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Abstract

Optically-pumped magnetometers (OPMs) offer the potential for a step change in 

magnetoencephalography (MEG) enabling wearable systems that provide improved data quality, 

accommodate any subject group, allow data capture during movement and potentially reduce cost. 

However, OPM-MEG is a nascent technology and, to realise its potential, it must be shown to 

facilitate key neuroscientific measurements, such as the characterisation of brain networks. 

Networks, and the connectivities that underlie them, have become a core area of neuroscientific 

investigation, and their importance is underscored by many demonstrations of their disruption in 

brain disorders. Consequently, a demonstration of network measurements using OPM-MEG would 

be a significant step forward. Here, we aimed to show that a wearable 50-channel OPM-MEG 

system enables characterisation of the electrophysiological connectome. To this end, we measured 

connectivity in the resting state and during a visuo-motor task, using both OPM-MEG and a state-

of-the-art 275-channel cryogenic MEG device. Our results show that resting-state connectome 

matrices from OPM and cryogenic systems exhibit a high degree of similarity, with correlation 

values >70%. In addition, in task data, similar differences in connectivity between individuals 

(scanned multiple times) were observed in cryogenic and OPM-MEG data, again demonstrating 

the fidelity of the OPM-MEG device. This is the first demonstration of network connectivity 
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measured using OPM-MEG, and results add weight to the argument that OPMs will ultimately 

supersede cryogenic sensors for MEG measurement.
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1. Introduction

Since its inception, functional neuroimaging has made many important contributions to our 

understanding of brain function, and one of the most significant is the discovery of brain 

networks. A network is found when a statistical relationship between neuroimaging signals, 

derived from two or more spatially separate brain regions, is shown to exist. Such a 

relationship is termed functional connectivity. The first measurements of functional 

connectivity used functional magnetic resonance imaging (fMRI; Biswal et al. (1995)) to 

measure correlation between blood-oxygenated-level-dependent (BOLD) time courses from 

left and right motor cortex, in the absence of a task (in the so-called “resting state”). 

Following this, many fMRI studies (e.g. (Beckmann et al., 2005; Fox and Raichle, 2007; 

Smith et al., 2009)) focused on identifying other resting-state networks (RSNs); some 

associated with sensory processing (e.g. auditory or visual networks) and others with 

attention and cognition (e.g. the default-mode and dorsal-attention networks). Raichle 

(2009) described this era of functional imaging as a «paradigm shift». Indeed, study of 

RSNs offers a powerful means to investigate healthy function, and dysfunction in a wide 

range of disorders, including schizophrenia, depression, anxiety and dementia (Menon, 

2011).

Most functional connectivity studies have been based on fMRI. However, the BOLD signal 

is an indirect metric of function, based on haemodynamics, which leads to significant 

disadvantages: for example, Bright et al. (2020) showed an overlap between neural and 

vascular network components and this makes the interpretation of fMRI networks 

challenging without first understanding network-specific vascular architecture. In addition, 

whilst fMRI exhibits exquisite spatial resolution (~1 mm accuracy), it has limited temporal 

resolution due to the latency and longevity of the haemodynamic response. This means that 

the time scale of a functional connectivity measurement is limited, and so it is challenging to 

probe the formation and dissolution of functional networks on a time scale relevant to 

cognition (Hutchison et al., 2013). For these reasons, a move towards electrophysiological 

imaging techniques (which exhibit significantly better temporal resolution) for the 

characterisation of network connectivity is important.

Magnetoencephalography (MEG; Cohen (1972)) measures the magnetic fields generated 

outside the head by current flow through neuronal assemblies in the brain. In this way, it 

offers a means to bypass haemodynamics and infer directly the electrophysiological 

connectome. MEG data (like all electrophysiological data) are dominated by “neural 

oscillations” (rhythmic electrical activity synchronised across neurons) in the 1–200 Hz 

frequency range. Emerging evidence suggests that these oscillations mediate (in part) 
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network formation and consequently their measurement offers an exciting means to probe 

network coupling (Engel et al., 2013). MEG has been used successfully to measure 

functional connectivity in many studies (e.g. (Baker et al., 2014; Brookes et al., 2011b, 

2012; Gross et al., 2001; Hipp et al., 2012; Luckhoo et al., 2012; O’Neill et al., 2015)). 

Networks similar to those seen with fMRI have been found and the excellent temporal 

resolution enables measurement of dynamic connectivity. Indeed, recent studies show that 

canonical networks modulate on the time scale of seconds (O’Neill et al., 2015) and even 

milliseconds (Baker et al., 2014). More recently, Seedat et al. (2020) suggested the 

involvement of extremely short (e.g. ~300 ms) punctate events in driving canonical network 

connectivity, further underscoring the importance of temporal precision.

A combination of high spatial and temporal accuracy means that MEG offers arguably the 

best means to measure functional connectivity. However, existing MEG systems have huge 

limitations: the sensors that form the basic building block of MEG systems (superconducting 

quantum interference devices; SQUIDs) operate at cryogenic temperatures. These sensors 

must therefore be fixed in position within a cryogenic dewar, making systems large, 

cumbersome, and “one-size-fits-all” – i.e. they cannot adapt to different head shapes or 

sizes. This results in inhomogeneous and sometimes poor brain coverage (particularly in 

infants). Even if the head is well fitted to a MEG system, the gap between the scalp and the 

sensors that is needed for thermal insulation reduces sensitivity (according to an inverse 

square law). The fixed nature of the sensors also means that any head movement during data 

acquisition can significantly reduce data quality. For this reason, ideally, subjects should 

remain extremely still, which makes the environment poorly tolerated by many groups, again 

including children. In recent years, a number of algorithms have become available that are 

able to “correct” for head movements inside a MEG helmet. However, the degree of 

movement remains limited (by the size of the helmet itself) and no algorithm can correct for 

changing signal-to-noise ratio (SNR) in specific brain regions as the brain gets closer to, or 

further from sensors. For this reason, even with movement compensation algorithms, motion 

(particular at large scale) remains problematic. Finally, the cryogenic infrastructure and 

complex electronics make systems expensive. These factors have, to date, limited the uptake 

of MEG, and if MEG-based connectome measures are to realise their potential for 

neuroscientific discovery and clinical translation, then new types of MEG technology will be 

required.

Recent advances in quantum technology have led to the development of a new type of 

magnetic field sensor. Optically-pumped magnetometers (OPMs) offer measurement of 

magnetic field with a similar sensitivity to the cryogenic sensors used in conventional MEG, 

however they do not require cooling. Furthermore, they are small and lightweight. This has 

led a number of groups to begin to fabricate OPM-based MEG devices. Suitability of OPMs 

to capture neuromagnetic signals has been well documented (e.g. (Barry et al., 2019; Borna 

et al., 2020; Boto et al., 2017; Iivanainen et al., 2019; Johnson et al., 2013; Kamada et al., 

2015; Kim et al., 2014; Roberts et al., 2019; Sander et al., 2012; Tierney et al., 2018; Xia et 

al., 2006) and more recently their lightweight nature has been exploited to develop 

“wearable” systems in which (if background fields are controlled appropriately) subjects can 

move freely during data acquisition (Boto et al., 2018). OPM arrays are beginning to be 

developed with up to 50 sensors surrounding the head (Hill et al., 2020) and there is a 
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growing argument that these devices – which also have the potential to be cheaper than 

conventional MEG – will ultimately supersede the current generation of scanners. However, 

OPM-MEG remains a nascent technology and if the functional neuroimaging field is to gain 

confidence in it, OPM-based systems must be able to do everything a SQUID system can do. 

Given the importance of functional connectivity, demonstration of its measurement with 

OPM systems is a vital step.

There are a number of reasons why functional connectivity is a challenge for OPM-MEG. 

Firstly, most OPM experimental demonstrations have targeted specific brain regions due to a 

relatively low sensor count. Given that networks are distributed across the whole brain, 

coverage that rivals conventional MEG is required. Secondly, networks are spatially-specific 

and their measurement relies on the ability to project magnetic field data into source space (a 

process termed source localisation; (Schoffelen and Gross, 2009)). Consequently, if an OPM 

system is to characterise networks then it must offer the ability to accurately localise large 

numbers of sources, across the whole cortex, with high spatial accuracy. In reality this 

means achieving equivalent reconstruction accuracy with around 50 OPMs, rather than ~300 

cryogenic sensors. Finally, functional connectivity is heavily reliant on high quality data 

since, unlike task-based studies where data can be averaged over many trials (and thus 

artefacts will often be averaged out) functional connectivity (particularly in the resting state) 

must be measured using unaveraged data. This latter point is amplified since unlike 

conventional MEG systems which often rely on a gradiometer formulation to reduce 

environmental interference, commercially-available OPMs are naturally formed as 

magnetometers. This, at least in principle, increases the effect of external interference, both 

from environmental (e.g. lab equipment) and biological (e.g. the heart) sources. Such 

interference can artificially inflate or reduce connectivity estimates, especially in unaveraged 

data.

In this paper, we aim to test whether a 50-channel OPM-MEG system can successfully 

measure the electrophysiological functional connectome. To this end, we measure 

connectivity during a visuo-motor task, and in the resting state. In both cases we compare 

quantitatively our OPM findings to equivalent measures generated using a 275-channel 

cryogenic system.

2. Methods

2.1. OPM-MEG system

The wearable OPM-MEG device used in this study has been developed at the Sir Peter 

Mansfield Imaging centre, University of Nottingham, and was described recently in Hill et 

al. (2020). A schematic representation of the system is shown in Fig. 1a: the OPM-MEG 

suite contains a magnetically-shielded room (MSR), the design of which has been optimised 

for OPM operation (MuRoom, Magnetic Shields Ltd. Kent, UK). This MSR provides a 

remnant magnetic field magnitude <2 nT and <2 nT/m magnetic field gradient following a 

demagnetisation procedure (Altarev et al., 2015). These fields are significantly lower than 

those found in MSRs that do not feature demagnetisation coils.

Boto et al. Page 4

Neuroimage. Author manuscript; available in PMC 2021 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Inside the MSR, the participant sits in a non-magnetic chair, and wears an additively-

manufactured rigid helmet in which 50 OPMs (second generation zero-field magnetometers, 

QuSpin Inc., (Osborne et al., 2018)) are mounted (see photograph in Fig. 1b). The helmet 

contains a total of 133 possible slots where OPMs can be placed (grey dots in Fig. 1c), and 

for this study, we chose 50 locations to provide whole-head coverage (blue dots). The OPMs 

themselves were configured to measure the radial component of magnetic field. Fig. 1d 

shows the cortical coverage achieved with 50 radial OPMs placed in the slots shown in blue: 

for each vertex of the brain surface, the colour represents the norm of the field (across all 

sensors) produced by a current dipole located at that vertex. (Dipoles were oriented in two 

orthogonal tangential directions, and the result is taken to be the average of the two lead 

field norms.) Note that reasonable coverage of the whole cortex is achievable, although 

sensitivity to the temporal pole is somewhat diminished (a problem also found in 

conventional MEG devices).

Further reduction of background magnetic fields inside the MSR is achieved using a set of 

bi-planar coils (Holmes et al., 2018) positioned either side of the participant. These coils are 

coupled to an OPM reference array placed behind the subject’s head. The remnant static 

magnetic field and its (linear) spatial variation inside the MSR is estimated by the reference 

array, and an equal and opposite field applied by the coils in order to effect field 

cancellation. This reduces the remnant field (typically to <1 nT), better enabling OPM-MEG 

operation by minimising any artefact caused by the subject moving their head (and 

consequently the sensors) through the background field.

The OPMs themselves have been described previously and a complete description will not 

be repeated here (see e.g. Tierney et al. (2019) or Boto et al. (2020) for a review). Note that 

they are controlled via a computer located outside the MSR, and analogue output signals 

proportional to local magnetic field, are fed into a National Instruments (Austin, TX, USA) 

Digital Acquisition unit (DAQ), digitised, and recorded. A separate computer is coupled to 

stimuli delivery systems and sends triggers to the DAQ which are synchronously recorded 

with the MEG data.

2.2. OPM co-registration

In order to enable source localisation, accurate knowledge of the OPM sensor locations and 

orientations relative to the brain is required. This was provided by a 3-dimensional optical 

imaging system (structure IO camera (Occipital Inc., San Francisco, CA, USA) coupled to 

an Apple iPad, operating with Skanect Pro software) and an anatomical MRI scan (Hill et 

al., 2020; Homölle and Oostenveld, 2019; Zetter et al., 2019). The anatomical MRI was 

recorded using a 3 T Philips Ingenia MRI system, running an MPRAGE sequence, at an 

isotropic spatial resolution of 1 mm. The locations and orientations of the sensor casings 

with respect to the helmet are known a-priori from the additive manufacturing process, and 

the co-registration procedure was used to map the helmet on to the head. This was done in 

two stages. First, 6 coloured markers were placed at known locations on the helmet, with a 

further 4 on the participant’s face. The camera, coupled with a colour-thresholding 

algorithm, was used to map the relative locations of these markers, allowing mapping of the 

helmet to the face. Following this, the helmet was removed and the participant was asked to 
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wear a swimming cap (to flatten their hair). A second digitisation was then acquired 

measuring the positions of the markers on the face, relative to the head surface. The head 

surface was then fitted to the equivalent surface extracted from the anatomical MRI scan. 

Combining two transforms (helmet-to-head and head-to-MRI) we were able to effect a 

complete co-registration of sensor casing to brain anatomy. The location of the sensitive cell 

within the OPM casing was accounted for and we assumed that the sensitive axis was radial, 

and parallel to the external sensor housing.

2.3. Task-based connectivity experiment

The data used for our task-based connectivity demonstration have been previously reported 

by Hill et al. (2020).

2.3.1. Paradigm and data acquisition—Two subjects undertook a visuo-motor task. 

The task comprised presentation of a centrally-presented, inward-moving, maximum-

contrast circular grating (Hoogenboom et al., 2006; Iivanainen et al., 2019), which is known 

to increase gamma oscillations in the visual cortex. Whilst the visual stimulus was on the 

screen, participants were asked to perform continuous abductions of their right index finger; 

a task known to modulate beta oscillations in sensorimotor cortex. The grating was 

presented for either 1.6, 1.7 or 1.9 s, depending on the trial. Each trial ended with a 3-s 

baseline period, and 100 trials were recorded.

Both participants were scanned six times in the OPM-MEG system and six times in a 

cryogenic MEG instrument (CTF, Coquitlam, BC, Canada). The study was approved by the 

University of Nottingham Medical School Research Ethics committee.

OPM data were acquired using a sampling frequency of 1,200 Hz. 42 and 49 OPM sensors 

were available for participants 1 and 2, respectively. The visual stimulus was back projected 

onto a screen placed ~85 cm in front the participant’s head. A separate co-registration 

procedure was performed after each experiment.

Cryogenic MEG data were acquired using a 275-channel CTF system, operating in 3rd-order 

gradiometer configuration, at a sampling frequency of 600 Hz. The stimulus was presented 

on a back-projection screen placed 95 cm in front of the participant (the stimulus was 

matched for visual angle between the two scanner types). Three head-position indicator 

(HPI) coils were placed on the participant’s head at three fiducial locations (nasion, left and 

right pre-auricular points). Continuous tracking of the head was achieved via these coils, 

which were periodically energised during MEG data acquisition. A 3D digitiser (Polhemus) 

was used to measure the locations of the fiducial markers relative to the head surface, prior 

to each experiment. By matching the participant’s digitised head surface with the equivalent 

surface extracted from their anatomical MRI, co-registration of the fiducial markers, and 

consequently the MEG sensor geometry, to the individual’s brain anatomy was achieved.

2.3.2. Task-based data analysis—All MEG data (OPM and cryogenic) were band-

pass filtered between 8–80 Hz and epoched into trials (−3.5 s to + 3.0 s relative to time zero, 

which was taken as stimulus onset; giving a 6.5-s trial length). A “bad” trial was removed 

(completely; i.e. all channels removed) in cases where the standard deviation of the signal 
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(in any single channel) was greater than 3 times the average standard deviation across all 

trials (for the same channel). Data were then concatenated into a single signal per channel.

Both cryogenic and OPM data were analysed in the same way: functional connectivity was 

calculated between 78 discrete cortical regions, defined based on the automated anatomical 

labelling (AAL) atlas (Tzourio-Mazoyer et al., 2002). A scalar beamformer was used to 

obtain a single electrophysiological time course representative of each region (i.e. a ‘virtual 

electrode’ placed at the centre of mass of each region (Hillebrand et al., 2016). The data 

covariance matrix was computed in the 8–80 Hz frequency range for a time window 

spanning the whole experiment. Regularisation was not applied, to maximise spatial 

resolution (Brookes et al., 2008). The forward model was based on a single sphere for the 

OPM system and multiple local spheres for the cryogenic system.

After beamforming, regional signals were frequency-filtered to the alpha (8–13 Hz), beta 

(13–30 Hz), and gamma (52–80 Hz) frequency bands, and epoched into trials. Pairwise 

orthogonalization (Brookes et al., 2012; Hipp et al., 2012) was used to mitigate the problem 

of signal leakage between AAL regions (itself a result of the ill-posed MEG inverse 

problem). Following this, the absolute value of the Hilbert transform of the frequency-

filtered data was computed to generate the amplitude envelope of oscillatory signals, which 

was then down-sampled to 10 Hz. (Note down sampling in this way has been used in 

previous connectivity studies (Brookes et al., 2011a); whilst a lower frequency cut-off is 

typically used for resting-state data we employed 10 Hz to ensure that task-induced 

dynamics in the envelope were maintained.) Pearson correlation was calculated between 

amplitude signals for all possible AAL region pairs and averaged over trials. For each 

participant, each experiment and each frequency band, this procedure resulted in a single 78 

× 78 matrix representing whole-brain connectivity. Finally, connectivity matrices were 

averaged across experimental runs.

OPM and cryogenic results in the beta band were compared. (Note we chose the beta band 

because this range has been shown to provide robust brain network measurements (e.g. Hunt 

et al. (2016)). Comparisons were made in two ways:

Connectome repeatability (correlation):  For each subject, we have 12 connectivity 

matrices (6 OPM and 6 cryogenic). Our aim was to assess how similar these matrices are; 

that is, “how repeatable is the whole-brain connectome across experimental runs?” We 

wished to compute this repeatability within/between scanner types (i.e. OPM-to-OPM; 

cryogenic-to-cryogenic and OPM-to-cryogenic) and within/between subjects (i.e. subject 1 – 

to – subject 1; subject 2 – to – subject 2; subject 1 – to – subject 2). To this end, we first 

vectorised the matrices from all experimental runs. The 6 OPM runs and 6 cryogenic runs 

(for the same subject) were paired (all 36 possible pairings used) and Pearson correlation 

between the vectorised connectivity matrices was calculated. This results in 36 values of 

correlation which were averaged. In this way, we obtained a within-subject correlation 

between OPM and cryogenic connectivity matrices. This comparison was repeated for both 

subjects. We then performed the equivalent calculation between subjects (e.g. correlating 

connectivity from subject 1′s cryogenic data and subject 2′s OPM data, and vice versa). 

Combined, this gave measures of repeatability within and between subjects, across scanner 
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platforms. In addition, we also calculated repeatability within scanner platform: i.e. OPM-to-

OPM and cryogenic-to-cryogenic. Here, pairing separate experimental runs (e.g. run 1 to run 

2; run 1 to run 3 etc.) allowed 15 values of correlation to be derived within a subject and 36 

values of correlation to be derived between subjects. This analysis allowed the calculation of 

measures of repeatability within and between subjects, but this time within scanner 

platforms. Bringing together all these measures allowed us not only to assess the 

repeatability of connectivity matrices, but also subject specificity, and sensitivity to scanner 

platform. We hypothesised that there would be individual differences in the connectivity 

matrices between subject 1 and subject 2, and that these differences would be maintained 

across the two scanner types (i.e. colloquially, “the scanner would know who it was 

scanning’”). Consequently, we expected that correlation values would be higher within 

subject than between subject.

Connectivity strength:  We calculated the linear sum of elements within each connectivity 

matrix, in one direction; this resulted in 78 regional values of “connectivity strength” (i.e. for 

each of the AAL regions, this metric represents the strength of the connection between that 

region and all other regions in the AAL atlas). These values were normalised within each 

run, by dividing by the maximum value across all regions. Connectivity strength was 

separately calculated for each subject, MEG system, and experimental run. Here, we wished 

to probe whether individual differences in connectivity strength were maintained across the 

two MEG systems. To this end, for each of the 78 regions, a t-test (see also Supplementary 

Material) was used to determine the statistical significance of differences between subjects. 

These calculations were performed for each scanner type separately (i.e. for a single scanner, 

and a single region, we tested whether the 6 connectivity strength measures from subject 1 

were significantly different to the equivalent 6 connectivity strength measures from subject 

2). Multiple comparisons (across the 78 regions) were controlled using the Benjamini-

Hochberg procedure (Benjamini and Hochberg, 1995). We hypothesised that any regions 

where a significant between-subject difference occurred, would be matched across scanner 

types.

2.4. Resting-state connectivity experiment

2.4.1. Paradigm and data acquisition—Seven subjects (2 females, mean age 26 ± 4 

years) took part in the resting-state study. All participants gave written informed consent, 

and the study was approved by the University of Nottingham Medical School Research 

Ethics Committee.

Seven minutes of eyes-open, resting-state MEG data were acquired using the wearable 

OPM-MEG system at a sampling frequency of 1,200 Hz. Participants were asked to fixate 

on a small red cross which was centrally positioned on a grey background on the back-

projection screen. Apart from this, they were simply asked to relax and do nothing. 

Participants were free to move during the recording, but they were not encouraged to do so. 

Co-registration was performed (as described above) at the end of each experiment, and 

individual anatomical MRIs were available for all participants.
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For comparison, we employed eyes-open resting-state data which had been acquired 

previously, in 63 subjects as part of the United Kingdom MEG Partnership (UKMP; (Hunt et 

al., 2016)) programme. These data were all acquired using the same 275-channel cryogenic 

MEG system used in our task-based study. The system was operated in 3rd-order synthetic 

gradiometer configuration, and data were acquired at a sampling frequency of 1,200 Hz. The 

paradigm comprised a 5-min recording during which participants focused on a small, 

centrally-positioned red circle, back-projected onto a screen. Head position monitoring was 

facilitated via three head-position indicator coils which were energised during the scan. Co-

registration of MEG sensor geometry to individual brain anatomy was achieved via head 

shape digitisation, equivalent to that described above for our task-based study.

2.4.2. Resting-state data analysis—Data were band-pass filtered between 8–80 Hz, 

and bad channels were discarded based on visual inspection. This meant there were OPM 

data from 49, 47, 47, 48, 47, 48 and 45 channels for subjects 1–7, respectively.

OPM and cryogenic data were processed in the same way. A scalar beamformer was 

employed to reconstruct a representative signal at the centre of mass of each of the 78 

cortical AAL regions. Data covariance was computed in the 8–80 Hz frequency band and 

within a time window encompassing the complete resting-state recording. Regularisation 

was not used (see also Appendix). Following this, regional signals were frequency-filtered 

into the alpha (8–13 Hz) and beta (13–30 Hz) bands, and pairwise orthogonalisation used to 

mitigate signal leakage. The absolute value of the analytic signal was computed for each 

regional time course, to generate the amplitude envelope of oscillatory signals, which was 

then down-sampled to 5 Hz (the lower frequency cut-off was used because we expected 

envelopes to fluctuate more slowly in the resting state). Pearson correlation was calculated 

between envelopes for each region pair. For each participant and frequency band, this 

resulted in a single connectivity matrix representing whole-brain connectivity. Group 

connectivity matrices were computed by averaging across subjects.

We aimed to show that OPM-derived connectivity was similar to connectivity derived using 

a cryogenic instrument and to this end we exploited the large UKMP dataset. We randomly 

grouped the cryogenic-derived connectivity matrices from our 63 subjects into 9 groups, 

with 7 subjects per group. For each frequency band, we computed a group average 

connectivity matrix. This resulted in 9 matrices derived from cryogenic data which we could 

compare with the single average (also of 7 subjects) derived from our OPM system.

Quantitative analysis of the similarity between OPM- and cryogenic-derived connectivity 

matrices was made in two ways:

First we aimed to test whether the OPM-to-cryogenic correlation was above chance. To test 

this, we first vectorised connectivity matrices. For both frequency bands, we derived 

correlations between the OPM group average, and each of the 9 cryogenic average matrices, 

resulting in 9 values of correlation which were averaged. Following this, to provide a 

statistical value, we used a Monte-Carlo approach. Starting with the OPM connectome 

matrix, we used a phase randomisation method (Hunt et al., 2016; O’Neill et al., 2015) to 

produce a set of “pseudo-matrices”: this method has been described in full in a previous 
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paper (Tewarie et al., 2016). Briefly, the real connectome matrix is decomposed into its 

constituent eigenvalues and eigenvectors. The eigenvectors are then phase randomised 

(Prichard and Theiler, 1994), and the matrix is reconstructed. The result is a new matrix with 

similar structure to the real matrix, but critically not representative of real brain connectivity. 

We made 10,000 pseudo-matrices and correlated each with the 9 cryogenic-derived (real) 

connectome matrices. This resulted in 90,000 values of correlation which was used as a null 

distribution. In order to test whether our real OPM-derived connectivity was correlated 

beyond chance with cryogenic-derived connectivity, we compared the 9 real correlation 

values to the null distribution, setting a significance threshold of 1%.

Second, we aimed to test whether the OPM-to-cryogenic connectivity was similar to 

cryogenic-to-cryogenic connectome correlation. To this end, for each frequency band we 

measured correlation between all possible pairs of cryogenic-derived connectivity matrices 

(i.e. group 1 to group 2; group 1 to group 3 etc.). This yields a total of 36 correlation values 

showing how different randomly-selected groups of individuals compare in terms of their 

whole-brain (cryogenic-derived) connectome. We reasoned that if OPM-derived connectivity 

was different to cryogenic-derived connectivity, then we would expect our 9 values of OPM-

to-cryogenic correlation to fall outside the range of 36 values obtained when considering 

cryogenic-to-cryogenic correlation.

3. Results

3.1. Task-based connectivity

Fig. 2 shows results from our task-based connectivity study. For each participant, 

connectivity matrices obtained from OPM and cryogenic data, averaged across six 

experimental runs, are shown. The left panel shows results in the alpha band, the middle 

panel shows beta band and the right panel shows gamma band. Colour indicates connectivity 

value. The inset 3D brain plots show the 50 connections between AAL regions with the 

highest connectivity values (represented by the coloured lines). Clear differences in network 

structure can be seen between the three bands: the alpha-connectome is predominantly 

occipital, although subject 1 shows some parietal connections; the beta band shows primarily 

parietal (bilateral sensorimotor) connections. Anecdotally, we note a more unilateral network 

in subject 1 and a bilateral network in subject 2. The gamma-band is dominated by occipital 

connections. Similarities between OPM- and cryogenic-derived matrices are clear, a good 

example being the agreement on inter-individual differences that are shown in the beta band. 

This will be formalised below.

An interesting observation from Fig. 2 is that, in the beta band, the OPM-derived 

connectivity values are lower than the cryogenic-derived values. Specifically, averaging 

values over the connectivity matrices and computing standard deviation across experimental 

runs, we found that mean connectivity was 0.10 ± 0.01 (OPM) compared to 0.13 ± 0.02 

(cryogenic), for subject 1 and 0.08 ± 0.01 (OPM) compared to 0.11 ± 0.01 (cryogenic) for 

subject 2. This observation was less marked in the alpha band where mean connectivity was 

0.09 ± 0.01 (OPM) compared to 0.10 ± 0.02 (cryogenic), for subject 1 and 0.06 ± 0.01 

(OPM) compared to 0.06 ± 0.01 (cryogenic) for subject 2. Conversely in the gamma band, 

OPM connectivity values were slightly higher: 0.04 ± 0.01 (OPM) compared to 0.03 ± 0.01 
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(cryogenic), for subject 1 and 0.04 ± 0.01 (OPM) compared to 0.02 ± 0.01 (cryogenic) for 

subject 2. This observation will be addressed further in the resting state results, and in the 

Discussion.

Fig. 3 probes the similarity of connectome matrices, within- and between-subjects, in OPM 

and cryogenic recordings. Comparison is made in the beta band only. In panel a, scatter plots 

show OPM-derived connectivity values for all region pairs (y-axis), plotted against the 

equivalent cryogenic-derived connectivity values (x-axis). I.e. each point on the graph 

represents a measured connection, and assuming OPMs and cryogenic sensors measure the 

same connectivities, in the same subject, we would expect to see a linear relationship. Plots 

on the left show a within-subject comparison: the top scatter plot (blue) corresponds to 

subject 1 and the bottom plot (yellow) corresponds to subject 2. The scatter plots on the right 

compare connectivity matrices between subjects (i.e. subject 1 – cryogenic vs subject 2 – 

OPM, and vice versa). Note that to generate these plots, we averaged connectome matrices 

over all 6 runs in both MEG systems. A line of best fit is added, and the dotted line shows ‘y 
= x’. Note that a clear linear relationship is observed, demonstrating that OPM- and 

cryogenic-derived connectivity matrices are similar. Also within-subject correlation (left-

hand scatter plots) appears tighter than between-subject correlation (right-hand scatter plots). 

Finally note that the linear trend is not distributed around y = x, again suggesting lower 

connectivity values measured via OPMs.

The bar chart in Fig. 3b shows within- and between-subject repeatability (correlation) of 

connectome matrices (i.e. these values show how repeatable task-based connectivity is 

between experimental runs; in other words they show the strength of the correlation in the 

scatter plots in panel a). Correlation values were split into three groups: OPM-to-OPM; 

cryogenic-to-cryogenic and OPM-to-cryogenic. The bar chart shows the mean value (across 

subjects and runs) and the error bars depict corresponding standard deviations. In addition, 

individual data points relating to all possible comparisons are shown: specifically, blue 

crosses show subject 1 – to – subject 1; yellow crosses show subject 2 – to – subject 2; red 

triangles show subject 1 – to – subject 2 and purple triangles show subject 2 – to – subject 1. 

Importantly these correlation values are relatively high in all cases, but the within-subject 

values are consistently higher than the between-subject correlations. This is an important 

point because it suggests that differences in the con nectome matrix between the two 

subjects are maintained across experimental runs; or more colloquially, we can identify 

which subject was being scanned based on the connectivity matrix. Repeatability of 

connectivity was higher for within-subject measures regardless of whether this was 

measured from data acquired on the OPM system, cryogenic system, or both, demonstrating 

the robustness of the finding. Interestingly, repeatability was highest for the cryogenic 

system (i.e. dark grey bars show the highest correlation when measured within and between 

subjects). This is likely due to the inhomogeneous coverage afforded by a cryogenic system 

and will be addressed further in the Discussion.

Results of our connectivity strength analysis are shown in Fig. 4. Panel a shows line plots 

depicting normalised connectivity strength from the cryogenic- (red) and OPM-derived 

(blue) beta-band connectome, for subject 1 (top) and 2 (bottom). On the x-axis each of the 

AAL regions are represented. Thick lines correspond to the average connectivity strength 
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and shaded areas represent standard deviation, across all 6 runs. There are clear similarities 

between the cryogenic- and OPM-derived values with the regions with highest values 

corresponding to sensorimotor areas (which is to be expected given the task). This is better 

visualised in Fig. 4b, where the normalised connectivity strength is plotted on a 3D brain. 

Cryogenic results are at the top, OPM results at the bottom, left panels correspond to subject 

1 and right panels to subject 2. For each subject, both cryogenic and OPM data yield very 

similar connectivity strength patterns. In agreement with Fig. 2, we see that subject 1 

exhibits a more unilateral beta-band connectome, as opposed to subject 2, in which a clear 

bilateral network can be observed. Panel c shows the same data as in panel a but grouped by 

scanner type: OPM at the top, cryogenic at the bottom. In both plots, subject 1 is represented 

with a solid line and subject 2 with dashed line. Here, the difference in connectivity strength 

between both participants around the right sensorimotor areas can be seen clearly. Finally, 

Fig. 4d shows brain regions whose connectivity strength differed significantly (p < 0.05, 

unpaired t-test with 6 degrees of freedom, corrected for multiple comparisons) between 

subjects. Both cryogenic (bottom) and OPM (top) data highlight similar regions – in 

particular right sensorimotor cortices and pre-motor areas stretching forward to the frontal 

lobe. This result formalises the finding in the bar chart in Fig. 3, by demonstrating why 

within-subject correlation is higher than between-subject correlation, for both OPM and 

cryogenic systems.

3.2. Resting-state connectivity

Results from the resting-state OPM-MEG connectivity study are shown in Fig. 5. Group-

average connectivity matrices in the alpha (panel a) and beta (panel b) bands are plotted. The 

3D brain plots show dominant connections between AAL regions (200 connections with the 

highest connectivity value). Differences between alpha- and beta-band connectomes are 

clear; alpha oscillations support connections between occipital and motor regions (with 

some frontal projections), whilst the beta-band connectome appears dominated by 

sensorimotor and fronto-parietal connectivity.

Resting-state connectivity results, derived from cryogenic data, are plotted in Fig. 6. Panels a 

and b show alpha- and beta-band connectivity matrices, respectively. In each panel, 9 

different matrices are shown: these correspond to the 9 (randomly selected) groups of 7 

subjects. Colour bars are the same for all matrices. The 3D brains show the dominant 

connections (again the 200 connections with the highest connectivity values; these are 

derived from the grand average across 63 subjects). Here we see that alpha oscillations 

mediate connections primarily in occipital areas whilst the beta-band connectome shows a 

more widespread connectivity, between occipital and parietal regions. Interestingly, whilst a 

common structure exists across all groups, in both bands, there is large discrepancy between 

connectivity strength values across groups.

Fig. 6c shows a comparison between cryogenic- and OPM-derived resting-state 

connectomes. The upper and lower rows show results for alpha and beta bands, respectively. 

In the scatter plots, we show resting-state connectivity values from different groups of 

people, plotted against each other. In the left-hand scatter plot, 36 different comparisons are 

made, corresponding to 36 available pairs within our 9-group connectivity matrices from 
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cryogenic data. The black line shows ‘y = x’ and, given that the points represent connectivity 

values derived using the same system, for the same connections, in different subject groups, 

we would expect to see a scatter around this line. This is broadly the case, however it is 

important to note how wide the variation around this line is. This reflects differences 

between subjects/groups. The middle scatter plot contains 9 comparisons. Here, our group-

averaged OPM-derived connectivity values are plotted against equivalent values for each of 

the 9 cryogenic group averages. Note here that for both the alpha and beta band, although 

data do not necessarily lie along the ‘y = x’ line, a very clear linear trend is observed 

suggesting that, in general, the OPM and cryogenic resting-state connectomes are well 

matched. As with the task-based connectivity, we found that in the beta band, connectivity 

values across the matrix were lower for OPMs than for the cryogenic system. Specifically, 

the mean (across the connectome matrix) connectivity value was 0.09 ± 0.03 (OPM) 

compared to 0.14 ± 0.06 (cryogenic) (average ± standard deviation across subjects). 

However, this was not the case for the alpha band where OPM-derived connectivity was 

slightly higher (0.10 ± 0.04 (OPM) compared to 0.09 ± 0.04 (cryogenic)).

Finally, the right-hand bar chart shows correlation values between group-level connectomes; 

the left-hand bar shows cryogenic vs cryogenic connectomes (36 separate comparisons 

between the 9 group connectivity matrices); the right-hand bar shows OPM vs cryogenic 

connectomes (9 comparisons between the mean OPM connectome and the 9 cryogenic 

groups). The bars show averages, whilst all data contributing to those averages are shown 

overlaid as squares/triangles. The dashed line corresponds to the 99th percentile of the null 

distribution; that is, the cryogenic-to-OPM correlation should cross this threshold to be 

above chance. Here we see a clear result. Firstly, there is clearly a significant correlation 

between OPM- and cryogenic-derived connectivity matrices. Second, whilst the average 

OPM-to-cryogenic correlation (0.68 for alpha and 0.74 for beta) is marginally lower than 

cryogenic-to-cryogenic comparisons (0.80 for both alpha and beta) (probably a result of 

coverage bias – see Discussion) the range of OPM-to-cryogenic correlation values is well 

contained within the range of cryogenic-to-cryogenic values suggesting no measurable 

difference between the two. Consequently, we conclude that OPM and cryogenic 

connectivity are approximately equivalent.

4. Discussion

OPMs represent a step change for MEG instrumentation: OPM-MEG offers the potential for 

cheaper MEG systems which can ultimately come into more widespread use, particularly in 

clinical settings. Wearable helmets mean that sensors move with the head, removing worries 

around subject movement which can lead to data becoming unusable in cryogenic systems 

(Boto et al., 2018). Flexible placement of small and lightweight sensors means that, in 

principle, an OPM-MEG system can adapt to any head shape or size (Hill et al., 2020). 

Ultimately this means that OPM-based systems are better able to accommodate challenging 

patient groups, in particular children (with smaller heads) or subject groups who find it hard 

to keep sufficiently still in a conventional scanning environment. The ability to move whilst 

scanning opens up new possibilities for neuroscientific experimentation – for example we 

can scan people as they undertake naturalistic tasks (Hill et al., 2019) or become immersed 

in a virtual environment (Roberts et al., 2019). Finally, because OPM sensors can get closer 
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to the brain, we can capture better data with higher sensitivity and spatial resolution (Boto et 

al., 2019, 2016; Iivanainen et al., 2017). These factors point towards OPMs superseding 

cryogenic MEG devices in the coming years. However, the technology remains largely 

unproven, and it is critical that OPM-MEG systems begin to demonstrate that they can 

perform as well as (or preferably better than) cryogenic systems for neuroscientific 

measurements.

Functional connectivity is an area that has become of great importance in recent years. 

Canonical networks, and the functional connectivities that underlie them, are fundamental to 

healthy brain function and have been shown to be perturbed in a number of abnormalities 

ranging from mental health disorders that strike in the very young, to neurodegenerative 

conditions that become a problem for the elderly. The combination of high spatial and 

temporal resolution makes MEG, arguably, the technique of choice for measurement of brain 

network activity and connectivity. This is particularly true for the measurement of dynamic 

connectivity (e.g. during a task) where we might aim to probe the formation and dissolution 

of transient networks as they modulate to support cognition. It is for these reasons that 

functional connectivity and network measurement represent a key part of MEG research. 

Consequently, showing that OPM-MEG systems are capable of such measurements, with 

similar fidelity to conventional devices, is a key step forward in the journey towards a viable 

OPM-MEG device.

Here, we aimed to show that OPM-MEG could offer characterisation of the brain-wide 

functional connectome. As noted in our introduction, such demonstration relies not only on 

high fidelity (unaveraged) MEG data, but also on whole-brain coverage, spatial specificity 

and the reconstruction of large numbers of sources; given the limited number of channels in 

OPM-MEG systems (~50 compared to ~300 in cryogenic systems) these latter points could 

have posed a challenge. However, results show that 50-channel OPM-MEG, in combination 

with accurate co-registration procedures and an appropriate source localisation algorithm, 

can measure functional connectivity with similar efficacy to a cryogenic system. At face 

value, this is perhaps surprising, but we note that previous electroencephalography (EEG) 

studies have shown that connectivity patterns can be measured using relatively small 

numbers of sensors. For example, Siems et al. (2016) directly compared connectivity 

measures using 275-channel (cryogenic) MEG and 64-channel EEG systems. Results 

showed that similar brain networks are observable (albeit with less spatial specificity in EEG 

– likely a consequence of the EEG forward model, which is complicated by inhomogeneous 

conductivity across the brain skull and scalp). The likely reason that fewer channels results 

in similar data is field spread: because the magnetic field from a single source affects 

multiple sensors, there is a degree of redundancy across an array of MEG sensors. This 

means that at least some signal from each of the 78 AAL regions will be captured by one or 

more OPMs, even with a relatively low channel count. However, we also stress that, because 

OPMs get closer to the head, the field topography at the scalp is less diffuse compared to 

cryogenic systems and so channel redundancy is diminished. Further, it is known (Boto et 

al., 2016; Iivanainen et al., 2017) that the performance of any MEG system improves as 

sensors are added – there are three reasons for this: first, extra sensors enable capture of 

higher spatial frequencies in the scalp topography, which will improve spatial resolution. 

Second, extra sensors enable us to resolve more sources in the brain (i.e. they will reduce 
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source leakage). Third, extra sensors enable higher SNR, partly because there are more 

measurements over which the signal can be averaged and partly because the array is better 

able to characterise interference (which can then be supressed). Consequently, whilst 50-

channel OPM-MEG offers good characterisation of the human connectome, the addition of 

more channels will always provide a significant advantage. OPM-systems with e.g. hundreds 

of channels should therefore remain an ambition.

Our task-based connectivity demonstration showed that both cryogenic- and OPM-MEG 

yield robust networks in the alpha, beta and gamma bands in response to a visuo-motor 

paradigm. Of interest here is the ability to measure individual differences between subjects. 

We showed that, in the beta band, both systems measured a robust sensorimotor network 

which exhibited significantly more bilateral connectivity in subject two, compared to subject 

1. Of course, the reason for these differences between subjects is unclear, but the fact that the 

same differences were observed using both cryogenic and OPM-MEG is compelling. We 

argue that this finding is important for two reasons. First, from an OPM-MEG point of view, 

it validates the fact that the MEG data are of high quality; indeed the ability to “tell which 

subject you are scanning” based only on the MEG data is a satisfying demonstration of the 

equivalence between OPM- and cryogenic-derived data. Second, more broadly, this finding 

demonstrates the importance of inter-individual differences. Many clinically-oriented MEG 

studies employ cross-sectional designs where large subject numbers from different ‘groups’ 

are scanned and differences between groups sought. However, here we show that sizeable 

differences between two healthy individuals can be robustly observed and it is tempting to 

speculate that these differences are larger than the more subtle deviations that are often 

observed between groups. It follows that, given the robustness of the within-subject 

measures, it is likely that acquisition of longitudinal datasets, tracking how e.g. a patient’s 

brain changes throughout the course of an illness, may ultimately be more fruitful (and more 

useful) than cross-sectional group studies. Finally, an important methodological point 

relating to task-based connectivity is that the analysis method used here (amplitude envelope 

correlation) may highlight connections that are not driven by intrinsic coupling per se. For 

example, two unrelated brain regions could both be modulated (independently) by the task 

and would appear “connected”. Here, our aim was to show similarity or differences between 

OPM and cryogenic MEG systems and with this in mind, we believe this caveat can be 

overlooked, however it should be taken into account in future studies of connectivity.

In many ways, our resting-state data posed a greater challenge for OPM-MEG compared to 

task-based data, for the simple reason that the task-based connectome could be averaged 

over trials, potentially masking the effect of any artefacts at the sensor level. Conversely, 

resting-state connectivity must be inferred based on unaveraged data, meaning that sensor 

artefacts could have a greater influence. Our findings showed that similar resting-state 

network structure could be elucidated both using cryogenic and OPM-based MEG. Our beta-

band analyses (taken from Fig. 6c) showed that, when considering a group result across 7 

subjects, cryogenic-derived connectome matrices showed 80% correlation; when comparing 

OPM- and cryogenic-derived connectomes, this was reduced marginally to 74%. In the 

alpha band, this reduction was somewhat larger with 80% correlation for cryogenic-derived 

connectomes reducing to 68% for OPM-cryogenic comparison. These reductions are not 

surprising considering the vast differences between the systems – in particular, the channel 
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count and differences in spatial coverage (see also below). However, in both cases these 

reductions were small compared to the range of possible correlation values and could easily 

be due to differences in the groups of participants scanned. These data therefore show that 

OPM-MEG, even with a modest number of sensors, is able to effectively reproduce the 

human connectome measurable by cryogenic MEG.

An important consideration for connectivity measurement is data quality. Given the fact that 

OPMs are configured as magnetometers, as distinct from gradiometers, we might expect a 

higher degree of interference in our OPM compared to our cryogenic data. In fact, further 

analysis (see Appendix) showed that magnetic artefacts of no interest are present in OPM-

MEG sensor level data, however, using beamforming these artefacts are likely to be 

eliminated efficiently. This is an important point; at present, commercial grade OPMs are 

formed as magnetometers. Whilst it is possible to form gradiometers from two 

magnetometers, and such methods have been shown to be effective (Hill et al., 2019), this 

involves a digital subtraction of signals from two adjacent sensors which necessarily means 

(assuming a simple Gaussian model) a 2 increase in sensor noise. Recent work has shown 

that inherent OPM-gradiometers (i.e. OPMs where the same light is passed through two 

separate vapour cells, eliminating the need for digital subtraction and consequently the 2
noise increase) are possible to construct (Nardelli et al., 2020). However, axial gradiometers 

would require cells to be stacked on top of one another (i.e. radial to the head) and any 

reasonable (e.g. 5 cm) baseline would make a wearable helmet bulky and arguably 

impractical. In addition, planar gradiometers (two cells separated tangentially along the 

scalp surface) with a long baseline would limit the numbers of sensors that fit around the 

head; and shorter baseline planar gradiometers limit depth sensitivity. With this in mind, it is 

possible that wearable systems with high channel counts and gradiometer-based sensors may 

be challenging. Consequently, it is positive that mechanisms such as beamforming work well 

for reduction of interference. It remains to be seen as to whether other interference rejection 

strategies (for example signal source separation; (Taulu and Simola, 2006)) are also 

effective, but as shown in our Appendix, effective interference minimisation will be 

extremely important for future OPM-MEG studies.

Whilst OPM- and cryogenic-derived connectomes were largely similar, there are some 

differences which are worth noting. First, in the beta band, OPM-derived functional 

connectivity values were generally lower in magnitude than their cryogenic equivalents. At 

face value this could suggest increased noise in the OPM data which would diminish 

connectivity. However alpha connectivity values were marginally higher (in the resting state) 

for the OPM system (and comparable for the task-based data). In addition, we know from 

previous analyses on the same (task) data (Hill et al., 2020) that SNR values in the OPM and 

cryogenic data are approximately the same (in the beta band in motor cortex, source-

localised SNR was 22 ± 4 in the OPM system compared to 21 ± 4 in the cryogenic system). 

We therefore think it unlikely that increased noise is responsible for the systematic 

connectivity reduction in OPMs. There are two potential more likely explanations. First, it is 

possible that reduced connectivity could result from the smaller number of channels: with 

only 50 channels in the OPM helmet (compared to 275 SQUID channels), theory would 

predict that there would be more spatial blurring across the 78 AAL regions, and 
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consequently increased source leakage. This leakage would be addressed by our leakage 

reduction algorithm (pairwise orthogonalisation) with the likely result being diminished 

connectivity values; this potentially suggests that a general reduction in connectivity with 

lower channel count is possible. Second, lower overall (average) connectivity could result 

from changing spatial coverage; in particular, if the OPM system was less sensitive, and the 

cryogenic system proportionally more sensitive, to regions which demonstrate high 

functional connectivity.

Comparing Figs. 5 and 6 we see that, for the resting state, even though connectomes are 

largely similar (evidenced by the high correlation values) the 200 connections with the 

highest connectivity show a different spatial pattern in OPM compared to cryogenic MEG; 

specifically, for the cryogenic data, in both the alpha and beta bands, connectivity is largest 

in the occipital and parietal lobes whereas for OPM data, the alpha band is more widespread, 

including frontal regions while for beta, the motor system and fronto-parietal connections 

are highlighted. We believe that these relatively large differences are due to coverage. 

Sensitivity in the cryogenic system is greatest at the back of the head; this is a known 

problem because subjects tend to sit with their head resting on the rear of the cryogenic 

helmet, meaning high SNR for visual/parietal areas and poor coverage in frontal lobes. 

Indeed this was shown by sensitivity plots in Hill et al. (2020) and is supported by a recent 

study (Coquelet et al. (2020)) which showed that EEG yields higher frontal connectivity 

compared to (conventional) MEG; the authors cited an increased gap between the MEG 

sensors and the brain, in frontal regions, as the reason. Conversely, the additively-

manufactured OPM helmet used in this study was a good fit for most subjects over the top of 

the head, but a noticeable gap (of ~1–2 cm) exists across the back of the head. This gap acts 

to move sensors away from occipital lobe and, consequently, signals will diminish, as will 

connectivity. It is possible that diminishing the naturally high connectivity values in beta 

band in visual cortex could have contributed towards the overall lower values of connectivity 

observed in the OPM system compared to the cryogenic system. Likewise, because the OPM 

system brings sensors closer to frontal cortices, this could explain the increased sensitivity to 

frontal alpha connectivity in OPMs. In general, it is clear that the OPM helmet, despite 

problems over the occipital lobe, has more uniform coverage than cryogenic MEG. This 

likely means that for cryogenic MEG the spatial signature of the connectome matrix rides on 

top of a sensitivity profile which diminishes frontal lobe contributions. The upshot would be 

that when measuring repeatability (i.e. the correlation measures used in Figs. 3 and 6) 

underlying coverage-based modulation would inflate correlation for cryogenic-to-cryogenic 

comparison, possibly explaining (in part) the results shown. What is clear is that 

inhomogeneous brain-to-sensor spacing for different areas of cortex can have a marked 

effect on connectivity results and this must be taken into account in future generations of 

scanner design. One potential solution is to use individualised scanner-casts, however these 

tend to be difficult and time-consuming to generate and are expensive. The introduction of 

more sophisticated helmets that allow a degree of adaptation to different head shapes (e.g. 

by including built-in facility to adjust sensor positions along the radial direction), could 

negate this problem.

Finally, it is important to note the current state of maturity of OPM-MEG technology. At the 

time of writing, to our knowledge, all operational OPM-MEG systems are “home-made”; 
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that is, constructed by research groups “in house” based on OPM sensors, magnetic 

shielding, coils for field control and bespoke integrative data acquisition and control 

electronics, and software. Commercial grade OPMs, appropriate for MEG applications, are 

now available from at least two vendors (www.quspin.com; www.fieldlineinc.com). Further, 

OPM-optimised magnetic shielding, including electromagnetic coils similar to those used 

here, are also now available commercially (www.magneticshields.co.uk). However, to date 

there is no commercial solution for an integrated system. That said, it is clear from the 

results presented here and in other recent demonstrations that OPM technology is 

progressing rapidly and can now compete with cryogenic MEG technology. Furthermore, 

recent results show clearly the advantages of OPM-MEG compared to the widely established 

EEG (vastly improved spatial resolution and tenfold reduced sensitivity to non-neural 

signals (e.g. from muscles; (Boto et al., 2019)). It therefore seems highly likely that 

commercial integrated OPM-MEG systems will become available in the near future. Such 

systems have the potential to overtake cryogenic MEG systems, and even possibly replace 

some EEG systems for clinical evaluation of patients with neurological problems such as 

epilepsy.

5. Conclusion

In conclusion, our study has shown that OPM-MEG can measure whole-brain functional 

connectivity with a fidelity similar to that demonstrated by conventional cryogenic MEG 

machines. In the resting state, our results show that connectome matrices from OPM and 

cryogenic systems exhibit an extremely high degree of similarity, with correlation values 

>70%. This value is not measurably different to the correlation observed between 

connectomes measured across different subject groups on a single cryogenic MEG device. In 

a task-based study, we showed that robust differences in connectivity between individuals 

(scanned multiple times) exist, and similar individualised features could be identified in 

cryogenic and OPM-MEG measurements, again demonstrating the fidelity of OPM-MEG 

data. OPMs offer a step change for MEG instrumentation, however OPM-MEG remains a 

nascent technology with significant work still to be done. The present demonstration takes 

us one step closer to routine use of OPM-MEG for neuroscientific measurement. This adds 

weight to the argument that OPMs will ultimately supersede cryogenic-based 

instrumentation.
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Refer to Web version on PubMed Central for supplementary material.
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Appendix.: External interference and its influence on OPM data

A major concern related to connectivity measurement using OPM-MEG is the influence of 

external magnetic interference. As outlined in our introduction, most cryogenic MEG 

systems employ gradiometers to reduce the effect of external magnetic fields. Some also use 

reference arrays, higher-order synthetic gradiometry (Vrba and Robinson, 2001), or software 

approaches (Taulu and Simola, 2006). However, OPMs are inherently formed as 

magnetometers and this means that interference is more problematic. This is a particular 

concern for connectivity measures (in the resting state) since averaging across trials is 

impossible. Thus, understanding how OPM data is influenced by interference is important.

A good example of interference from a distal source is the magnetic artefact from the heart. 

Even at a distance, the field from the heart is many times larger than the field from the brain. 

Also, the fundamental frequencies of the heartbeat overlap with the frequency bands of 

interest for connectivity (i.e. the alpha and beta ranges). Consequently, this poses a 

significant challenge since, if the heartbeat artefact appears across many sensors, and is 

projected (via source localisation) into brain space, this will necessarily inflate functional 

connectivity measurement. For these reasons, we aimed to test the extent to which the 

heartbeat artefact is found in source-localised OPM-MEG data.

Methods

In order to probe the presence of a heartbeat artefact in OPM-MEG resting-state data, 

independent component analysis (ICA) was applied to beta-band filtered sensor-level data. 

ICA was applied in the temporal dimension using the fastICA algorithm (Hyvärinen, 1999); 

we selected a sufficient number of independent components to explain 95% of the data 

variance. This procedure was applied to data from all 7 subjects independently. For one 

subject, a clear heartbeat artefact was contained within a single independent component. For 

the other 6 subjects, the heartbeat was split across two independent components.

Following this, for all subjects we re-ran the beamformer spatial filter in order to reconstruct 

source-space data at the 78 pre-selected AAL regions. This was done in two different ways:

1. Following ICA, data were reconstructed with the heartbeat artefact removed (by 

removing either 1 or 2 independent components). The data covariance matrix 

was derived based on these reduced data, and a beamformer applied. Note that 

component removal in this way necessitates the application of matrix 

regularisation and so this was applied, using the Tikhonov method, with a 

regularisation parameter equal to 0.1% of the maximum singular value of the 

unregularised matrix.

2. Beamforming was applied without removal of the heartbeat artefact. This was 

done with no regularisation (as in our main manuscript) as well as with 

regularisation parameters equal to 5% and 15% of the maximum singular value 

of the unregularised matrix. (Note, the addition of regularisation reduces the 

ability of the beamformer to supress external magnetic interference, and 
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consequently this proves a useful marker of how other source localisation 

algorithms (e.g. a dipole fit) might behave.)

In both cases we correlated the ICA-derived heartbeat to the source-localised MEG data in 

order to assess the influence of interference.

Results and discussion

Fig. A1a shows representative beta-band filtered OPM-MEG data at the channel level. Data 

for four channels, for a single subject, are shown and we see that the beta-band component 

of the heartbeat is easily identified. Fig. A1b shows the cortical topography of correlation 

with the heartbeat artefact following source localisation. In the top left, we show the case 

where the heartbeat artefact was removed. The top right, bottom left, and bottom right show 

the case for a beamformer with zero, 5% and 15% regularisation, respectively. As expected, 

heartbeat correlation is zero in the case where the heartbeat has been removed (a simple 

consequence of ICA). More importantly, correlation is very close to zero (0.03 ± 0.02 (mean 

± standard deviation across all 78 regions)) when an unregularised beamformer is applied. 

As regularisation is increased, correlation increases markedly (to 0.06 ± 0.04 and 0.11 ± 

0.06 for 5% and 15% regularisation, respectively). Note that correlation is most pronounced 

for deeper regions.

It is clear from this result that the good performance of OPM-MEG in connectivity 

assessment observed in our manuscript is due, at least in part, to the noise rejection 

characteristics of the beamformer. In cases where beamforming is less efficacious, artefacts 

begin to leak into source-space data and as a consequence, connectivity measurement (or 

indeed any assessment of neural oscillatory processes) would become contaminated. 

However with a well-functioning beamformer, unregularised, such artefacts are well 

rejected. (An important point here is that beamforming becomes more accurate for longer 

data recordings (note that our OPM recordings were 7 min compared to the “standard” 5 min 

that is often employed). This will have helped with interference rejection.) Of course, the 

artefact as defined here can also be removed by other techniques (e.g. ICA – as 

demonstrated) but this relies on a-priori artefact identification. This was easy for the 

temporally well-characterised heartbeat, but is harder for less well-known sources of 

magnetic interference. On the other hand, the beamformer does not rely on a-priori 
assumptions. Further, if it works well on the heartbeat, we can assume it works equally well 

in nulling other sources of external magnetic interference. In conclusion, we recommend that 

beamforming (or at least an adaptive source-localisation technique with good interference 

rejection properties) is used when attempting to assess source-space functional connectivity 

using OPM-MEG. However it should be stressed that beamforming comes with specific 

caveats – in particular that spatially-separate but temporally-correlated sources will be 

supressed in source reconstructions; this has the potential (Sjøgård et al., 2019) to supress 

genuine functional connectivity.
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Fig. A1. 
Presentation of the heartbeat artefact in OPM-MEG: a) Sensor-space data filtered to the beta 

band. Four channels are shown (indicated on the sensor layout on the right) and despite the 

separation of approximately 40 cm between the heart itself and the head-mounted sensors, 

the magnetocardiogram can be seen clearly. b) Correlation between the heartbeat artefact 

and source-localised data, across 78 AAL regions. Top left: beamforming applied with the 

cardiac artefact removed. Top right: beamforming applied to the full dataset with no 

regularisation. Bottom left: beamforming applied with 5% regularisation. Bottom right: 

beamforming applied with 15% regularisation.
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Fig. 1. 
The OPM-MEG system. a) Schematic of the OPM-MEG suite. b) Photograph of subject 

wearing an additively-manufactured helmet with 50 OPM sensors mounted within it. c) 

Digitised head surface for an example participant, showing the 133 slots available in the 

helmet (grey) and the 50 chosen for this study (blue). Note that OPMs were made sensitive 

to the field in the radial direction only. d) Cortical coverage achieved by the selected 50 

OPM locations: the norm of the forward fields across all sensors is plotted at each vertex of 

the brain surface.
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Fig. 2. 
Task-based functional connectivity matrices. Average connectivity matrices (across 6 runs) 

in the alpha (left), beta (middle) and gamma (right) bands for participants 1 (top) and 2 

(bottom). For each participant, both OPM-derived (top) and cryogenic-derived (bottom) 

matrices are shown. Colour bars show connectivity (i.e. Pearson correlation between 

amplitude envelope) values. Alongside the matrices, the 3D brains show the 50 connections 

with the highest connectivity values.
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Fig. 3. 
Cryogenic vs OPM connectivity in the beta band. a) Scatter plots showing connectivity 

values derived from cryogenic data plotted against connectivity values derived from OPM 

data (each dot depicts a measured connection). Left column shows within-subject correlation 

for subject 1 (top) and subject 2 (bottom). Right column corresponds to between-subject 

correlation. b) Bar plot showing the mean within- and between-subject correlation of 

connectome matrices. Connectome repeatability is calculated in three ways; cryogenic-to-

cryogenic (dark grey; here we compare connectome matrices taken using the cryogenic 

system in separate runs); OPM-to-OPM (middle grey; comparing matrices taken using the 

OPM system in separate runs); and OPM-to-cryogenic (light grey; comparing matrices 

derived using the OPM system to matrices derived using the cryogenic system). Error bar 

corresponds to standard deviation across the 15 or 36 comparisons. Crosses and triangles 

indicate individual values from a single calculation of correlation between two matrices – 

i.e. all raw data are shown.
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Fig. 4. 
Connectivity strength in the beta band. a) Normalised connectivity strength recorded using 

cryogenic- (red) and OPM- (blue) derived data. Values are plotted for all 78 AAL regions, 

for participants 1 (top) and 2 (bottom). The shaded area represents standard deviation across 

6 runs. Note the similarities between cryogenic and OPM plots. b) Normalised connectivity 

strength plotted on the brain surface for both subjects and both systems. c) Same as (a) but 

grouped by scanner type: normalised connectivity strength recorded using cryogenic- 

(bottom) and OPM- (top) derived data for participants 1 (solid line) and 2 (dashed line). d) 

Brain areas showing significant difference between participants (grey indicates no 

significant difference). Note both systems highlight similar regions.
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Fig. 5. 
Resting-state connectivity plots derived from OPM data. Alpha- (a) and beta- (b) band 

connectivity matrices averaged across the 7 participants. Brain plots show the top 200 

connections.
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Fig. 6. 
Resting-state group connectivity matrices from cryogenic data and a comparison with the 

OPM-derived connectome. Alpha- (a) and beta- (b) band connectivity matrices from 9 

groups of 7 subjects. 3D brain plots show dominant connections (top 200). Note that even 

though these are group-averaged results, clear differences across groups remain (although 

the overall pattern appears robust). c) Results for alpha (top row) and beta (bottom row). The 

scatter plots on the left show cryogenic-derived connectivity values, with different groups 

plotted against each other i.e. each data point shows connectivity for the same connection, in 

two different subject groups, plotted against each other. The black line shows y = x; the grey 

lines show lines of best fit for the 36 different possible comparisons between independent 

groups. The scatter plots in the centre show cryogenic-derived connectivity versus OPM-

derived connectivity values. 9 separate comparisons are made between the OPM-derived 

connectome (averaged across 7 subjects) and 9 separate cryogenic-derived connectomes 

(each the average of 7 subjects). The bar chart shows mean correlation values for cryogenic-

to-cryogenic connectivity (left-hand bar) and OPM-to-cryogenic connectivity (right-hand 

bar). The individual points (squares/triangles) show individual correlation values from all 

possible matrix parings. The dashed line shows the 99th percentile of the null distribution.
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