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Conditioned taste aversion 
in the cricket Gryllus bimaculatus
Hui Lyu1 & Makoto Mizunami2*

Conditioned taste aversion (CTA) is a form of classical conditioning in which animals associate the 
taste of a food with illness caused by toxin contained in the food. CTA in mammals is achieved with 
a long interval of up to several hours between food ingestion and illness induced by LiCl injection. 
Insects also exhibit CTA, but not much is known about its features. We investigated whether the 
cricket Gryllus bimaculatus exhibits CTA when ingestion of a sugar solution is followed by LiCl 
injection. Crickets that ingested sucrose solution 5–10 min before LiCl injection exhibited reduction of 
sucrose consumption tested 24 or 48 h after injection compared to that tested 24 h before injection. 
In contrast, crickets that ingested sucrose solution 5–10 min after LiCl injection or 1 h or 8 h before or 
after injection did not exhibit reduction of sucrose consumption, indicating that reduction of sucrose 
consumption by CTA training is pairing-specific. We conclude that CTA in crickets is similar to that in 
mammals in that one-trial pairing is sufficient to achieve memory retention for days, but it differs in 
that it is achieved with a relatively short interval (< 1 h) between food ingestion and toxin injection.

Learning to avoid ingestion of toxin-containing foods is essential for survival of animals, especially for omni-
vores, and hence many animals including  humans1 exhibit aversion to the taste of food when it contained toxin 
that produced a negative visceral reaction or when ingestion of food was followed by injection of toxin into the 
circulation system. This learning is called conditioned taste aversion (CTA) and is characterized as a form of 
Pavlovian conditioning in which the taste serves as conditioned stimulus (CS) and malaise or illness produced 
by toxin serves as unconditioned stimulus (US)2,3. CTA was first established in rats, and extensive studies in rats 
demonstrated that CTA has special features that are rarely observed in standard Pavlovian conditioning systems. 
The first is that one trial conditioning is sufficient for the formation of CTA and the memory lasts 18 days or 
 more4,5. The second is that conditioning is achieved with a very long interval of up to several hours between taste 
stimulation and lithium chloride (LiCl)  injection6. The third is that CTA is achieved more easily with a novel 
taste than with tastes of daily  foods7. The fourth is that the illness is easily associated with taste of food but not 
with the color or shape of the  food8. Illness is also associated with the odor of the food when it is compounded 
with a taste of the  food7,9. Attempts have been made to clarify physiological and neural mechanisms of CTA in 
rats, but much remains to be  elucidated10.

CTA has also been reported in invertebrates including  molluscs11–13 and insects (moth  larvae14;  locusts15,16; 
honey  bees17,18; fruit-flies19) and there are some reports on mechanisms conveying post-ingestive aversive signals 
(honey  bees17; fruit-flies19). In insects, however, little effort has been directed to the elucidation of conditioning 
parameters for achieving CTA, and it therefore remains unclear whether CTA in insects has features analogous 
to those in mammals. For example, it remains unknown whether CTA can be achieved with an interval of 1 h 
or longer between food intake and toxin injection into the haemolymph in insects, which is a prominent feature 
of CTA in mammals.

Aversive learning of the odor of food after ingestion of harmful substances has been reported in honey 
 bees20,21, fruit-flies19 and  locusts22. In a study in locusts (Schistocerca americana), stimulus parameters for achiev-
ing odor aversion learning were investigated by pairing ingestion of odorous food with injection of a  toxin22. 
However, it is unknown whether features of this odor learning match those of taste aversion learning in insects.

In this study, we first investigated whether CTA is achieved in the cricket Gryllus bimaculatus, a generalist 
omnivore as in the case of rats, by pairing ingestion of sugar solution with injection of LiCl into the haemolymph, 
and we then investigated stimulus parameters necessary for achieving CTA. Crickets have emerged as useful 
experimental insects for investigating the basic associative processes that underlie Pavlovian  conditioning23–27 
and may serve as experimental animals for investigating physiological and neural processes underlying CTA.
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Results
Determination of the appropriate LiCl concentration for CTA experiments. We first performed 
experiments to determine the appropriate concentration of LiCl for CTA experiments. Three groups of crickets 
were allowed to consume 0.5 M sucrose solution from a feeder for 2.5 min (Fig. 1A). Five minutes later, these 
groups were each injected with 5 µl of cricket saline (n = 50) or saline containing 1 M LiCl (n = 50) or 2 M LiCl 
(n = 54) into the haemolymph. At various times from 4 to 48 h after injection, the probability of survival of crick-
ets was recorded. Survival analysis using Kaplan–Meier curves (Fig. 2A) showed that the survival probability 
significantly differed among the three groups (log-rank test: χ2 = 23.68, df = 2, p < 0.0001). Comparison between 
two groups showed that the survival probability of the saline group was significantly higher than that of the 1 M 
LiCl group (log-rank test with Bonferroni correction, p = 0.0099) and that of the 2 M LiCl group (p < 0.0003), 
indicating that survival probability is reduced in the LiCl groups. The survival probability of the 2 M LiCl group 
was lower at any time after injection than that of the 1 M LiCl group, but the difference was not statistically sig-
nificant (log-rank test with Bonferroni correction, p = 0.0852). Considering the results, we injected 5 µl of 1 M 
LiCl solution in subsequent CTA experiments.

We next studied the effect of pairing of ingestion of sucrose solution with LiCl injection on consumption of 
sucrose solution tested 24 h after the pairing. Two groups of crickets were allowed to consume 0.5 M sucrose solu-
tion from a feeder for 2.5 min. Five minutes later, they were injected with 5 µl of saline or saline containing 1 M 
LiCl solution. At 24 h after injection, they were tested with the amount of consumption of 0.5 M sucrose solution 
by presenting a feeder for 2.5 min. Crickets that did not visit the feeder and hence experienced no sugar taste in 
the test were not used for data analysis in this and in subsequent experiments. This was because we intended to 
evaluate the amount of sugar consumption of crickets that perceived sugar by touching the solution with their 
mouth or palpi. Crickets that did not visit the feeder accounted for 6% (2/36) of the crickets used in this experi-
ment. The amount of consumption in the final post-training test did not significantly differ from that in the initial 
pre-training test in the saline-injected group (n = 16, Wilcoxon test, p = 0.27, Fig. 2B). On the other hand, the 
LiCl-injected group exhibited a significant reduction of sucrose consumption in the final test compared to that 
in the initial test (n = 18, Wilcoxon test, p = 0.00074, Fig. 2B). Whether the reduction of sucrose consumption 
is due to association of sucrose taste with the toxic effect of LiCl or due to a non-associative toxic effect of LiCl 
injection to reduce motivation for intake fluid was the subject of subsequent experiments.

Effects of pairing sucrose consumption and LiCl injection with different intervals. We next 
investigated whether crickets exhibit aversion to sucrose when there is long interval between sucrose inges-
tion and LiCl injection or when crickets received LiCl injection and then ingested sucrose solution. In this 
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Figure 1.  Experimental procedures for CTA training and testing in crickets. (A) A feeder used for the sugar 
consumption test. (B) CTA training to ingest 100 µl sugar solution followed by injection of 5 µl of 1 M LiCl 
solution. The amount of consumption of sugar solution for a given period of time was measured 24 h before 
CTA training and 24 or 48 h after CTA training.
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experiment, crickets were allowed to ingest a given amount (100 µl) of 0.5 M sucrose solution in CTA training 
to reduce variance of sensory experience in training among individuals (Fig. 1B). Six groups of crickets received 
an initial consumption test of sucrose solution for 2.5 min, and the next day they were given 100 µl of sucrose 
solution 8 h, 1 h or 5–10 min before LiCl injection (8 h, 1 h and 5–10 min before groups) or 5–10 min, 1 h or 8 h 
after LiCl injection (5–10 min, 1 h and 8 h after groups). The interval between the initial test and LiCl injection 
was 24 h in this experiment and in all subsequent experiments. At 24 h after LiCl injection, all groups were given 
a final consumption test of sucrose solution.

In the group that consumed sucrose solution 5–10 min before LiCl injection (5–10 min before group), sucrose 
consumption was significantly reduced in the final post-training test compared to that in the initial test (n = 21, 
Wilcoxon test, p = 0.044, Fig. 3). On the other hand, in the other groups, sucrose consumption in the final test 
did not significantly differ from that in the initial test (Wilcoxon test, 8 h before group: n = 31, p = 0.27; 1 h before 
group: n = 15, p = 0.92; 5–10 min after group: n = 17, p = 0.33; 1 h after group: n = 19, p = 0.52; 8 h after group: 
n = 18, p = 0.61). In short, crickets exhibited reduced sucrose consumption when the crickets consumed sucrose 
5–10 min before LiCl injection but not when crickets consumed 5–10 min after LiCl injection or when the 
interval was 1 h or longer. This finding indicates that reduced sucrose consumption of the group that consumed 
sucrose 5–10 min before LiCl injection is not due to a non-associative, general toxic effect of LiCl to reduce 
appetite, because all other groups that received injection of LiCl with the same interval between injection and 
the final test exhibited no reduction of sucrose consumption in the final test. We thus conclude that reduction 
in consumption of sucrose solution of the group that consumed sucrose 5–10 min before LiCl injection is spe-
cific to CS-US pairing, and hence taste aversion conditioning by pairing ingestion of sucrose solution with LiCl 
injection is successful.

Retention for 48 h after CTA training with sucrose or fructose. We next investigated whether the 
memory formed by one-trial CTA training can be maintained for 48 h and we also investigated whether CTA can 
be achieved with fructose as the CS. Two groups of crickets received an initial consumption test of 0.5 M sucrose 

Figure 2.  Effects of injections of different concentrations of LiCl solution paired with sucrose consumption. 
(A) Kaplan–Meier plots of survival probabilities of three groups of crickets that received injection of different 
concentrations of LiCl solution. Crickets in all groups were allowed to consume 0.5 M sucrose solution for 
2.5 min and they were injected 5 min later with 5 µl of saline (n = 50) or saline containing 1 M LiCl (n = 50) or 
2 M LiCl (n = 54) solution. The probability of survival was measured at various times up to 48 h after injection. 
Dashed lines indicate 95% confidence interval. The log-rank test was used to compare survival probabilities of 
different groups. (B) Two groups of crickets were allowed to consume 0.5 M sucrose solution for 2.5 min (pre-
test) and they were injected 5 min later with 5 µl of saline or saline containing 1 M LiCl. Sucrose consumption 
was tested again for 2.5 min 1 day after injection (post-test). The Wilcoxon test was used for statistical 
comparisons of amounts of sucrose consumption before and after the CTA training (*** P < 0.001, ns: not 
significant).
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and the next day they were given 100 µl of 0.5 M sucrose solution at 8 h or 5–10 min before injection of 5 µl of 
1 M LiCl solution. At 48 h after LiCl injection, they received the final consumption test. Another two groups 
received the same training and testing with 1 M fructose solution.

The groups that consumed sucrose or fructose solution 5–10 min before LiCl injection exhibited significant 
reduction of sucrose or fructose consumption in the final test compared to that in the initial test (Wilcoxon 
test, sucrose: n = 17, p = 0.023; fructose: n = 16, p = 0.007, Fig. 4A, B). On the other hand, the group that ingested 

Figure 3.  Effects of CTA training with different intervals between sucrose ingestion and LiCl injection. Five 
groups of crickets received an initial 2.5-min consumption test, and the next day they were allowed to ingest 
100 µl of 0.5 M sucrose solution at various times before and after injection of LiCl. All of the groups received 
2.5-min sucrose consumption at 24 h after LiCl injection. The Wilcoxon test was used for statistical comparisons 
of amounts of sucrose consumption before and after CTA training (**P < 0.01, ns: not significant).
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sucrose or fructose solution 8 h before LiCl injection exhibited no significant reduction of sucrose or fructose 
consumption in the final test compared to that in the initial test (Wilcoxon test, sucrose: n = 17, p = 0.89; fruc-
tose: n = 16, p = 0.98, Fig. 4A, B). We thus conclude that the memory formed by one-trail CTA conditioning with 
sucrose or fructose solution is retained for at least 48 h.

Discussion
Conditioned taste aversion in crickets. We have established procedures to achieve CTA in crickets. In 
training, crickets were allowed to ingest sucrose solution and were then injected with LiCl into the haemolymph 
5–10 min later. Crickets that received single-trial CTA training exhibited a significant reduction of sucrose con-
sumption in the test performed 24 or 48 h after LiCl injection compared to that in the initial test performed 24 h 
before LiCl injection. In contrast, crickets that received a pairing trial in which sucrose was given 5–10 min after 
LiCl injection or the interval between sucrose consumption and LiCl injection was 1 h or longer exhibited no 
reduction of sucrose consumption in the final test compared to that in the initial test. The results indicate that 
reduction of sugar consumption is due to pairing of it with subsequent LiCl injection, not due to a non-specific 
toxic effect of LiCl to reduce motivation to intake fluid. Single CTA training with fructose solution was also suc-
cessful, with memory being retained for 2 days. We thus conclude that single pairing of sugar ingestion with LiCl 
injection is sufficient to achieve CTA and that the memory is retained for at least 2 days in crickets. Our findings 
in crickets are in accordance with results of previous studies on CTA in locusts (Schistocerca americana) showing 
that a single session of training with spinach or broccoli and then injection of a toxin was sufficient to achieve 
aversion to spinach or broccoli and that the memory was retained for 2  days15,16.

We found that CTA is successful with a 5–10-min interval between sucrose ingestion and LiCl injection in 
crickets. This interval is much longer than that to achieve an association between CS and US in most Pavlovian 
conditioning systems in insects. For example, we have observed that conditioning of odor CS with water US in 
crickets is difficult to achieve when the CS-US interval is 20 s or  longer28. Association of CS and US with long 
intervals is a characteristic feature of CTA in animals, indicating that a negative physiological consequence of 
ingestion of toxin occurs with long latencies after ingestion of toxin-containing food.

Figure 4.  Effects of CTA training with sucrose or fructose solution tested 2 days after LiCl injection. (A) Two 
groups of crickets received a 0.5 M sucrose consumption test, and the next day they were allowed to ingest 
100 µm of 0.5 M sucrose solution 5–10 min or 8 h before LiCl injection. Their sucrose consumption was tested 
again 48 h after LiCl injection. (B) Another two groups received CTA training and testing with 1 M fructose 
solution. The Wilcoxon test was used for statistical comparisons of amounts of sugar consumption 24 h before 
and 48 h after CTA training (*P < 0.05, **P < 0.01, ns: not significant).
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CTA was not successful when the interval between sucrose consumption and LiCl injection was 1 h or longer. 
This differs from reports for rats showing that CTA is achieved with intervals of several hours between food 
consumption and LiCl  injection6. Such a difference between insects and mammals can be explained if malaise 
occurs sooner after ingestion of toxin-containing food in insects due possibly to the smallness and simplicity of 
the digestive system, and hence avoidance of the taste of food that was ingested long before the occurrence of 
malaise is less important in insects. To clarify this issue, physiological mechanisms to monitor malaise signals 
and neural mechanisms to associate it with the taste of previously ingested food need to be investigated in insects 
to compare them with those in mammals. In this respect, a recent finding that serotonin is likely to mediate 
malaise signals in honey  bees17,20,21 is promising as a basis for future studies.

Comparison to odor aversion learning in locusts. Simões et al.22 investigated aversive learning of food 
odor by pairing food ingestion with toxin injection in locusts (Schistocerca americana) and found that learning 
is achieved with an interval between food uptake and toxin injection of 30 min but not with an interval of 1 h, 
and their results show some agreement with our findings for taste aversion learning in crickets. Since it has been 
reported that odor learning occurs only when an odor is presented during food  uptake22, it can be reasoned that 
that sensory stimuli during food uptake, most probably taste, serve as critical cues for achieving conditioning of 
odor with malaise. One of the possible mechanisms is that food taste mediates the association between odor and 
malaise by the mechanism of second-order conditioning, i.e., conditioning of taste with malaise is coupled with 
conditioning of odor with taste as suggested in  rats7. Food-odor aversion by uptake of toxin-containing food 
has also been reported in some other species of insects (honey  bees17,18,20,21 and fruit-flies19,29). and it would be 
interesting to investigate if these are also due to second-order conditioning.

Comparison to the nature of CTA in snails. The nature of CTA in crickets also differs from that in snails 
(Lymnaea stagnalis). In snails, repetitive pairings of sucrose solution and KCl produce suppression of feeding 
response to sucrose solution and the memory lasts longer than one  month12. Sugai et al.11 reported that one-
trial conditioning produces memory that lasts for 5 days in some but not all individuals. Nakai et al.13 reported 
that successful conditioning is achieved with intervals between sucrose and KCl of 10 s to 3 min. How different 
features of CTA among different animals reflects different feeding habits and different strategies to avoid toxin 
ingestion remains as an interesting future subject.

Future perspectives and conclusions. This study was designed to evaluate the effect of CTA training 
based on within-group statistical comparisons, in which the amount of sucrose consumption after training of 
individual crickets was compared with that before training. We did not use statistical comparisons between 
groups, because the amount of sucrose consumption before training was highly variable among individuals and 
hence statistical comparisons of the amount of sugar consumption after training in different individuals were 
less effective to obtain statistical conclusions. Improvements of experimental procedures are needed for allowing 
between-group statistical comparisons and for achieving detailed analysis of data.

One of the reasons for the establishment of a CTA procedure is that we intend to use this procedure for “US 
devaluation” experiments that will allow us to characterize associative processes that govern execution of a 
conditioned response (CR) after Pavlovian conditioning. We previously showed that after a standard amount of 
Pavlovian training to associate an odor CS with water US, crickets exhibited no CR when water US was devalued 
by providing it until  satiation30,31. After extended training, on the other hand, the level of CR remained unchanged 
by devaluation of the US. This finding suggests that execution of a CR is initially governed by the current value 
of the US, but it becomes more automatic and independent of the current US  value30,32. Such an increase of 
behavioral automaticity by extended Pavlovian training has not been reported in  mammals33,34 or in any other 
animals as we discussed in our previous  studies30,32, and hence we think that evaluation of the reproducibility of 
the results obtained by the use of CTA for devaluation of the US is needed. Indeed, a CTA procedure has been 
successfully used for devaluation of sucrose US in honey  bees17, in which bees that had subjected to pairing of an 
odor CS with sucrose US and then subjected to pairing of sucrose with toxin (quinine) exhibited partially reduced 
response to the odor CS, indicating that the execution of the CR depends partially on the current value of the US.

In conclusion, we showed that CTA in crickets has a feature similar to that in mammals in that one-trial CTA 
training is sufficient for producing long-term aversive memory that is retained for at least two days, but it also 
has a different feature in that CTA in crickets is not achieved with a long interval between sugar intake and toxin 
injection of 1 h or longer. Insects are useful animals for analyzing the mechanisms of CTA due to the simplicity 
of their central nervous system, and recent findings in honey bees indicating that malaise signals produced by 
toxin are likely to be mediated by  serotonin17,20,21,35 are promising as the first step for such studies. Since various 
experimental manipulations such as pharmacological analysis, RNAi and genome editing by CRISPR/Cas9 are 
feasible in  crickets23,24,27, further studies in crickets are promising to extend our understanding of the physiologi-
cal and neural mechanisms of CTA.

Materials and methods
Insects. A wild-type strain of two-spotted crickets (Gryllus bimaculatus) has been inbred for several decades 
in our laboratory (Hokudai WT strain). The crickets were reared in 12-h light/dark cycles at 29 °C ± 2 °C and 
were fed a diet of insect pellets and water ad libitum. Three days after the imaginal molt, adult male crickets were 
individually isolated in 100 ml glass beakers. They were given insect pellets ad libitum but were deprived of water 
to enhance motivation to uptake liquid. Crickets weighting 0.69 ± 0.09 (mean ± SD, n = 165) g were used.
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Survival analysis. To determine the appropriate concentration of LiCl solution for use in a CTA experi-
ment, three groups of crickets were allowed to consume 0.5 M sucrose from a feeder for 2.5 min and they were 
injected 5 min later with 5 μl of saline or saline containing 1 M or 2 M LiCl solution. The survival probabilities 
of the three groups were recorded at 4, 8, 12, 24, 36 and 48 h after injection.

Procedures for taste aversion conditioning. In a typical conditioning experiment, 100  µl of 0.5  M 
sucrose or fructose solution was attached to the wall of the beaker in which a cricket was placed and the cricket 
was allowed to consume it. Crickets typically consumed it within 5 min. Crickets that did not complete con-
sumption of 100 µl of sugar solution within 15 min were not used for experiments, considering the possibility 
that they have a poor physiological condition. Those crickets accounted for 24% (39/260) of the crickets used in 
this experiment. At 5–10 min after sugar consumption, they were injected with 5 μl of cricket  saline36 or saline 
containing 1 M LiCl by inserting a microsyringe into the ventral side of the thorax. The dose per body weight 
of crickets was 0.31 ± 0.03 (mean ± SD, n = 165) mg/g. In experiments in which LiCl was injected at various 
times before and after providing sugar solution, LiCl injection was set at the onset of the dark phase of 12 h:12 h 
light–dark cycles.

Consumption tests. The amount of consumption of sugar solution was measured by scaling the weights of 
the feeder before and after the test (Fig. 1). This was calibrated by the rate of evaporation, although its contribu-
tion was negligible. The feeder, composed of a plastic petri dish of 30 mm in diameter and a bottle cap (Fig. 1A), 
was placed in the center of an acrylic cubic box measuring 15 cm × 15 cm × 15 cm (Fig. 1B). The test started when 
a cricket was placed in the box. The cricket was allowed to freely visit the feeder for a period of 2.5 min.

Statistical Analysis. The survival probabilities of the three groups of crickets that had been injected with 
different concentrations of LiCl solution were assessed by using Kaplan–Meier survival  analysis37, and the log-
rank test was use for comparing survival probabilities of different groups using GraphPad Prism 9. Because of 
the increased risk of a Type I error when performing multiple statistical tests, we applied Bonferroni’s correc-
tion. The Wilcoxon signed-rank test was used for comparing the amount of consumption of sugar solution in 
a test performed after training with that in a test performed before training for each group. Statistical analyses 
were performed using R 3.6.1 (Package: ggplot2 version 3.2.0, ggpubr version 0.2.1). P < 0.05 was considered as 
a significant difference.

Data availability
The datasets generated during the current study are available from the corresponding author on reasonable 
request.
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