVRE predicts the

pathogenicity of an SV in isolation. Yet human biology

complicates this picture through zygosity and dominance.

Because zygosity is not reported for most SVs in ClinVar,

StrVCTVRE is zygosity naive. Additionally, StrVCTVRE’s

pathogenic training dataset consists largely of SVs in genes

predicted to lead to dominant disorders (Figure S13).When

tested on sets of SVs predicted to lead to dominant or reces-

sive disorders, StrVCTVRE performs similarly on both

(Figure S14). Researchers who suspect a recessive mode of

inheritance may need to consider StrVCTVRE scores in

tandem with impact predictor scores for SNVs in trans in

the same gene. Although genes vary in their tolerance of

SVs and dominance, we believe a whole-genome approach

will be necessary to identify all pathogenic SVs, including

those SVs disrupting genes not currently associated with

disease. To identify new disease-associated genes, it may

be helpful to consider StrVCTVRE scores in tandem with

one of the many methods that assess the match between

proband phenotype and known/predicted phenotypes

for an affected gene.58–60

A method can only be as good as its training data. SV

impact predictors are limited by the relatively small num-

ber of identified pathogenic and putatively benign SVs,

as well as the over-representation of certain genes in the

dataset (Figure S2). While pathogenic ClinVar variants

are commonly used to train variant impact predictors,

they are known to include misclassified variants.61 We

know of no characterization of the accuracy of SVs in Clin-

Var, but work investigating pathogenic SNVs suggest at

least 90% are pathogenic on the basis of reclassification

rates.62 70% of our pathogenic training SVs have at least

one review star in ClinVar, indicating they have support-

ing evidence that further bolsters our confidence in these

data. Nonetheless, data limitations almost certainly curtail

the ultimate performance of our approach. StrVCTVRE is

unable to classify inversions and insertions due to limited

data; however, these have been shown to contribute to a

minority of the pLoF events caused by SVs.16 We are hope-

ful that additional clinical sequencing studies will identify

a more diverse range of SVs, which will be cataloged in

open resources such as ClinVar and leveraged to develop

more accurate models. We look forward to greater non-

coding genome annotations, which will expand our un-

derstanding and cataloging of pathogenic noncoding

SVs, which remain vexing to classify.

Much of the focus in SV algorithms has been on

methods to accurately detect SVs. These methods have

left clinicians and researchers awash with SVs not previ-

ously known. As experimental methods and algorithms

advance, SV detection will improve, but SV interpretation

will continue to be challenging. StrVCTVRE advances the

clinical evaluation of SVs. During genome-sequencing

analysis, some cases contain an SV that matches a cata-

loged pathogenic SV or satisfies the conditions for patho-

genicity set forth in the ACMG SV guidelines. However,

these SVs are often not obvious, and StrVCTVRE can be

used to quickly bring these SVs to attention. In the many

cases in which no SV is immediately promising,

StrVCTVRE aids clinicians and researchers in identifying

compelling SVs for manual investigation. Then, if a case re-

mains unresolved by manual investigation, SVs high-

lighted by StrVCTVRE that are in novel disease-associated

genes can be directed to experimental exploration. This

will empower researchers to identify novel disease-associ-

ated genes where haploinsufficiency and triplosensitivity

were not previously known causes of disease. Adoption

of structural variant impact predictors will enable clini-

cians and researchers to make the most of these new data

to improve both clinical care and our understanding of

basic biology.

Data and code availability

All datasets generated and analyzed during this study are available

in the Dryad repository: https://doi.org/10.6078/D1GM63, with

the following exceptions. Data obtained from DECIPHER, for

which access was granted for the current study, are not publicly

available because of their sensitive nature. Under reasonable

request, DECIPHER data can be requested from https://www.

deciphergenomics.org/about/data-sharing. A subset of the recent

CMG clinical SVs found to cause neuromuscular and retinal

degeneration disorders have been made publicly available,48–52

but the full dataset is not currently publicly available. These data

can be made available by Anne O’Donnell on reasonable request.

Information for StrVCTVRE is at https://compbio.berkeley.edu/

proj/strvctvre/. StrVCTVRE scores can be computed by installing

StrVCTVRE at https://github.com/andrewSharo/StrVCTVRE. The

StrVCTVRE RRID is RRID: SCR_021776.

Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2021.12.007.
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