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Purpose: To identify the genetic defect associated with autosomal dominant congenital nuclear cataract in a Chinese
family.
Methods: Family history and phenotypic data were recorded, and the phenotypes were documented by slit lamp
photography. The genomic DNA was extracted from peripheral blood leukocytes. All the exons and flanking intronic
sequences of CRYGC and CRYGD were amplified by polymerase chain reaction (PCR) and screened for mutation by
direct DNA sequencing. Structural models of the wild type and mutant γC-crystallin were generated and analyzed by
SWISS-MODEL.
Results: Sequencing of the coding regions of CRYGC and CRYGD showed the presence of a heterozygous C>A
transversion at c.327 of the coding sequence in exon 3 of CRYGC (c.327C>A), which results in the substitution of a wild
type cysteine to a nonsense codon (C109X). One and a half Greek key motifs at the COOH-terminus were found to be
absent in the structural model of the mutant truncated γC-crystallin.
Conclusions: A novel nonsense mutation in CRYGC was detected in a Chinese family with consistent autosomal dominant
congenital nuclear cataract, providing clear evidence of a relationship between the genotype and the corresponding cataract
phenotype.

Hereditary congenital cataract (OMIM 604307) is an
opacification of the eye lens that frequently results in visual
impairment or even blindness during infancy or early
childhood. Despite the great advances in the clinical
management of cataracts as well as a better understanding of
lens structure and function, congenital cataract remains a
leading cause of blindness in children worldwide [1,2].
Irreversible visual loss can result if prompt treatment is not
performed on these patients. Congenital cataracts are
considered to be both phenotypically and genetically
heterogeneous [3-5]. The water-soluble lens crystallins
account for nearly 90% of the total lens proteins and play
essential roles in maintaining the lens transparency [6].
Therefore, crystallins are good candidate genes for congenital
cataract.

Crystallins are subdivided into α-, β-, and γ-crystallins
with the γ-crystallin gene cluster subdivided into six genes,
CRYGA-CRYGF. Only CRYGC (OMIM 123680) and CRYGD
(OMIM 123690) are known to encode abundant lens γ-
crystallins in humans [7,8]. The γ-crystallins have two
domains with each domain composed of two exceptionally
stable protein structures called “Greek key” motifs [9]. The
γ-crystallins are monomeric with a molecular mass of 21 kDa
and comprise about 40% of the total proteins in the mouse lens
and 25% in the human lens [6,10]. As reported, mutations in
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CRYGC and CRYGD have been identified to cause isolated
autosomal dominant congenital cataracts [11,12] as a result of
altered stability, association, and/or solubility of γ-crystallins
[13-16]. Indeed, in our previous study, we reported
heterozygous mutations in CRYGD in a four-generation
Chinese family with distinct fasciculiform cataract [17].

In the present study, we investigated a large Chinese
family with autosomal dominant congenital nuclear cataract
and detected a novel chain-termination mutation in CRYGC
that cosegregated with the disease in the family.

METHODS
Patients and clinical data: A family of three generations was
ascertained through the Eye Center of the 2nd Affiliated
Hospital (Medical College of Zhejiang University, Hangzhou,
China). Appropriate informed consent from each participant
was obtained in accordance with the Zhejiang Institutional
Review Board, and the study protocol adhered to the
guidelines of the Declaration of Helsinki. Thirteen individuals
(seven affected and six unaffected) from the family were
enrolled in the study (Figure 1). Affected status was
determined by a history of cataract extraction or
ophthalmologic examination on presentation including visual
function, slit lamp examination, and fundus examination with
the dilated pupil. The phenotype was documented by slit lamp
photography. Fifty subjects without diagnostic features of
congenital cataract were recruited from the Chinese Han
population in our medical examination center to serve as
normal controls.
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Genomic DNA preparation and molecular analysis: Blood
specimens (5 ml) from all the patients and available family
members were collected in EDTA. Genomic DNA was
isolated as previously described [18]. Since the number of
mutations leading to dominant cataracts was fairly high in the
human CRYG gene cluster, CRYGC and CRYGD were taken
as a priority to be screened as the candidate genes. The exons
and flanking regions of CRYGC and CRYGD in patients II:6
and III:4 were amplified and sequenced using the primers
listed in (Table 1). The cycling conditions for PCR were 38
cycles of 95 °C for 25 s, 55 °C for 25 s and 72 °C for 35 s,
preceded by 5 min at 95 °C and followed by a final elongation
step at 72 °C for 10 min. Any interesting sequence variation
of a mutation suspect was later confirmed in the rest of the
patients and unaffected family members by bidirectional
sequencing of the particular exon.
Comparative modeling of γC-crystallins: Three-dimensional
structures of the wild type and the mutant γC-crystallin were
modeled on the basis of the crystal structure of the mouse γC-

Figure 1. Pedigree of the autosomal dominant congenital cataract.
The proband is marked with an arrow. Squares and circles indicate
males and females, respectively. Black and white symbols denote
affected and unaffected individuals, respectively. A slash through the
symbol signifies that the family member is deceased. Thirteen
individuals (seven affected and six unaffected) from the family were
enrolled and underwent ophthalmologic examinations and
genotyping in the study (II:5, marked by an asterisk, did not
participate in the study).

crystallin chain A [19]. The homology models were generated
by SWISS-MODEL and analyzed in the Swiss-PdbViewer,
version 3.7 (GlaxoSmithKline R&D, UK) [20-22].

RESULTS
Clinical evaluation: We identified isolated autosomal
dominant congenital nuclear cataract in a three-generation
Chinese family. Opacification of the lens was bilateral and
consistent in all of the affected individuals. All embryonal,
fetal, and infantile nuclei of the lens were opacified while the
cortex remained transparent (Figure 2). Visual acuity ranged
from light perception to 0.15 in the unoperated eyes and from
0.20 to 0.02 in the eyes that had undergone iridectomy during
childhood. Obvious nystagmus was observed in all the
patients except the 10-month-old proband who received
phacoemulsification surgery in both eyes on presentation.
There was no history of other ocular or related systemic
abnormalities in the family aside from age-related changes.
Mutation analysis: Direct sequencing was performed to cover
exons and flanking intron-exon boundary sequences. A
heterozygous C>A transversion was identified at c.327 in
exon 3 of CRYGC in all the affected members but not in any
of the unaffected family members (Figure 3). This mutation
resulted in the substitution of a wild type cysteine to a
nonsense codon (C109X). The variant was completely absent
in 100 chromosomes of 50 unrelated controls.

Figure 2. Slit lamp photographs of affected individual II:6. Lens
opacities were located in the embryonal, fetal, and infantile nuclei of
the lens while the cortex remained transparent. The patient
underwent iridectomy on both eyes in his early childhood.

TABLE 1. POLYMERASE CHAIN REACTION PRIMERS AND PRODUCT SIZES.

Name Primer sequence (5′-3′) Product size
(bp)

GC1,2F 5′ TGCATAAAATCCCCTTACCGCTGA 3′ 522
GC1,2R 5′ ACTCTGGCGGCATGATGGAAATC 3′
GC3F 5′ AGACTCATTTGCTTTTTTCCATCCTTCTTTC 3′ 407
GC3R 5′ GAAAGAATGACAGAAGTCAGCAATTGCC 3′
GD1,2F 5′ CTTATGTGGGGAGCAAACT 3′ 619
GD1,2R 5′ CAGCAGCCCTCCTGCTAT 3′
GD3F 5′ TGCTTTTCTTCTCTTTTTATTTCTGGGTCC 3′ 400
GD3R 5′ AGTAAAGAAAGACACAAGCAAATCAGTGCC 3′
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Comparison of wild type and mutant γC-crystallin structures:
The C>A transversion at position c.327 in exon 3 led to a
premature stop codon at codon 109. A truncated protein with
108 amino acids was putatively generated, 66 amino acids less
than the wild type γC-crystallin, which possesses 174 amino
acids (Figure 4). When modeled by SWISS-MODEL, one and
a half Greek key motifs at the COOH-terminus were found to
be absent in the three-dimensional structural model of the
mutant γC-crystallin (Figure 5).

Figure 3. Forward sequence analysis of CRYGC. A: The sequence of
an unaffected member (individual II:7) is shown. B: The sequence
of an affected member (individual II:6) is shown. A heterozygous
mutation was detected in the exon 3 of CRYGC (c.327C>A).

Figure 4. Influence of the mutation (c.327C>A) on γC-crystallin
translation. The C>A substitution at c.327 in exon 3 leads to a
premature stop codon at codon 109. A truncated protein (108 amino
acids) is putatively generated in addition to a wild type γC-crystallin
(174 amino acids).

DISCUSSION
In the present study, we detected a novel mutation (c.327C>A)
in exon 3 of CRYGC in a Chinese family with autosomal
dominant congenital nuclear cataract. The cataract phenotype
was consistent among all the affected family members,
providing a clear relationship between the genotype and the
corresponding cataract phenotype. The opacification in the
nuclei but not in the cortex could be explained by the fact that
monomeric γC-crystallin, the major type of γ-crystallin
expressed in the young human lens, is synthesized in the early
life span and localized only in the central regions of the
mature/aging eye lens [23,24].

To our knowledge, four mutations in CRYGC have been
reported in the literature (listed in Table 2) [11,25-27]. The
mutation detected in our present study, c.327C>A, creates a
premature stop codon (C109X) and results in an in-frame stop
codon at nucleotide 75 of exon 3 that may cause a truncation
of 66 amino acids from the COOH-terminus of γC-crystallin.
The secondary structure predicted by the Protein Prediction
program (PHD) [28] shows that there are 16 β-strands (β1-
β16) in γC-crystallin. The Cys109 residue located between the
β10-strand and β11-strand is replaced by a nonsense codon,
resulting in the loss of six β-strands after the β10-strand
(Figure 4). Consequently the highly symmetric structure of
γC-crystallin is lost (Figure 6).

Thus far, wild type human γC-crystallin has not been
crystallized. Therefore, homology models for wild type and
mutant human γC-crystallin are usually built based on the X-
ray determined coordinates of mouse γC-crystallin chain A.
The C109X mutation interferes with the formation of two

Figure 5. Structural modeling of the wild type and mutant γC-
crystallins. The structure modeling is based on the X-ray determined
coordinates of mouse γC-crystallin chain A using SWISS-MODEL.
A: A structural model of the wild type γC-crystallin with 84%
sequence identity is demonstrated. B: A structural alteration of the
mutant γC-crystallin with 82% sequence identity is shown. Highly
symmetric structure of γC-crystallin is disrupted when 66 amino
acids are truncated from the COOH-terminus of γC-crystallin as
result of c.327C>A mutation.
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COOH-terminal Greek key motifs. Although the function of
the Greek key motifs has not been elaborated in detail,
computer-based analysis suggests that it may be responsible
for particular protein–protein interactions in the lens, and it is
postulated to be critical in the maintenance of lens
transparency [29].

It is reported that self-aggregation or quaternary
structural alteration of γ-crystallin is responsible for the
phenotypic association with lens opacification as well as
cataractogenesis [30,31]. The truncated γC-crystallin may
change the folding properties of γC-crystallin as it has been
shown in a previous investigation that the COOH-terminal
domain folds before and nucleates the folding of the NH2-
terminal domain in human γD-crystallin refolding [32]. The
relatively loose or partially unfolded structure of mutant γC-
crystallin may be susceptible to aggregation and
insolubilization, which leads to cataract formation [13].
Another possible consequence of the C109X mutation may be
related to the disturbances of the interactions between γC-
crystallin and other crystallins [16,33]. The truncated γC-
crystallin in the present study may cause a decrease or even
complete loss of the ability to interact with other crystallins
and may result in congenital cataract.

In conclusion, the novel nonsense mutation (c.327C>A)
in CRYGC in this Chinese family is associated with isolated
autosomal dominant congenital nuclear cataract, giving
evidence of a clear relationship between the genotype and the
corresponding cataract phenotype. The possible influence of
the mutation on the structure as well as the function of γC-
crystallin will require further investigation.

Figure 6. Comparative modeling of the full length and truncated γC-
crystallins. The structural modeling was analyzed in Swiss-
PdbViewer (version 3.7). When comparing the full length (left) and
truncated γC-crystallins (right), the six COOH-terminal β-strands are
truncated in the mutated γC-crystallin (the strands are shown in red).
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