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Previous studies reported that both a more compliant quadriceps tendon and a

stiffer Achilles tendon are associated with better running economy. While

tendon stiffness can be decreased by a single bout of proprioceptive

neuromuscular facilitation (PNF), post-stretching dynamic activities (PSA) can

counteract the potential stretch-induced force loss. Thus, the purpose of this

study was to investigate if a single, moderate duration, (4 × 15 s), bout of PNF

stretching of either the quadriceps or triceps surae muscles followed each by

PSA, causes either an improvement or impairment in running economy.

Eighteen trained male runners/triathletes visited the laboratory five times.

The first two visits were to familiarize the participants and to test for

maximal oxygen consumption (VO2max) respectively. The further three

appointments were randomly assigned to either 1.) quadriceps PNF

stretching + PSA or 2.) triceps surae PNF stretching + PSA or 3.) no

stretching + PSA. Following the interventions, participants performed a 15-

min run on the treadmill with a speed reflecting a velocity of 70% VO2max to

assess oxygen consumption (i.e., running economy) and running biomechanics.

Our results showed neither a difference in oxygen consumption (p = 0.15) nor a

change in any variable of the running biomechanics (p >0.33) during the steady-

state (i.e., last 5 min) of the 15-min run. Athletes can performmoderate duration

PNF stretching of the quadriceps or triceps surae + PSA prior to a running event,

without affecting running economy. Future studies should emphasize long-

term training effects on tendon stiffness adaptations and running economy.
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1 Introduction

For endurance running or endurance events in general, it is

classically accepted that the maximal oxygen uptake (VO2max)

and the fractional utilization of the VO2max are key

determinants of performance. A third major determinant of

performance represents running economy (Jones 2016) that

can be quantified as energy utilization at a given submaximal

exercise intensity (Barnes and Kilding, 2015). According to

Barnes and Kilding (2015) the factors affecting running

economy are metabolic efficiency, cardiorespiratory efficiency,

training, neuromuscular efficiency, as well as biomechanical

efficiency. Moreover, compared to level running, uphill

running causes more oxygen consumption (decrease in

running economy), whilst downhill running less oxygen

consumption (Lemire et al., 2021). Additionally, very

comprehensive running such as an ultra-marathon can

decrease the running economy in the course of the race

(Scheer et al., 2018).

Concerning especially neuromuscular and biomechanical

efficiency the largest proportion of energy consumption in

running is based on the work done by muscles to lift and

accelerate the body (Kram and Taylor, 1990). Additional work

in running is performed by elastic connective tissue (e.g.,

tendons) using the stored energy with negligible metabolic

cost. Besides the release of elastic energy, the length change of

the previously stretched tendon influences the shortening

velocity of the muscle-tendon-unit (MTU) and hence the

force-length-velocity potential of the muscles. Thereby, an

uncoupling of the muscle belly shortening behavior compared

to whole MTU shortening can occur [i.e., tendon gearing;

(Wakeling et al., 2011)]. In running, this tendon gearing effect

of a slower muscle belly shortening velocity relative to the MTU

velocity can be observed during the stance phase for the soleus or

the vastus lateralis muscle and hence, contributes to increased

muscle-specific efficiency (Bohm et al., 2021).

A possibility to change the functionality of a muscle or

tendon (e.g., by changing its stiffness) within a warm-up is

stretching with its various techniques (Kay, Husbands-Beasley,

& Blazevich, 2015; Konrad, Stafilidis, & Tilp, 2017). However,

studies that have investigated the acute effects of stretching on

running performance and/or economy showed conflicting

reports. While some studies have reported that a single bout

of stretching has a positive effect on running performance/

economy (Godges et al., 1989; Faelli et al., 2021), others have

reported no effect (Allison et al., 2008; Damasceno et al., 2014) or

even adverse effects (Wilson et al., 2010; Lowery et al., 2014).

An explanation for the contradictory body of evidence might

be the applied approach to stretch multiple muscles before a

running event (i.e., quadriceps, hamstrings, triceps surae,

adductors). On the one hand, there is evidence that a more

compliant quadriceps tendon and aponeurosis (Arampatzis et al.,

2006; Bohm, Mersmann, Santuz, Schroll, et al., 2021) and also

vastus lateralis muscle (Miyamoto et al., 2019) are associated with

a better running economy in endurance athletes. Such a decrease

in muscle and tendon stiffness could be induced by a single bout

of stretching of the quadriceps (Konrad, Seiberl, Tilp, Holzer, &

Paternoster, 2022). Accordingly, a single quadriceps stretching

intervention should have a positive effect on running economy.

On the other hand, a stiffer Achilles tendon (Gleim, Stachenfeld,

& Nicholas, 1990; Arampatzis et al., 2006; Hunter et al., 2011;

Bohm, Mersmann, Santuz, Schroll, et al., 2021) and a stiffer

triceps surae muscle (Dumke et al., 2010) as well as increased

(nonpathological) hamstrings tightness (Gleim et al., 1990; Jones,

2002; Trehearn & Buresh, 2009) are also associated with better

running economy. Consequently, a single bout of stretching of

these muscle groups (i.e., posterior chain), immediately before a

running event, can make the MTU more compliant (Kay et al.,

2015; Konrad et al., 2017), and will likely have a detrimental effect

on running economy. Hence, it was speculated that

undifferentiated and holistic pre-exercise stretching might

simultaneously lead to both positive (especially in quadriceps)

and negative (especially in hamstrings and triceps surae) effects

on running economy, which would thus be counterbalanced and,

hence, lead to unclear results (Allison et al., 2008; Konrad,

Močnik, Nakamura, Sudi, & Tilp, 2021).

Moreover, to date, the vast majority of the studies on this

topic used static stretching exercises that induce acute changes in

muscle, but not in tendon stiffness (Kay et al., 2015; Konrad et al.,

2017) although this has the potential to increase running

economy. Alternatively, a single bout of proprioceptive

neuromuscular facilitation (PNF) stretching with a moderate

duration (i.e., 4 × 15 s) can reduce tendon stiffness (Kay,

Husbands-Beasley, & Blazevich, 2015; Konrad, Stafilidis, &

Tilp, 2017). Additionally, it is known that a single bout of

stretching for more than 1 min decreases force production

(Kay and Blazevich, 2012; Behm et al., 2016), and would

therefore likely impair running economy as well. However, if

sport-specific post-stretching dynamic activities (PSA) are

included in the warm-up routine, a possible performance drop

can be avoided according to most (Samson et al., 2012; Behm

et al., 2016; Reiner et al., 2021) but not all studies (Konrad et al.,

2022).

By assuming that an acute bout of PNF stretching including

PSA can decrease the muscle stiffness (Reiner et al., 2021; Konrad

et al., 2022) as well as tendon stiffness (Konrad et al., 2022)

running patterns such as ground contact time, stride lengths, or

stride frequency might be altered in runners resulting in acute
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changes in metabolic costs (i.e., running economy) (Mooses et al.,

2021).

Therefore, the purpose of this study was to investigate if a

single bout of moderate duration (4 × 15 s) PNF stretching of

either the quadriceps or triceps surae muscles followed by PSA

has an impact on running economy. In addition, spatio-temporal

parameters (i.e., ground contact time, stride length, stride

frequency), which might explain changes in running economy,

will be determined. Based on the literature (Arampatzis et al.,

2006; Konrad et al., 2022), we hypothesized that quadriceps

stretching followed by PSA will lead to an improved running

economy, whilst triceps surae stretching followed by PSA will

result in a negative or no effect on running economy compared to

using PSA solely without stretching.

2 Methods

2.1 Experimental design

On the first day in the laboratory, participants were

familiarized with the laboratory equipment (treadmill) and

the test procedure (i.e., stretching exercises, PSA, incremental

tests). Following the familiarization session, participants

visited the laboratory another four times within a 14-day

period with at least a 48-h rest between the test sessions.

Participants were asked to be in a rested state (no hard

workout 36 h before a measurement), to be hydrated, to

have their last meal at least 3 h before the test (Hayes and

Walker, 2007; Allison et al., 2008), to keep their nutrition

constant throughout the 14 days, and to wear the same shoes

throughout the tests (Allison et al., 2008). The measurements

were undertaken at the same time of day (± 1 h), and the

temperature and humidity in the laboratory were kept constant

(21°C, 40% humidity) (Allison et al., 2008). On the second day,

an incremental test was done to estimate the maximal oxygen

consumption (VO2max) of the participants. On the third,

fourth, and fifth day, participants were randomly assigned

to either PNF stretching the triceps surae + PSA, PNF

stretching the quadriceps + PSA, or no stretching + PSA

(control condition) (see Figure 1). On testing days three to

five, participants performed a standardized warm-up with

10 min treadmill running at 8 km/h (Damasceno et al.,

2014). Subsequently, after the stretching interventions or

control intervention the running economy test (15-min run

on the treadmill at a velocity of 70% VO2max), including

relevant biomechanical variables (ground contact time,

stride length, stride frequency) was determined.

FIGURE 1
Schematic schedule of the study.

Frontiers in Physiology frontiersin.org03

Konrad et al. 10.3389/fphys.2022.981108

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.981108


2.2 Participants

The primary outcome measure for the project was running

economy. To the best of our knowledge, no study to date has

analyzed the effect of PNF stretching (with a moderate duration)

of a single MTU (triceps surae or quadriceps), followed by PSA,

on running economy. Therefore, we used an explorative

approach for the sample size calculation. Since we want to

have the power to detect a medium to large effect, we

estimated a required sample size of 18 participants for our

study (repeated measures (within factors) ANOVA (three

groups x three measures), partial ɳ2 = 0.1, α = 0.05, 1−β =

0.9, correlation among repeated measures = 0.5) using G*Power.

Since male and female runners respond differently to a single

bout of stretching before running (Mojock et al., 2011), we only

included male participants in this study.

In accordance with a previous study (Damasceno et al., 2014)

the inclusion criteria were recreational runners or triathletes,

participating in endurance competitions, weekly running volume

of more than 30 km, and training for at least 2 years without any

interruptions. The exclusion criteria were pharmacological

treatment, any type of neuromuscular disorder, dysfunction in

the cardiovascular, respiratory, or circulatory system, and elite

runner.

Consequently, we recruited 18 male trained runners/

triathletes (age: 30.0 ± 6.1 years; weight: 75.4 ± 7.7 kg, height:

182.5 ± 4.6 cm). The average VO2max was 55.6 ±

6.7 ml kg−1 min−1 and the participants reported an average

running mileage of 43.5 ± 12.6 km per week. The participants

signed a written informed consent form, and ethical approval was

obtained by the local ethical committee of the Technical

University of Munich (762/20 S-KH) in accordance with the

Declaration of Helsinki.

2.3 Procedures

2.3.1 Incremental testing
To determine VO2max, an incremental test similar to a

previous study (Damasceno et al., 2014) was performed on a

motorized treadmill (Saturn 300/125, h/p/cosmos, Germany).

The test started with a warm-up for 5 min running at 8 km/h,

followed by an increase of 0.5 km/h every minute until full

exhaustion. The stop criterion was when the participant was

not able to maintain the velocity of the treadmill. Post-hoc, two

out of the following three criteria were taken to confirm

exhaustion and to determine VO2max: 1) an increase in VO2

between the consecutive stages of less than 2.1 ml/kg *min; 2)

respiratory quotient exceeding 1.1; 3) exceeding the age-

predicted (220 bpm—age) maximum heart rate (± 10 bpm)

(Howely et al., 1995; Damasceno et al., 2014). A Cortex

MetaLyzer 3B (CORTEX Biophysik, Germany) was used to

measure gas exchange and flow volume, and hence to

determine VO2 and VCO2 (carbon dioxide output). VO2 and

VCO2 were averaged at 30 s intervals throughout the tests. Before

all running tests (also running economy tests), the automated gas

analysis system was calibrated using both ambient air and

calibration gas (5% for CO2 and 15% for O2). A 3-L syringe

was used to calibrate the volume sensor. A heart rate transmitter

and heart rate monitor (Polar H10, Polar Electro, Kempele,

Finland) were used to monitor heart rate.

2.3.2 Running economy
To test running economy, subjects performed a 15-min run

on the treadmill, reflecting a velocity of 70%VO2max determined

during the second test day. A time of 15-min was taken since this

is considered an appropriate duration to achieve a physiological

steady-state (Barnes and Kilding, 2015). A running velocity of

70% VO2max is related to moderate intensity, below the

respiratory compensation threshold (Esteve-lanao et al., 2005).

The individual velocity of every subject was calculated from the

relationship between the VO2 and the running velocities assessed

during the incremental test (Yamaguchi et al., 2015). To calculate

the running economy at this given speed, the VO2 was considered

as an average value from 5 min of running at the steady-state in

the last phase of the 15-min run.

2.3.3 Ground contact time, stride length, and
stride frequency

Ground contact time, stride length, and stride frequency were

measured using an optical detection system (OptoGait, Microgate

Corporation, Bolzano, Italy). Ground contact time is defined as the

time span from the first contact of the foot until the take-off of the

foot. Stride length is defined as the distance between the heel of two

subsequent footprints of the same foot. Stride frequency can be

determined from stride length and the constant velocity of the

treadmill during the running economy trials. Ground contact time,

stride length, and stride frequency were averaged throughout the

same time window of the running economy measurements.

2.4 Stretching intervention and post-
stretching dynamic activities

On test days 3–5, subjects were randomly assigned to either a

single 4 × 15 s PNF stretching exercise of the triceps surae + PSA,

quadriceps + PSA, or no stretching (4 min rest) + PSA (control

condition). When the participants stretched their triceps surae,

they were asked to perform this in a standing wall push position

(Konrad and Tilp, 2014). For the quadriceps stretch, the

participants were asked to stand upright on one leg and pull

the ankle of the contralateral leg up to the maximum knee flexion

(Stafilidis and Tilp, 2015). With both the quadriceps and the

triceps surae stretch, the contract-relax PNF stretching technique

similar to the stretching protocol of previous studies (Kay et al.,

2015; Konrad et al., 2022) was applied. Participants were asked to
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stretch the target muscle (triceps surae or quadriceps) for 10 s,

followed by a 5-s maximal contraction of the target muscle in the

stretching position. This was done 4 times consecutively and

resulted in an overall stretching/contraction duration of 60 s for

each stretch. All stretches were performed on both legs and with a

stretching intensity until the point of discomfort. During the

control condition (no stretch) the participants were asked to rest

for 4 min in a standing position.

Following the two stretching interventions and the control

intervention, PSA according to the protocol of a previous study

was performed (Samson et al., 2012; Konrad et al., 2022). Three

different running-specific tasks were performed in a fixed order,

immediately after the stretching exercises (i.e., triceps surae or

quadriceps) or the 4 min break (i.e., control condition). The first

task was a high knee run with a hip flexion of ~90°. The second

task was skipping. The third task was a “butt kick run”, where the

heels should touch the bottom. All these tasks were performed

twice over a 20-m distance (Samson et al., 2012). All the tasks

were performed at a high speed (i.e., 7/10 on the visual analogue

scale), and a break between the tasks of 30 s was scheduled. All

interventions were supervised by the investigators.

2.5 Statistical analyses

SPSS (version 27.0, SPSS Inc., Chicago, Illinois) was used for all

the statistical analyses. The Shapiro-Wilk test was used to test for the

normal distribution of the residuals. If normally distributed, a one-

way repeatedmeasures ANOVA [three conditions = (triceps surae +

PSA, quadriceps + PSA, control)] was used to test the effect of the

stretching exercises + PSA on running economy and the related

biomechanical parameters. If ANOVA was not applicable, we used

the Friedman test. If the ANOVAor Friedman tests were significant,

post-hoc paired t-tests or Wilcoxon signed-rank tests were

performed, respectively. Cohen’s d was calculated following the

suggestions of Cohen (1988). Thus, the effect size d was defined as

0.2, 0.5, and 0.8 for a small, medium, and large effect, respectively.

The global level of significance was 5% for all tests.

3 Results

The average speed during the 15-min running economy runs

was 11.3 ± 1.2 km/h, corresponding to individual running speeds

at 70% VO2max. Mean values of all the tested parameters for the

three conditions are shown in Table 1. Individual values are

presented in Figure 2.

Friedman test revealed no significant effect on oxygen

consumption during the last 5 minutes of the 15-min steady-

state run (p = 0.15; χ2 = 3.8). Moreover, one-way repeated

measures ANOVA revealed no change in ground contact time

(p = 0.52; F2,16 = 0.672; r = 0.077), stride length (p = 0.33; F2,16 =

1.194; r = 0.13), or stride frequency (p = 0.44; F2,16 = 0.870; r =

0.098).

TABLE 1 Mean ± SD. Results for the parameters oxygen consumption, ground contact time, stride length, and stride frequency for the three
crossover-design conditions. The two intervention conditions were quadriceps PNF stretching + post-stretching activation (PSA) and triceps
surae stretching + PSA. Control condition was no stretching (4 min rest) + PSA (control).

Quadriceps PNF
stretching + PSA

Triceps surae PNF
stretching + PSA

Control (4 min rest
+ PSA)

Oxygen consumption (L/min) 3.14 ± 0.58 3.11 ± 0.54 3.05 ± 0.49

Ground contact time (s) 0.286 ± 0.031 0.287 ± 0.034 0.290 ± 0.033

Stride length (cm) 233.7 ± 26.3 232.7 ± 24.8 232.6 ± 25.0

Stride frequency (stride/s) 1.34 ± 0.07 1.35 ± 0.07 1.35 ± 0.07

FIGURE 2
Boxplot diagram and individual results (black dots) of oxygen
consumption of the three test conditions. PNF, Proprioceptive
neuromuscular facilitation; PSA, Post-stretching dynamic
activities. Black cross: Outliers, defined asmore than 1.5 times
the interquartile range away from the top of the box.
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4 Discussion

The purpose of this study was to investigate if a single bout of

moderate duration (4 × 15 s) PNF stretching of the quadriceps or

triceps surae muscles followed by PSA, has an impact on running

economy compared to a control group that performed no

stretching exercise but PSA. We assumed that isolated

quadriceps PNF stretching + PSA will lead to a positive effect

on running economy, whilst triceps surae PNF stretching + PSA

will cause a negative or no effect on running economy. However,

according to our findings, there was no difference between the

interventions and control condition, indicating that additional

stretching + PSA of these two specific muscle groups (quadriceps

or triceps surae) has neither a positive nor a negative effect on

running economy and the related biomechanical variables

(i.e., ground contact time, stride length, stride frequency).

A few studies have already investigated the effects of a single

bout of stretching on running economy and performance

(i.e., time trial). Some studies have reported that static

stretching has a negative effect on endurance performance

(Wilson et al., 2010; Lowery et al., 2014) and energy

expenditure (Wilson et al., 2010; Zourdos et al., 2012) similar

to results in cycling (Esposito et al., 2011). These negative effects

might be associated with an increase in ground contact time

(Lowery et al., 2014). However, most of the studies have reported

no changes in running performance (Allison et al., 2008; Mojock

et al., 2011; Zourdos et al., 2012; Damasceno et al., 2014) or

running economy (Hayes and Walker, 2007; Allison et al., 2008;

Mojock et al., 2011; Damasceno et al., 2014; Yamaguchi et al.,

2015), independent of the two stretching techniques used (static,

dynamic). Nevertheless, some studies reported positive effects on

running economy after a single bout of static (Godges et al., 1989;

Faelli et al., 2021), dynamic (Faelli et al., 2021), or PNF stretching

(Godges et al., 1989). Additionally, another study showed better

running performance following a dynamic stretching

intervention (Yamaguchi et al., 2015).

Bringing all the results together, there are conflicting reports

in the literature about the effects of acute stretching prior to a

running event. Except for the study of Godges et al. (1989), all the

aforementioned studies stretched several MTUs prior to running

tests, although it is known that stiff MTUs and tendons of the

triceps surae (Gleim et al., 1990; Arampatzis et al., 2006; Hunter

et al., 2011) or hamstring muscles (Gleim et al., 1990; Jones, 2002;

Trehearn & Buresh, 2009) are advantageous for running

performance/economy. Therefore, we assumed that a stretch

of these MTUs that decreases MTU stiffness (Behm et al.,

2016; Konrad and Tilp, 2020) will have a detrimental effect

on running performance/economy, likely based on changes in

the stretch-shortening cycle (i.e., longer ground contact time

(Lowery et al., 2014)). However, the proposed advantage of a stiff

Achilles tendon for running performance/economy would be

impacted by running speed, where slower running velocities such

as with slow, recreational jogging with their longer contact

periods might actually benefit from more compliant tendons

(Godges et al., 1989; Hayes andWalker 2007). The present results

based on the running speeds of recreational runners and

triathletes corresponding to 70% VO2max could not confirm

the assumption of decreased MTU stiffness impairing running

performance/economy.

Concerning the PNF stretching of the quadriceps muscles +

PSA before running, we hypothesized that this will be

advantageous since more compliant tendons were associated

with a better running economy (Arampatzis et al., 2006;

Bohm et al., 2021). The quadriceps muscle is especially active

in the early stance phase, decelerating and supporting body mass

and hence plays an important role during running. A decrease in

quadriceps tendon stiffness achieved near significance (p = 0.06)

in a previous study (Konrad et al., 2022) following the same PNF

quadriceps stretching + PSA regimen used in the current study.

Consequently, it was assumed that an increased tendon gearing

(increase in ratio MTU vs.—muscle belly velocity) decreases

muscle fascicle velocity resulting in an improved running

economy. Just recently a further study (Bohm et al., 2018)

showed that during the stance phase of running, the muscle

fascicles of the vastus lateralis work almost isometrically and

close to their plateau region of the force-length-relationship. The

impact of an acute bout of moderate duration PNF stretching +

PSA might be therefore insufficient to neither modify tendon

gearing nor bring the fascicles further to the plateau region of the

force-length relationship.

Some studies speculated that a possible negative effect of

stretching the hamstrings and triceps surae cancelled out a

positive effect of the stretching of the quadriceps muscles if

performed in a combined stretching routine before a running

event. As a result, no overall effect of stretching on the running

economy could be observed (Allison et al., 2008; Konrad et al.,

2021). However, our data showed that running economy was not

different from the control condition (no stretching + PSA)

neither following the quadriceps PNF stretching + PSA nor

following the triceps surae PNF stretching + PSA, and hence,

we cannot support the hypothesis of a counterbalancing effect.

As a consequence of no significant changes in running economy,

our results showed that the interventions did neither alter

preferred stride frequency, stride length, nor ground contact

time compared to the control condition. From a practical point of

view, if stretching is part of an athlete’s warm-up routine, we

recommend to use the PNF method with PSA. At least for

submaximal endurance running in male recreational athletes

no negative effects on running economy were found in our study.

One limitation of this study was the absence of an

intervention condition in which only PNF stretching protocol

of either the quadriceps or the triceps surae muscles is performed.

Together with a further control condition (i.e., just rest without

PSA) it would have been possible to get a clearer picture of

muscle specific PNF stretching with and without PSA and its

effect on RE. Future studies should take this into consideration.
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5 Conclusion

To conclude, a single PNF stretching of the triceps surae or

the quadriceps including PSA did not have a significant effect on

running economy compared to PSA alone. The findings of the

current study did not reflect our hypothesis that a single bout of

PNF stretching of the triceps surae + PSA will result in a decrease

in running economy since stiff triceps MTU (especially the

tendon) was reported to be advantageous (Gleim et al., 1990;

Arampatzis et al., 2006; Hunter et al., 2011). Additionally, we

assumed a better running economy in the quadriceps condition,

since a more compliant quadriceps MTU (especially the tendon)

has been reported to be advantageous for running economy

(Arampatzis et al., 2006; Bohm et al., 2021). Although a single

PNF stretching exercise can decrease the overall MTU stiffness

(Konrad et al., 2017) but also the tendon stiffness (Kay et al.,

2015), this acute change did neither lead to beneficial

(i.e., quadriceps) nor adverse effects (i.e., triceps surae) on

running economy. Hence, future warm-up studies should

investigate if other stretching techniques, which have the

potential to change MTU stiffness [i.e., static stretching;

(Konrad et al., 2017)] including PSA might lead to significant

changes in running economy. Future training studies with the

potential to chronically increase tendon stiffness [i.e., with

isometric strength training (Albracht & Arampatzis, 2013)] or

decrease tendon stiffness [i.e., with stretching training; (Konrad,

Gad, & Tilp, 2015)] should be applied to test if such changes can

induce a beneficial effect in running economy.
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