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Abstract: COVID-19 tracing applications have been launched in several countries to track and control
the spread of viruses. Such applications utilize Bluetooth Low Energy (BLE) transmissions, which
are short range and can be used to determine infected and susceptible persons near an infected
person. The COVID-19 risk estimation depends on an epidemic model for the virus behavior and
Machine Learning (ML) model to classify the risk based on time series distance of the nodes that
may be infected. The BLE technology enabled smartphones continuously transmit beacons and the
distance is inferred from the received signal strength indicators (RSSI). The educational activities
have shifted to online teaching modes due to the contagious nature of COVID-19. The government
policy makers decide on education mode (online, hybrid, or physical) with little technological insight
on actual risk estimates. In this study, we analyze BLE technology to debate the COVID-19 risks in
university block and indoor class environments. We utilize a sigmoid based epidemic model with
varying thresholds of distance to label contact data with high risk or low risk based on features such
as contact duration. Further, we train multiple ML classifiers to classify a person into high risk or
low risk based on labeled data of RSSI and distance. We analyze the accuracy of the ML classifiers
in terms of F-score, receiver operating characteristic (ROC) curve, and confusion matrix. Lastly, we
debate future research directions and limitations of this study. We complement the study with open
source code so that it can be validated and further investigated.

Keywords: BLE; machine learning; classification; COVID-19; epidemic model

1. Introduction

The COVID-19 virus has been declared a pandemic by the World Health Organization
with more than 150 million cases and 3 million deaths worldwide as of 1 May 2021 [1].
The COVID-19 virus cases have increased exponentially and formed mutations indicating
its highly contagious characteristics. The cure for COVID-19 can take several months due
to clinical trials on animal and humans of varying ages and ethnicity before approval and
possible genetic mutations shown by the virus [2]. Currently, the human community at
large has no other option than to follow either containment or mitigation strategies to
stop its contagious spread. Computing systems, specifically smartphones, can help in
the application of containment and mitigation strategies at large [3]. Smartphones are
ubiquitous. A smart application tracing COVID-19 patients can alert the community at
large to avoid potentially disease infected areas. Such applications have been developed at
regional/country level [4]. D2D communications, Bluetooth, and GPS technology can be
applied to identify people at risk from the COVID-19 virus. As smartphones are commodity,
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people can use a smartphone application to be alert of their community situation regarding
COVID-19 [2].

Bluetooth based indoor localization has seen renewed interest post COVID-19 outbreak [2,5].
Singapore government launched an application for tracking of COVID-19 (https://www.
tracetogether.gov.sg/, accessed on 22 September 2021). The application only traces in active
mode aided by Bluetooth Low Energy (BLE) technology. The smartphone users install the
tracing application and turn on the Bluetooth. The application transmits beacons at constant
interval to nearby devices. As a result, record of persons within proximity of few meters is
maintained by each user. After a person has been tested positive for the COVID-19 virus, his
smartphone transmits a record of each received beacon to a cloud database to help identify
members of community at risk. The physical contacts are alerted for medical testing,
isolation, and monitoring for virus symptoms. The foremost challenge to widespread
deployment of such applications is that the users should trust the application to keep
their private information, such as, identity and location hidden from third parties, other
users of the same application, and potential hackers [6]. Several countries have launched
independent contact tracing applications for COVID-19 surveillance and mitigation [7].

Educational institutes have shifted towards online teaching and hybrid teaching
modes instead of on-campus mode to limit the risk of COVID-19 transmissions. Most the clo-
sures have been dictated by the government policies of lockdown and non-pharmaceutical
interventions. However, there has been little technological insights on the epidemiological
risk of COVID-19 that may guide the institute closure policies [8,9]. The BLE technology
can be beneficial while translating the received signal strength indicator (RSSI) and distance
values to risk factors and estimating the risk based on time-series mobility data. Real-time
university mobility and contact data needs to be curated based on BLE technology based
smartphone applications for precise evaluation of risk estimation in educational institutes.
The availability of such datasets is limited. In this article, we formulate a framework
for Machine Learning (ML) based COVID-19 risk estimation for educational institutes.
The framework sheds light on the risk scores and the performance of five ML classifiers
suitable for indoor and outdoor risk classification. We select two datasets that are were
obtained in environments similar to educational institutes.

The contributions of this article are as follows,

• We predict the COVID-19 risk based on sigmoid epidemic model and five ML classi-
fiers while utilizing two BLE datasets that depict a university outdoor and an indoor
class environment. The analysis enables policy makers in determining the COVID-19
risk to students in university campuses based on contact traces and make appropriate
decisions regarding the mode of teaching.

• We analyze the varying parameters, such as distance threshold, epidemic model,
and classifier threshold to evaluate the COVID-19 risk in various settings for in-depth
analysis.

• We make the code and pre-processed datasets open source for the extension, verifica-
tion, and validation of existing research (https://github.com/jshuja86/BLE-based-
COVID19-Risk-Estimation-, accessed on 22 September 2021).

The rest of the article is organized as follows. Section 2 presents the related work on
BLE technology applied for COVID-19 contact tracing. Section 3 provides background
knowledge on BLE contact tracing and motivation for the existing work. Section 4 details
the experimental setup in terms of overall system framework, datasets, ML classifiers,
and epidemic models. Section 5 presents the results for the performance evaluation of the
ML classifiers in terms of ROC, F-score, and confusion matrix. The concluding remarks,
limitations of existing works, and future research directions are debated in Section 6.

2. Related Work

Contact tracing has been utilized in containment of contagious diseases. BLE technol-
ogy based contact tracing came to prominence due to the COVID-19 outbreak resulting in
millions of casualties. The implementation of contact tracing applications has been very

https://www.tracetogether.gov.sg/
https://www.tracetogether.gov.sg/
https://github.com/jshuja86/BLE-based-COVID19-Risk-Estimation-
https://github.com/jshuja86/BLE-based-COVID19-Risk-Estimation-
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beneficial for countries with small populations. However, the efficacy seems limited for
larger populations [2,10]. The foremost consideration in this case is that the participants
should be aware of these risks and the scale of information shared with other users and
government agencies. User should be informed of their right to refuse or withdraw their
consent for use of their data. To address the user privacy issues, some efforts have been
recently made as summarized in [11].

ML has been applied to the RSSI and distance values to estimate the risk of COVID-
19. Most of indoor localization studies and corresponding datasets before COVID-19
measured BLE RSSI between a mobile node and multiple static receivers [12,13]. However,
the COVID-19 contact tracing requires multiple mobile senders and receivers broadcasting
BLE beacons in a controlled environment. The accuracy of applications for BLE based
contact tracing and localization is debatable due to the variance in RSSI values based on
application parameters, environment factors such as shadowing and fading, and hardware
profiles [14–16]. However, such applications provide an efficient mechanism for automated
BLE contact tracing for large population and are widely used.

The authors of [17] study BLE based contact tracing for precision, utilization, and effi-
ciency while controlling the infections with the help of mathematical models. The authors
first analyze the willingness of users, hence, percentage of population utilizing the con-
tact tracing technology. Afterward, centralized and decentralized application models are
compared to analyze the speed of contact tracing model. Using a three-state susceptible,
infected, recovered (SIR) epidemiological model, the effectiveness of contact tracing is eval-
uated. The state transitions of the epidemic classes are modeled based on several factors,
such as, reproductive number, recovery rate, transmission rate, and average quarantine
period. The result show that contact tracing is not effective if no quarantine measures are
taken. Moreover, contact tracing is not effective if more than 80% population does not use
the application.

Felix et al. [18] proposed a risk estimation model for COVID-19 transmissions based
on BLE technology. Two separate experiments were conducted with more than 40 users
to obtain BLE RSSI values at Julius Leber barracks in Berlin. Each data point consists of a
time series distance and RSSI values. An epidemiological model is defined that converts
time series RSSI and distance values to risk binary scores. The epidemiological model is
chosen from linear, box, and sigmoid functions such that increasing distance results in lower
infection score. Infection scores are integrated with contact time to obtain ground truth labels.
A contact time of 2 min with less than 2 m distance is considered highly infectious [19].
A linear regression model is trained to predict infection score based on the risk model. RSSI
features such as sum, mean, max etc., are input to the ML model. The linear regression
model based predictions strongly correlate with the linear risk model.

Pai et al. [20] proposed a two-dimensional solution named smart contact tracing
enabled by BLE technology. Firstly, user contacts are classified into high or low risk based
on BLE based proximate sensing. Secondly, a privacy preserving protocol is utilized for
user anonymity. The authors obtain and maintain an open source BLE RSSI dataset for
six positions between two users to model the RSSI variance due to body shadowing effect.
Moreover, data is pre-processed with moving average of two window sizes to smooth the
variance in RSS values. Five ML classifiers are employed, namely, decision tree, linear
discriminant analysis, naive bayes, k-nearest neighbors, and support vector machine to
classify the time series BLE RSSI values as high or low risk. Decision tree is found to be the
most accurate classifier. The epidemic model considers the distance of less than two meters
as high risk without taking into consideration the contact period. Fox et al. [8] analyze the
impact of various public health measures including reduced class population and social
distancing of 6 feet on COVID-19 transmissions at an Indiana university campus with
12,000 people . Despite strict public health measures, an outbreak was identified within first
two weeks of semester. It would be very interesting to experiment with BLE contact tracing
at a large university campus to evaluate the dynamics of virus propagation. However,
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the aforementioned study employed manual contact tracing which is very cumbersome for
a large university campus.

The main issue in the listed works is the unavailability of automated BLE contact
tracing data from large scale educational institutes. Such datasets are necessary to evaluate
the dynamics of virus propagation in educational institutes. To address this issue, we
undertook this research with multi-dimensional contributions. Firstly, we employed two
datasets that closely resemble indoor class environment [20] and a university campus
block [18]. Afterward, we label data with risk scores based on RSSI and distance vectors
input to the epidemic (sigmoid) model. Moreover, we utilize five ML classifiers to classify
risk into high and low risk categories while varying distance and classifier thresholds.
Furthermore, we analyze the accuracy of the classifiers with ROC, F-score, and confusion
matrix. We debate the limitations of the existing work and address future directions for
smart contact tracing in educational institutes while concluding the article. Lastly, we make
the datasets and code open source for validation and verification of the research work.

3. Background and Motivation

A BLE application works in the following manner. The application generates a pseudo-
random number based on a seed and current timestamp, encrypts it with a private key,
and broadcasts it in fixed time intervals. Other users in proximity listen to broadcast mes-
sages, save them in a log, and broadcast their own broadcast messages. Each smartphone
keeps two records. One for the generated seeds and the other for received chirps. Testing
authorities generate random permission numbers and distribute them to testing officers to
authorize upload of contact information to exposure database. If a user is tested positive, his
private key and generated pseudo-random numbers are uploaded to the exposure database.
The information consists of multiple fields over an approximate period of two weeks where
each field includes the seed used to generate chirps, the encryption keys, and the time interval
between which this seed was used. Other users download the exposure database, use the
user’s public key to decrypt their broadcasts, and match with the broadcasts they received to
determine the extent of risk. The number of matching seeds and the signal strength indicate
the physical exposure of a person and function as the measure of COVID-19 risk [21,22].
The workflow of BLE contact tracing is explained in Figure 1.

The Singapore Ministry of Health launched an app for tracking of COVID-19 [23,24].
The application only traces in active mode aided by Bluetooth. When user smartphones
are in contact the devices exchange random strings as tokens. These tokens act as a
user identifier for the device for a set period of time. When a user is diagnosed with
COVID-19, the government requires them to upload their list of collected tokens and it is
against the law not to cooperate. The application puts the government at higher control
of user data with little authority to user over what details are shared. Moreover, frequent
Bluetooth communications limit the battery time of the smartphones. Similar applications
at government level have been developed with varying privacy mechanisms [22,25].

Motivation: The COVID-19 pandemic has affected normal routines of businesses,
travel, and educational institutes. Educational institutes have shifted to hybrid and on-line
teaching modes to limit the contacts and follow governmental lockdown policies. As a
result, the quality of education has suffered due to lower concentration and attendance
and where a part of student population has resided in remote areas with limited network
connectivity. The shutdown of educational institutes and shift to hybrid and online teaching
mode requires careful consideration of the epidemic risk [8,26]. BLE contact tracing and
ML provides valuable apprehensions for policy makers to decide upon mode of teaching.
Currently, the risk prediction models take the distance and time of contact between users
as input. However, they can be extended to consider other epidemic parameters such as
positivity rate and growth rate.
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Figure 1. BLE based contact tracing application operation.

4. Experimental Setup

In this section, we describe and illustrate the overall research methodology, data sets,
epidemic models, and ML classifiers utilized in this research work.

4.1. Research Methodology

The proposed method takes the vector of RSS values for a person and predicts whether
the subject is at risk of getting infected or not. The shallow classifiers including logistic
regression, decision tree, and SVM have been compared to be used as the ML models for
the prediction of infection. These ML models are trained using a data set of all RSS vectors
for multiple subjects with corresponding binary labels indicating the subject being at risk
for the RSS value vector. The inputs to the ML models are three features of vector length,
maximum, and mean while the output is the binary risk label. The risk labels corresponding
to the RSS value vectors have been obtained by applying a mathematical epidemic model
to the vectors of distance values corresponding to the RSS values available in the data set.
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The epidemic model is a mathematical function applied to the vector of distance values
and resulting in a binary output. For example, the sigmoid epidemic model used for this
article sums the sigmoid values for the values in the vector of distances. Sigmoid has been
found to be a more effective epidemic model as compared to the linear functions for the
particular data used in this research. Moreover, the classification threshold is set to then
flag the predicted probabilities as at risk or safe. This study conducted the tests by varying
the classification threshold, the distance reference threshold, epidemiological function,
and ML model. Figure 2 illustrates the proposed research methodology.

Figure 2. The research methodology for ML based risk prediction on BLE data.

4.2. Datasets

We utilized two datasets for our research. The datasets were made open source by [20]
collected from an indoor classroom and [18], which is collected from military barracks
resembling a university block. The original datasets can be obtained from their respective
repositories (https://ieee-dataport.org/open-access/rssdatahumanhuman, https://github.
com/felisat/ble-proximitiy-tracing, accessed on 22 September 2021). Data wrangling and
pre-processing was required to obtain uniform features across both data sets. The first data
set contains time-series scalar values of a user, the RSS, distance, and risk. The second
dataset contained time-series vectors of RSS, time, and, distance representing contacts
between users and their duration. We converted the scalar values to vectors so that both
data sets can be simultaneously utilized for analysis. The data sets used for our research
can be found at (https://github.com/jshuja86/BLE-based-COVID19-Risk-Estimation-,
accessed on 22 September 2021). We are working towards a multi-user BLE dataset based
on university campus (University of Jeddah) and indoor classroom to further enhance the
COVID-19 risk analysis.

The first data set [20] utilized two smartphone users in different positions to obtain ground
truth values for RSS, distance, timestamp, etc. The application is configured to advertise beacons
at 100 ms interval with users in varying positions. A total of 13 positions and corresponding
distances are measured ranging from 2 m to 5 m with each position experimented for at
least 60 s. Moreover, six smartphone positions, including pocket-to-pocket (both users have
smartphone in pocket) and hand-to-hand (both users have smartphone in hand), are tested
between the two users to analyze the variance in RSS. As a result, the data set consists of
nearly 120,000 data points. We name it the indoor dataset for naming convention in the rest
of the article. The indoor dataset is arranged into different files based on position of BLE
devices held by humans. To simulate the random nature of BLE positions in real world
scenario, all the files have been randomly shuffled maintaining respective distance RSSI
labels. Moreover, each individual file is sorted on distance between BLE devices. Dataset
shuffling also arranges the RSSI and corresponding distance values randomly for classifier
training. These values are then grouped together as vectors of 200 values for classifier
training and evaluation.

The second data set [18] was obtained from two different experiments carried out at
five (three indoor, two outdoor) locations within the Julius Leber barracks in Berlin. The two
experiments consisted of 48 and 37 users, respectively. The floor area was marked as a grid

https://ieee-dataport.org/open-access/rssdatahumanhuman
https://github.com/felisat/ble-proximitiy-tracing
https://github.com/felisat/ble-proximitiy-tracing
https://github.com/jshuja86/BLE-based-COVID19-Risk-Estimation-
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to calculate the distances and record RSSI values. A video of experiments was recorded
to verify the distances. Ground truth distance values were obtained from predefined user
mobility pattern on the grid. Data collected from two indoor and one outdoor location
was used for training while the rest was used for validation of ML classifiers. The train
data set consists of 954 data points while test data set contains 468 data points detailing
RSS, time, and distance vectors along with receiver and transmitter IDs. We name it the
outdoor dataset.

4.3. Epidemic Models

The ML model is designed to predict the epidemic infection risk level as the binary
classification problem using time series vectors of RSSI values by neighboring devices.
An epidemic model is required to translate time series vector to risk scores. Various studies
have adopted varying distance thresholds and epidemic models depending on the local
Center of Disease Control (CDC) recommendations [27,28]. We can consider linear and
sigmoid epidemic models for risk scores. In the sigmoid epidemic model, the sum of element
wise sigmoid functions for the distance vector is compared with that of a reference distance
vector and the subject is flagged as at risk based on the comparison for training the ML
model. Due to the random shuffling of the indoor dataset, vectors are arranged randomly
and have got marginal mean differences. As a result, linear epidemic models label all
the RSSI vectors as either at risk or safe. However because of its non-linearity, sigmoid
model gives us a balanced dataset in terms of risk labeling. Figures 3 and 4 illustrate this
fact while comparing the effect the varying threshold on risk labels for linear and sigmoid
epidemic models.

Figure 3. Percentage of high and low risk persons for varying thresholds: linear.

Figure 4. Percentage of high and low risk persons on varying thresholds: sigmoid.
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The aforementioned figures show that the linear epidemic model changes the risk
labels rapidly while marginally changing the distance threshold. On the contrary, the sig-
moid model does not change the risk labels as quickly as compared to the linear model.
Due to the change in linear model based on marginal threshold changes, all ML classifiers
show similar results. As a result, we chose the sigmoid epidemic model for further analysis
in this research. The Figures 3 and 4 also demonstrate the percentage of students at risk of
COVID-19. In the indoor environment, no students are at risk with a distance threshold of
30 cm while all students are at risk with a distance threshold of 50 cm according to linear
epidemic model. The sigmoid based epidemic model labels no students at risk for 50 cm
threshold while 82% students at risk for 80 cm threshold.

Epidemiological function and hence the risk flag is based on a reference vector of
distances as threshold. The vector contains time series distance values where lower distance
translates to high risk. Moreover, the length of vector translates to the number of contacts
(higher length means higher risk). We utilized features (length, maximum, mean) of this
vector for epidemic model to classify the user into risky or safe label. A reference vector is
employed as threshold to train the ML model for prediction of risk scores. Both data sets
cannot have the same reference vector due the heterogeneity in length and environment in
which they were captured. The reference vector consists of 600 constant values of 225 cm
distances measures in case of outdoor data set. The indoor data set, which is recorded
inside a room, consists of RSSI vectors smaller length (<200) and distance. Moreover,
the data set contains multiple values fixed distance. Therefore, we formulated a reference
vector of 100 values of 75 cm distances measures. The lower values of reference vector
in the indoor set are reflective of higher risks in indoor environments [29]. Increasing the
reference distance threshold results in more positive labels during training. With the above
reference values, sigmoid epidemic models give a balanced training set of approximately
same number of low risk and high risk users.

4.4. ML Classifiers

Classification techniques are part of supervised ML. Multiple classification techniques
and algorithms exist. We choose Support Vector machine (SVM), Decision Tree (DT), Linear
Discriminant Analysis (LDA), K-Nearest Neighbors (KNN), and Logistic Regression (LR)
in this article.

5. Results

We discuss the results with respect to the performance and validity of ML classifiers
while studying effect of varying classifier (decision) threshold in this section. We chose
F-score, area under the ROC (Receiver operating characteristics) curve, and confusion
matrix for the performance evaluation of the ML classifiers. In case of classification tasks
of biomedical applications, the classification accuracy alone is not enough for evaluation
of the classifier models as false positives and false negatives have different significance.
Hence ROC, F-score, and confusion matrix have been analyzed for the proposed framework
for in-depth analysis. Label for each ROC curve is the AUC for that curve and classifier
threshold. Label for each F-score plot represents the F-score achieved for corresponding
classifier thresholds.

5.1. ROC

ROC is used for binary classification tasks and plots the True Positive Rate across the
False Positive Rate for various classification thresholds considered to label the sample as
true positive. AUC represents area under the curve for different classification thresholds.
AUC is overall performance for all thresholds. The performance (ROC) of ML classifiers
for both data sets is illustrated in Figure 5a,b.
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(a) Indoor dataset (b) Outdoor dataset

Figure 5. Comparison of ML classifiers for in terms of ROC.

The ML classifiers are ranked as follows: LR and LDA are joint best classifiers while
SVM, KNN, and DT follow for indoor datasets. For the outdoor dataset, the ML classifiers
are ranked from LR, KNN, LDA, SVM, to DT. LR and KNN are the joint best ML classifier
for outdoor dataset. LR is the best classifier for both data sets in terms of ROC. ML
classifiers perform better on the outdoor dataset that allows for higher distance threshold
and also contains contact traces of varying length and time. The ML classifiers also adjust
performance quickly with increasing classifier threshold for outdoor dataset. Cumulatively,
the ML classifiers perform 31% better in terms of ROC for the outdoor dataset as compared
to indoor dataset. The result of ROC for both datasets in numeric form is presented in
Table 1.

Table 1. Comparison of ROC.

Datasets
ML Model

LR SVM LDA DT KNN

Indoor 0.62 0.61 0.62 0.58 0.61
Outdoor 0.91 0.87 0.90 0.82 0.91

5.2. F-Score

F-score is the harmonic mean of precision and recall. Harmonic mean is the repre-
sentation of average for two ratios. Since precision and recall are both ratios hence their
Harmonic mean, i.e., F-score is a good classification measure considering both precision
and recall. Precision refers to the ratio of True Positive (TP) predictions to totally positive
predictions (including False Positives (FP)), i.e., TP/(TP + FP). Recall is ratio of TP to
actual positives in the dataset, i.e., sum of TP and False Negatives (FN), i.e., TP/(TP + FN).
The performance (F-score) of ML classifiers for both data sets is illustrated in Figure 6a,b.

The performance of ML classifier can be interpreted for the 0.5 classifier threshold
from Figure 6a. KNN provides the best F-score while DT, LDA, and LR follow for indoor
dataset. SVM has the worst F-score among the analyzed ML classifiers. The DT classifier
performs linearly with varying classifier threshold. The F-score of remaining ML classifiers
fluctuates with varying classifier threshold. In the case of outdoor dataset, the best F-score
is given by KNN while LR, DT, SVM, and LDA follow. Cumulatively, the ML classifiers
perform approximately 35% better in terms of F-score for the outdoor dataset as compared
to indoor dataset. Table 2 lists the best F-scores for the ML models and the corresponding
classifier thresholds.
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(a) Indoor dataset (b) Outdoor dataset

Figure 6. Comparison of ML classifiers in terms of F-score.

Table 2. Comparison of Best F-scores.

Datasets
ML Model (Classifier Threshold)

LR SVM LDA DT KNN

Indoor 0.68 (0.3) 0.69 (0.3) 0.69 (0.4) 0.57 (0.5) 0.67 (0.1)
Outdoor 0.86 (0.6) 0.86 (0.8) 0.85 (0.4) 0.84 (0.1) 0.88 (0.4)

5.3. Confusion Matrix

Binary classification performed by ML models can be judged based on confusion matrix
if true labels are known. Confusion matrix presents the four combinations of predicted
and actual values in a 2 × 2 matrix. These combinations represent true positive (TP), true
negative (TN), false positive (FP, Type I error), and false negative (FN, Type II error) cases.
The confusion matrix of the selected ML classification models for indoor and outdoor
datasets is illustrated in Figure 7 and 8, respectively.

Figure 7. Comparison of ML classifiers for indoor dataset (confusion matrix).
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Figure 8. Comparison of ML classifiers for outdoor dataset (confusion matrix).

The x-axis of Figures 7 and 8 represent the ground truth labels while the y-axis repre-
sents the predicted labels. The top left cell shows the number and percentage of TP while
the top right cells shows the number of FP. similarly, the bottom right cell shows the number
and percentage of FN while the bottom right cell represents TN. The results for the indoor
dataset show that the number of errors (type I and II) is lowest for LDA and LR classifiers
while the DT classifier has the highest errors. The result of the outdoor dataset shows
best performance in terms of low errors is achieved by the KNN classifier while DT is the
worst classifier.

6. Conclusions, Limitations, and Future Directions

BLE contact tracing is an essential part of COVID-19 mitigation and a non-pharmaceutical
measure to stop the virus outbreak. BLE traces can be used to predict the virus transmission
risk based on epidemic models and ML classifiers that classify RSSI and contact duration
in risk scores. We analyzed two datasets resembling university indoor and outdoor envi-
ronments to get insights on COVID-19 transmission risks among students. We employed
sigmoid based epidemic model and calibrated the thresholds to balance the risk scores.
Multiple ML classifiers were analyzed for performance based on F-score, ROC, and con-
fusion matrix. We found that LR classifier performs best in terms of ROC for both data
sets. Moreover, KNN is the best classifier in terms of F-score for both indoor and outdoor
dataset. LDA and LR classifiers have lowest errors for the indoor dataset while KNN
has the lowest errors for the outdoor dataset. We complimented our research with open
source data sets and code for validation and extension. The analysis of the epidemic model
shows that 100% students are at risk for the indoor data set at 50 cm threshold in case of
linear epidemic model while no student is at risk for the same threshold in case of sigmoid
epidemic model.

Limitations: There are several limitations regarding existing BLE based contact tracing
research. They are listed as bellow,

• The employed datasets resemble an university classroom and block environment but do
not ideally represent it. For example, the data set presented in [20] consists of only two
students in a classroom. Real-time datasets collected from universities are necessary
to analyze the corresponding risk factors. Moreover, such datasets can help analyze
multiple hypotheses such as: If social distancing guidelines are followed, is it possible
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to eliminate COVID-19 risk in a university campus? What if the students are divided
into two shifts to decrease class densities?

• The efficacy of any risk estimation based on contact tracing technology is limited to
the application utilization. The utilization of contact tracing applications even among
smaller and developed populations, such as Singapore is as low as 20%. As a result,
only 4% of the contacts will be traced limiting the efficacy of risk estimation that is
solely based on BLE technology [17].

• Contact tracing applications can be categorized into centralized versus decentralized
database models. The centralized model automatically allows health authorities to
utilize the contact history of infected person for fast action. However, the users have
privacy concerns as centralized model can result in mass population surveillance.
Decentralized model gives the contact update authority to the user lowering privacy
concerns while slowing the pace of contact tracing due to user unwillingness to share
data [17,30].

• Training set labels and corresponding classifier are heavily dependent on the epidemic
model and threshold vector used for the epidemic model. Slight changes in the reference
distance vector length or values result in imbalanced datasets and effect the classification
model significantly. Hence, the epidemic model and the distance vector reference need
to be selected carefully considering local dynamics and mathematical epidemiology [31].

Future directions: This work provides a baseline for several future directions enabled
by the open source code. These are listed below.

• The existing classifiers employed for risk classification are binary. More precise
epidemic models should be investigated to classify users into infected, susceptible,
and at risk classes.

• The existing datasets contained limited number of users while an educational institute
can have thousands of users with BLE enabled smartphones. The application of ML
classifiers on large datasets necessitates evaluation of time and memory consumption
for the ML classifiers to identify resource efficiency [32].

• The validation of epidemic models is necessary with the help of a dataset obtained
from a bio-secure environment so that the dataset includes the COVID-19 PCR test
results. Consequently, we will be able to validate whether the epidemic model is
providing the same virus propagation results as the PCR test results indicate?
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