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Abstract: Cervical cancer is the fourth leading cause of cancer-related deaths in women worldwide.
Although many sequencing studies have been carried out, the genetic characteristics of cervical
cancer remain to be fully elucidated, especially in the Asian population. Herein, we investigated the
genetic landscape of Chinese cervical cancer patients using a validated multigene next generation
sequencing (NGS) panel. We analyzed 64 samples, consisting of 32 tumors and 32 blood samples
from 32 Chinese cervical cancer patients by performing multigene NGS with a panel targeting 571
cancer-related genes. A total of 810 somatic variants, 2730 germline mutations and 701 copy number
variations (CNVs) were identified. FAT1, HLA-B, PIK3CA, MTOR, KMT2D and ZFHX3 were the
most mutated genes. Further, PIK3CA, BRCA1, BRCA2, ATM and TP53 gene loci had a higher
frequency of CNVs. Moreover, the role of PIK3CA in cervical cancer was further highlighted by
comparing with the ONCOKB database, especially for E545K and E542K, which were reported to
confer radioresistance to cervical cancer. Notably, analysis of potential therapeutic targets suggested
that cervical cancer patients could benefit from PARP inhibitors. This multigene NGS analysis
revealed several novel genetic alterations in Chinese patients with cervical cancer and highlighted
the role of PIK3CA in cervical cancer. Overall, this study showed that genetic variations not only
affect the genetic susceptibility of cervical cancer, but also influence the resistance of cervical cancer
to radiotherapy, but further studies involving a larger patient population should be undertaken to
validate these findings.

Keywords: cervical cancer; genetic traits; therapeutic target; multigene NGS panel; PIK3CA

1. Introduction

Cervical cancer remains a prevalent disease globally. Despite the introduction of
screening and vaccination programs, there were approximately 570,000 new cases and
311,000 deaths from cervical cancer worldwide in 2018, making it the fourth most fre-
quently diagnosed cancer and the fourth leading contributor to cancer-related mortality in
women [1]. The high-risk factors of cervical cancer chiefly include human papillomavirus
(HPV) infection, initiation of sexual behavior at a young age, multiple sexual partners,
smoking, and long-term consumption of oral contraceptives [2]. Moreover, it has been
reported that during carcinogenesis of cervical cancer, HPV DNA is frequently integrated
into the human genome. Although the combination of surgery and radiochemotherapy has
improved overall survival (OS), progression-free survival (PFS) and disease-free survival
of cervical cancer patients, and reduced the recurrence rate of cervical cancer, the 5-year
survival rate of advanced cervical cancer patients, especially metastatic cervical cancer
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patients, remain dismally low, ranging from 5% to 15% [3]. Moreover, the incidence and
mortality of cervical cancer tend to be higher in countries or regions with a low human
development index; cervical cancer is the most frequently occurring cancer type in women
in sub-Saharan Africa and Southeast Asia [1]. Remarkably, China contributed more than
a sixth of the global cervical cancer burden, with 106,000 new cases and 48,000 deaths
in 2018 [4]. Consequently, greater efforts are needed to further elucidate the molecular
mechanisms underlying tumor initiation and progression, especially in Chinese cervical
cancer patients, which could facilitate the discovery of novel biomarkers for early cervical
cancer screening and better molecular targets for the treatment of cervical cancer.

Over the recent years, many genomics sequencing studies have been carried out to
uncover specific gene variations of cervical cancer. Kyrgiou et al., undertook a genome-
wide association study (GWAS) of 273,377 women, including 4769 cervical intraepithelial
neoplasia (CIN) grade 3 or invasive cervical cancer patients, and showed that six indepen-
dent genetic susceptibility variants, PAX8 (rs10175462), CLPTM1L (rs27069), HLA-DQA1
(rs9272050), MICA (rs6938453), HLA-DQB1 (rs55986091) and HLA-B (rs92666183), were
associated with CIN3 and invasive cervical cancer, suggesting disruptions in apoptotic and
immune function pathways [5]. Yang et al., found that targeting β-catenin reverses radiore-
sistance of cervical cancer carrying PIK3CA-E545K, the most common hotspot mutation of
PIK3CA in cervical cancer [6]. Zhang et al., identified and screened the key genes (such as
TSPO, CCND1) and pathways (such as DNA replication, organelle fission, chromosome
segregation and cell cycle phase transition) closely related to cervical cancer by reanalyzing
cervical cancer-associated gene expression dataset including 10 normal cervix samples and
21 cervical cancer samples [7]. Burk et al., identified SHKBP1, ERBB3, CASP8, HLA-A and
TGFBR2 as significantly mutated genes and unraveled amplifications in BCAR4, CD274
and PDCD1LG2 in 228 primary cervical cancer, among which multiple genes can be used
as therapeutic targets [8].

Although increasing cervical cancer-related mutations have been uncovered, the
pathogenesis of cervical cancer remains still unclear in a considerable proportion of patients,
and data are especially limited on the genetic characteristics of Chinese cervical cancer
patients. In the current study, we used a multigene next generation sequencing (NGS)
panel to analyze the sequencing results of 32 cervical cancer samples and paired normal
control samples from Chinese cervical cancer patients. The panel contains 571 validated
tumor-related genes and includes multiple genetic tests for simultaneously identifying
single nucleotide variants (SNVs), small insertions and deletions (indels), copy number
variations (CNVs), splice variants and gene rearrangements. We uncovered frequent and
novel genetic alterations and performed related signaling pathways enrichment analysis,
revealing distinct mutation characteristics from Caucasian patients.

2. Materials and Methods
2.1. Cervical Cancer Patients and Tissue Cohort

This study carried out between March 2019 and March 2020 at the Obstetrics and
Gynecology Hospital, Fudan University, Shanghai, China, prospectively enrolled 32 consec-
utive patients with pathologically proven primary cervical cancer for ultradeep NGS using
a 571-gene targeted sequencing panel. All the specimens were collected during surgical
resection of the primary tumor. Data were acquired from the hospital’s electronic medical
records system and by direct interviews of participants. Cervical cancer surgical samples,
paired tumor tissue and blood samples were acquired at the Department of Gynecological
Oncology of the Hospital.

2.2. Genomic DNA Isolation and Targeted NGS

All samples were processed in a next-generation sequencing laboratory (Xinshu
Healthcare Technology Company, Shanghai, China). Library was prepared according
to the instructions of each manufacturer. Genomic DNA was extracted using a QIAamp
DNA Mini kit (Qiagen GmbH, Dusseldorf, Germany). The quantity and purity of DNA
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were assessed using a Qubit® 3.0 fluorometer (Invitrogen; Thermo Fisher Scientific, Singa-
pore) and a NanoDrop ND-1000 (Thermo Fisher Scientific, Wilmington, NC, USA). DNA
fragmentation was evaluated by Genomic DNA ScreenTape assays (Agilent Technologies,
Santa Clara, CA, USA) using the Agilent 2200 TapeStation system to produce a DNA
integrity number. Sheared genomic DNA was used to perform end repair, A-tailing and
adapter ligation with a KAPA library preparation kit (Kapa Biosystems, Wilmington, NC,
USA). Libraries were captured using Agilent SureSelect human exon probes and amplified.
Finally, the constructed sample libraries were sequenced by Illumina NextSeq500 System
(Illumina, San Diego, CA, USA).

2.3. Preprocessing of Sequencing Reads

Raw short sequence reads were trimmed and filtered by fastp. Clean reads were
mapped to the human reference genome hg19 using BWA-MEM with default parameters.
Following GATK4 best practice, PCR duplicates in BAM files were first removed and
subsequently realigned and recalibrated.

2.4. Somatic Variant Identification

Somatic SNVs and indels were identified using MuTect2. Tumor samples were used to
call somatic mutations against the paired normal samples. Artifacts were filtered using the
GATK FilterMutectCalls tool. Filtered variants were annotated using SnpEff with ExAC,
1000G, dbsnp, clinvar and COSMIC databases. The average depth of the sequencing was
1814X. To filter out mutations that may be false positive, only those mutations with a
sequencing depth larger than 10X and supported by at least four mutation reads with a
variant allele frequency (VAF) >0.01 and a global frequency <0.05 in ExAC and 1000G were
used for further analysis.

2.5. Germline Variant Identification

Germline SNVs and indels were identified from the bam data of the blood samples
using GATK HaplotypeCaller. Filtered variants were annotated using SnpEff with ExAC,
1000G, dbsnp, clinvar and COSMIC databases. To filter out mutations that might be false
positive, only those mutations with a sequencing depth larger than 20X and supported
by at least 10 mutation reads with a VAF >0.1 and a global frequency <0.05 in ExAC and
1000G were used for further analysis.

2.6. Copy Number Variations (CNVs)

CNVs were determined using CNVkit. A copy number of 1 indicated copy number
loss, 0 homozygous deletion and ≥3 copy gain. ABSOLUTE was used to estimate tumor
purity and ploidy from CNV and SNV results. Then, CNV was corrected for tumor purity
and ploidy. In addition, significantly recurrent focal genomic regions with somatic copy
number alterations (SCNAs) that were gained or lost in cervical cancer samples were
identified using the Genomic Identification of Significant Targets in Cancer (GISTIC 2.0)
algorithm20 software) [9]. Default parameters of GISTIC were used and focal events with
q-value below 0.25 were considered as significantly recurrent. Significant focal events in
individual samples were classified according to the amplitude threshold of GISTIC: GISTIC
status = 0, below threshold; GISTIC status = 1, amplified (gain); GISTIC status = 2, highly
amplified (amplification); GISTIC status = −1, deleted (loss); GISTIC status = −2, highly
deleted (deletion). The rates of CNVs and SCNAs in early and advanced stage cervical
cancer were analyzed.

2.7. Gene Ontology (GO) and KEGG Pathway Enrichment Analyses

Gene ontology analysis (GO) is commonly used for annotating large scale genes and
gene products [10,11]. KEGG is a collection of databases dealing with genomes, diseases,
biological pathways, drugs and chemical materials [12]. It is generated by molecular level
information, can be used to predict which pathways a particular gene is enriched. It covers
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information resources such as diseases and pathways. GO analysis and KEGG analysis
were performed by DAVID tools (DAVID. Available online: https://david.ncifcrf.gov/,
accessed on 10 December 2021) [13] Statistical significance was considered for p < 0.01.
DAVID, which is an online bioinformatic tool, is designed to identify a large number of
genes or proteins function. We could use DAVID to visualize the DEGs enrichment of BP,
MF, CC and pathways (p < 0.05).

2.8. Protein Interaction Assay

Protein interaction enrichment was analyzed using Metascape (Metascape. Available
online: https://metascape.org/, accessed on 10 December 2021) [14]. The protein networks
constructed were based on physical interactions among all input protein (gene) candidates.

3. Results
3.1. Patient Characteristics

The study included 32 paired cervical cancer and normal control samples from 32
consecutive patients. Twenty-four patients had squamous cell carcinoma, 4 patients had
adenosquamous carcinoma, 2 patients had adenocarcinoma, and 1 patient each had en-
dometrioid serous carcinoma and undifferentiated carcinoma. Their median age was 49
years (range 33–77). Ten patients had stage I disease, 8 patients had stage II disease, and 14
patients had stage III disease. Nineteen patients were HPV 16 positive, and 3 patients were
HPV 18 positive. The clinical characteristics of the samples are summarized in Table 1.

Table 1. Demographic and baseline characteristics of the study population.

Variable n = 32 (100%)

Age, years
Median (range) 49 (33–77)
Histologic type

Squamous carcinoma 24
Adenosquamous carcinoma 4

Adenocarcinoma 2
Endometrioid serous carcinoma 1

Undifferentiated carcinoma 1
FIGO stage

I 10
II 8
III 14

Biomarkers
CA125 + 4
CA199 + 2
SCCA + 6
HE4 + 1

Undetected 17
Undefined 2

HPV infection
HPV 16 16
HPV 18 3
HPV 33 1
HPV 51 1
HPV 58 1

High risk 2
Negative 1

Undefined 7

3.2. SNVs and CNVs

In the study cohort, genomic analysis identified 810 somatic variations (including
SNVs and small indels) (Figure 1); 2730 germline mutations and 701 CNVs. Somatic
mutation types are summarized in Table 2. Of 810 somatic variations, the four genes with
the most significant somatic mutation enrichment were PIK3CA (31.25%), MTOR (15.63%),
KMT2D (12.50%) and FAT1 (12.50%), followed by MDC1 (9.38%), ANKRD11 (9.38%),
APC (9.38%), BCORL1 (9.38%) and TP53 (9.38%). Overall, the number and frequency of

https://david.ncifcrf.gov/
https://metascape.org/
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germline variations were significantly higher than those of somatic variations (Figure 2); the
mutation rate of FAT1 reached 46.88%, followed by HLA-B (40.63%) and ZFHX3 (28.13%).
Multivariate analysis showed that somatic FAT1 mutations were significantly associated
with nonsquamous carcinoma (p < 0.05); germline TET2 and SESN2 mutations were also
significantly associated with nonsquamous carcinoma (both p < 0.05). In addition, germline
PTPRT and SLX4 mutations were significantly associated with smaller tumor sizes (both
p < 0.05). Additionally, germline BCORL1 and GPR124 were significantly associated with
no HPV 16 infection and younger age, respectively (both p < 0.05).

Figure 1. The top 40 somatic mutant genes with the highest mutation rate in 25 of 32 cervical cancer
samples. Specific genetic mutations were identified by targeted next generation sequencing in the
tumor tissues. The upper panel shows the number of nonsynonymous single-nucleotide variants and
small insertions or deletions in each tumor.

Table 2. Summary of somatic mutations.

Variant Classification Count

Intron 263
Missense Mutation 250

Silent 113
Upstream Gene Variant 41

Downstream Gene Variant 24
Splice Site 29

Nonsense Mutation 23
3’UTR 17

Frame Shift Ins 14
Frame Shift Del 10

Intragenic Variant 8
5’UTR 6

In Frame Del 4
In Frame Ins 4

Translation Start Site 4
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Figure 2. The top 40 germline mutant genes with the highest mutation rate in 32 of 32 cervical cancer
samples. Genetic mutations were identified by targeted next generation sequencing in the control
samples. The upper panel shows the numbers of nonsynonymous single-nucleotide variants and
small insertions or deletions.

Germline variations were obviously higher than those in COSMIC database, suggest-
ing that HLA might be mutated as an antigen-presenting complex in cervical cancer. CNV
analysis revealed that the PIK3CA gene loci had a particularly high frequency of CNV.
Moreover, the BRCA1, BRCA2, ATM and TP53 gene loci also had a higher frequency of
CNV (Figure 3).

Figure 3. The copy number variation map; distribution shift of CNVs in the chromatins. Copy
number losses (yellow) and gains (dark purple) were determined from the sequencing data. PIK3CA
and TP63 were the highest frequency CNV genes, and BRCA2, TP53, ATM and BIRC3 also had a
higher frequency of CNV.

We performed overlap analysis of the SNV genes and CNV genes and focused on 34
genes in our subsequent analysis. The protein interaction simulation analysis identified
PIK3CA as the key player in the whole network; almost all other proteins directly or indi-
rectly interacted with PIK3CA (Figure 4). Additionally, both HLA-A and HLA-B interacted
with PIK3CA, which were reported to confer radioresistance to cervical cancer [6], suggest-
ing that HLA-A and HLA-B may also be involved in radiotherapeutic resistance of cervical
cancer. Furthermore, based on these 34 genes, KEGG pathway analysis revealed that virus
infection-related pathways were significantly abnormal in cervical cancer (Figure 5). Ad-
ditionally, GO enrichment analysis showed that those patients may have multiregulation
function disorder.
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Figure 4. The protein interaction simulation analysis of 34 genes. PIK3CA was the key gene in the
whole network.
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Figure 5. KEGG and GO analysis of 34 genes.

3.3. Analysis of Oncogenic Mutations in the ONCOKB Database

To further elucidate the role of germline and somatic variations in cervical cancer, we
compared the genetic variations identified in the current study with those in the ONCOKB
database. Forty-four oncogenic or likely oncogenic somatic variations in thirty genes that
were identified in this study are recorded for cervical cancer in the ONCOKB database,
including eight oncogenic mutations and thirty-six likely oncogenic mutations (Table 3
and Table S2). Notably, three recurrent mutations in the PIK3CA gene were located in the
essential protein-coding region, such as E545K and E542K, which are reported to confer
radioresistance to cervical cancer (Table 2 and Figure 6) [6]. TP53 was the second most
common oncogenic mutated gene in three cases, and it is well known that TP53 inactivation
is closely associated with the development of cervical cancer [15]. Additionally, FBXW7 and
EP300 mutations have already been reported in cervical cancer [16]. Moreover, PIK3CA,
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TP53, BRCA1, ERBB3, KIT, KRAS, NRAS, PTEN and STK11 all belong to the PI3K-AKT
signaling pathway, which is involved in regulating tumor growth and metastasis and
radiosensitivity of cervical cancer [17]. Fifteen germline variations with pathogenicity
found in thirteen genes in this study are recorded in the ONCOKB database (Table 4),
suggesting that pathogenic germline variations are also implicated in the oncogenesis
of cervical cancer, possibly via affecting individual cancer susceptibility [5]. In addition,
we performed Metascape gene analysis on these thirteen germline mutated genes and
found that almost half of these genes were enriched in the DNA double-strand break repair
pathway, indicating that individual cervical cancer susceptibility may be associated with
genetic DNA double-strand break repair defect.

Figure 6. Schematic diagram of major mutations in PIK3CA, including E545K and E542K, which
have been demonstrated to be tightly associated with cervical cancer resistance to radiotherapy.

Table 3. Oncogenic somatic variations identified in this study and labeled in the ONCOGENIC database.

Genes Variant_Classification HGVS.c HGVS.p Sample Count Origin

PIK3CA Missense_Mutation c.1633G>A p.Glu545Lys 5 Somatic
PIK3CA Missense_Mutation c.3140A>G p.His1047Arg 2 Somatic
PIK3CA Missense_Mutation c.1624G>A p.Glu542Lys 2 Somatic
BRCA1 Frame_Shift_Ins c.66dupA p.Glu23fs 1 Somatic
CDH1 Missense_Mutation c.1018A>G p.Thr340Ala 1 Somatic
KRAS Missense_Mutation c.35G>A p.Gly12Asp 1 Somatic
NRAS Missense_Mutation c.35G>A p.Gly12Asp 1 Somatic

FBXW7 Missense_Mutation c.1393C>T p.Arg465Cys 1 Somatic

Table 4. Likely oncogenic germline variations identified in this study and labeled in the ONCO-
GENIC database.

Gene Variant_Classification HGVS.c HGVS.p Sample Count Origin

HLA-B Frame_Shift_Del c.354_355delCC p.Leu119fs 7 Germline
PPP6C Frame_Shift_Ins c.152dupC p.Pro52fs 3 Germline

MUTYH Splice_Site c.934-2A>G 2 Germline
AXIN1 Translation_Start_Site c.-135C>T 1 Germline
CASP8 Translation_Start_Site c.-30T>A 1 Germline

MRE11A Nonsense_Mutation c.1447C>T p.Arg486Ter 1 Germline
PIK3R2 Splice_Site c.901+1G>A 1 Germline
RAD50 Frame_Shift_Ins c.2165_2166insT p.Lys722fs 1 Germline

RAD51B Splice_Site c.316-4_316-3dupTT 1 Germline
RAD51B Splice_Site c.316-5_316-3dupTTT 1 Germline
RECQL Translation_Start_Site c.2T>C p.Met1Thr 1 Germline

RECQL4 Nonsense_Mutation c.3328G>T p.Glu1110Ter 1 Germline
TP53 Missense_Mutation c.790C>G p.Leu264Val 1 Germline

ZFHX3 Frame_Shift_Ins c.9583_9584insT p.Pro3195fs 1 Germline
ZFHX3 Frame_Shift_Ins c.9588_9589insAG p.Gln3197fs 1 Germline

It is well known that BRCA1/2, the vital DNA repair genes, play a particularly
important role in cancer in women, such as breast cancer and ovarian cancer. However,
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their role in cervical cancer has not been determined. Therefore, we further conducted an
in-depth analysis of BRCA1/2 and found that many samples carried multiple mutations
in the coding region of BRCA1/2 (Figure 7). However, only two samples had mutations
located at the important coding region of BRCA1/2, indicating that the contribution of
BRCA1/2 to cervical cancer may be smaller than that in breast cancer or ovarian cancer.

Figure 7. The schematic diagram of major mutations in BRCA1/2. Most mutations were located in
the nonimportant coding region.

3.4. Analysis of Potential Therapeutic Targets

Finally, we analyzed known therapeutic targets through the ONCOKB database. Ten
candidate oncogenic somatic mutations were identified in 7 genes that could be immediately
applicable as therapeutic targets (Table 5), including PIK3CA, ATM, BRCA1, KRAS, NRAS,
PALB2 and PTEN, and the corresponding targeted drugs included fulvestrant plus alpelisib,
olaparib, talazoparib, rucaparib, niraparib and others. Moreover, seven likely oncogenic
germline mutations were identified in two known targeted genes, ATM and RAD51B
(Table 6). Both ATM and RAD51B are important genes in the homologous recombination
(HR) repair pathway, and their targeted drug olaparib has been approved by the US Food
and Drug Administration (FDA) for metastatic castration-resistant prostate cancer [18],
suggesting that cervical cancer patients may also benefit from PARP inhibitors, which is
consistent with the enrichment results of the above germline oncogenic mutated genes.

Table 5. Candidate oncogenic somatic mutations in the targeted genes.

Gene HGVS.c HGVS.p Samples Mutation Effect Oncogenic Targeted
Drugs Origin

PIK3CA c.1633G>A p.Glu545Lys 5 Gain-of-function Oncogenic Fulvestrant +
Alpelisib Somatic

PIK3CA c.3140A>G p.His1047Arg 2 Gain-of-function Oncogenic Fulvestrant +
Alpelisib Somatic

PIK3CA c.1624G>A p.Glu542Lys 2 Gain-of-function Oncogenic Fulvestrant +
Alpelisib Somatic

ATM c.1899-7C>A – 1 Likely
loss-of-function

Likely
Oncogenic Olaparib Somatic

BRCA1 c.66dupA p.Glu23fs 1 Loss-of-function Oncogenic

Olaparib,
Talazoparib,
Rucaparib,
Niraparib

Somatic
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Table 5. Cont.

Gene HGVS.c HGVS.p Samples Mutation Effect Oncogenic Targeted
Drugs Origin

KRAS c.35G>A p.Gly12Asp 1 Gain-of-function Oncogenic
Trametinib,

Cobimetinib,
Binimetinib

Somatic

NRAS c.35G>A p.Gly12Asp 1 Gain-of-function Oncogenic Binimetinib Somatic

PALB2 c.3477G>A p.Trp1159 Ter 1 Likely
loss-of-function

Likely
Oncogenic Olaparib Somatic

PTEN c.469G>T p.Glu157Ter 1 Likely
loss-of-function

Likely
Oncogenic

GSK2636771,
AZD8186 Somatic

PTEN c.640C>T p.Gln214Ter 1 Likely
loss-of-function

Likely
Oncogenic

GSK2636771,
AZD8186 Somatic

Table 6. The likely oncogenic germline mutations in the targeted genes.

Gene HGVS.c HGVS.p Samples Mutation Effect Oncogenic Targeted
Drugs Origin

ATM c.3154-5C>T – 1 Likely loss-of-function Likely Olaparib Germline
RAD51B c.316-4_316-3dupTT – 1 Likely loss-of-function Likely Olaparib Germline
RAD51B c.316-5_316-3dupTTT – 1 Likely loss-of-function Likely Olaparib Germline
RAD51B c.316-3delT – 2 Likely loss-of-function Likely Olaparib Germline
RAD51B c.316-4_316-3delTT – 2 Likely loss-of-function Likely Olaparib Germline
RAD51B c.316-6_316-3delTTTT – 1 Likely loss-of-function Likely Olaparib Germline

RAD51B c.316-18_316-
3delTTTTTTTTTTTTTTTT – 1 Likely loss-of-function Likely Olaparib Germline

3.5. Advanced Stage Cervical Cancer Exhibits Notable Chromosome 6q27 Loss

Analysis of the distribution of SNVs and SCNAs using CNVkit and GISTIC revealed
significant higher rates of chromosome 6q27 loss in advanced stage versus early stage
cervical cancer (Supplementary Materials Table S3). Totally, 13 genes including HLA-A
and -J, TRIM10, 15, 26, 31, 40 and others experienced SCNA loss in advanced stage cervical
cancer (Table 7). Notably, GO term enrichment analysis showed that these genes were
enriched in two pathways, negative regulation of viral life cycle (TRIM26, TRIM10, TRIM31,
TRIM15, HLA-A and TRIM40) and regulation of cytokine production (HLA-A, PPP1R11
and TRIM15), as shown in a bubble plot, where the bubble size indicates the number of
genes in corresponding cluster and the color indicates the percentage of enriched genes,
with red being 100% and blue being 0% (Supplementary Materials Figure S1). Meanwhile,
no significant difference in SCNA gain or amplification was observed between early stage
and advanced stage cervical cancer.

Table 7. SCNA loss in chromosome 6q27 in early stage vs. advanced stage cervical cancer.

Genes Early Stage Cervical Cancer (+/−) Advanced Stage Cervical Cancer (+/−) p-Value Adjusted Q Value

HLA-A 0/10 5/7 0.040 1
HLA-J 0/10 5/7 0.040 1

PPP1R11 0/10 5/7 0.040 1
TRIM26 0/10 5/7 0.040 1
TRIM10 0/10 5/7 0.040 1
HCG9 0/10 5/7 0.040 1

TRIM31 0/10 5/7 0.040 1
ZNRD1 0/10 5/7 0.040 1
RNF39 0/10 5/7 0.040 1

ZNRD1-AS1 0/10 5/7 0.040 1
TRIM15 0/10 5/7 0.040 1
TRIM40 0/10 5/7 0.040 1
HCG8 0/10 5/7 0.040 1

+: positive for SCNA loss or deletion according to GISTIC status; −: negative for SCNA loss or deletion.

4. Discussion

Cervical cancer is a common female malignancy with an incidence of 126.94/100,000
in China [19]. It is of overly critical importance to understand the molecular mechanisms
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and genetic susceptibility of cervical cancer occurrence and development for early diag-
nosis and clinical therapy. Ojesina et al., performed whole exome sequencing (WES) of
115 paired cervical carcinoma and normal samples, RNAseq of 79 cases, and WGS of 14
tumor-normal pairs. They revealed that squamous cell carcinomas have higher frequen-
cies of somatic nucleotide substitutions at cytosines preceded by thymines (Tp*C sites)
than adenocarcinomas. They observed previously unknown somatic mutations in the
MAPK1 gene, inactivating mutations in the HLA-B gene, and mutations in EP300, FBXW7,
NFE2L2, TP53 and ERBB2 in squamous cell carcinoma samples, and somatic ELF3 and
CBFB mutations in adenocarcinomas. They also reported that gene expression levels at
HPV integration sites were statistically significantly higher in tumors with HPV integration
compared with expression of the same genes in tumors without viral integration at the
same site [16]. Chung et al., performed WES in 15 Chinese cervical cancer patients. They
observed frequently altered genes including FAT1, ARID1A, ERBB2 and PIK3CA. They
also found HPV sequence in 13 samples and suggested that HPV genome integrated into
the exon and may affect the tumorigenesis pathway [20]. One of the largest cervical cancer
sequencing efforts—The Cancer Genome Atlas (TCGA) Project—reveals novel mutations in
several genes, including SHKBP1, ERBB3, CASP8, HLA-A and TGFBR2, amplifications
in immune targets PD-L1 and PD-L2, by sequencing 228 primary cervical cancer patients.
They confirmed previously reported mutations in PIK3CA, EP300, FBXW7, HLA-B, PTEN,
NFE2L2, ARID1A, KRAS and MAPK1. This study illuminates new therapeutic targets in
cervical cancer [8]. Unfortunately, we did not find any genomic alterations that are peculiar
to the Chinese population in this study, probably due to the small sample size and the
limitation of the clinical samples from a single center. We are actively recruiting more
samples for further investigation.

In this study, using a 571 tumor-related gene panel for NGS, we identified 810 signifi-
cant somatic variations, 2730 germline mutations and 701 CNVs from 32 cervical cancer
samples and paired blood samples. PIK3CA and MTOR were the most frequently mutated
genes, demonstrating that the PI3K/Akt/mTOR signaling pathway is commonly activated
in cervical cancer [16]. Previous studies revealed PIK3CA mutation is frequent in cervical
cancer, and is associated with a poor OS and PFS [8,20–23]. PIK3CA was mutated in 14%
cervical squamous cell carcinoma patients in the study by Ojesa et al., Genomic profiling
of advanced cervical cancer in the CLAP trial also showed a higher PFS in women with
mutated PIK3CA receiving second line or later camrelizumab plus apatinib [24]. This
clinical benefit remains inconclusive in women receiving chemotherapy [25]. Scholl et al.,
showed that patients with altered PI3K and epigenetic pathways had significantly poorer
PFS [26]. Nevertheless, these women only received conventional therapy. These findings in-
dicate that biomarkers may have different predictive functions for cancer patients receiving
conventional therapy versus immunotherapy, and a distinct set of predictive biomarkers
should be developed for cervical cancer patients receiving immune checkpoint inhibitors.

Furthermore, the pathways enriched in the mutated genes in this study could offer
some insight into signaling pathways associated with cervical carcinogenesis that can
be therapeutically targeted such as the PI3K/Akt signaling pathway and DNA damage
response pathways. DNA repair pathway genes, such as BRCA1, BRCA2 and ATM, which
are potential predictive biomarkers [27–29], also had a high frequency of CNVs in the
present study, suggesting that HR defect might serve as a therapeutic target in cervical
cancer. Furthermore, we performed overlap analysis of the SNV genes and CNV genes and
screened 34 genes for subsequent bioinformatics analysis. Protein interaction simulation
analysis of proteins encoded by the 34 genes showed that PIK3CA occupied the crucial
central position in the whole network. Additionally, the results indicated that both HLA-
A and HLA-B play an important role in this network, and intimately interacted with
PIK3CA. Moreover, the somatic SNV mutation rate of PIK3CA is higher in HPV 16 (37.5%)
than non-HPV 16 (12.5%). However, the difference was not significant (Fisher exact test,
p = 0.35), probably due to the limited sample size.
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GO term enrichment analysis showed that the 34 genes were significantly enriched in
cell cycle regulation, cellular response, and metabolic process, suggesting that some of these
genes could be involved in cell cycle processes to promote cell proliferation by activating
related signaling pathways and could be promising candidate genes of antitumor drugs.
KEGG pathway enrichment analysis found that the virus infection-relation pathways were
significantly enriched with many pathogenic genetic variations, which might contribute to
persistent HPV infection.

We also observed chromosome 6q27 loss in advanced stage cervical cancer, occurring
in 42% of advanced stage cervical cancer samples versus none in early stage cervical
cancer samples. Chromosome 6 is frequently affected in cervical cancer [30,31]. Loss
of heterozygosity (LOH) in 6q27 has been reported in up to 39% patients with invasive
squamous cell carcinomas of the cervix [32]. TRIM10, 15, 26, 31 and 40 loss has not been
previously described in cervical cancer and their role in carcinogenesis of the cervix remains
to be defined. Most TRIM family proteins are E3 ubiquitin ligases and have been reported
to be involved in carcinogenesis.

While cross checking our results with TCGA, we found that the virus infection-relation
pathways were significantly enriched with many pathogenic genetic variations, which is
consistent to some extent with the result in TCGA showing that the driver genes of cervical
cancer in the TCGA-CESC dataset were mainly enriched in the KEGG pathway, including
human T-cell leukemia virus 1 infection, human papillomavirus infection, viral carcino-
genesis, human cytomegalovirus infection and PI3K-Akt signaling pathway. GO pathway
in the TCGA is enriched in cellular response to abiotic stimulus, negative regulation of
cell differentiation, positive regulation of cell death and negative regulation of protein
modification process, whereas our GO term enrichment analysis showed that the pathway
was significantly enriched in cell cycle regulation, cellular response and metabolic process.
These differences are highlighted in the paper.

By comparing with the ONCOKB database, the role of PIK3CA in cervical cancer
was further highlighted, especially for E545K and E542K. Furthermore, this study also
identified oncogenic somatic mutations in BRCA1, CHD1, KRAS and FBXW7, and likely
oncogenic somatic mutations in EP300, HLA-A, KMT2D, PTEN and TP53, among others.
In addition, we observed fifteen likely oncogenic germline mutations in thirteen genes
recorded in the ONCOKB database. Notably, seven patients in the present study carried
the probable oncogenic germline mutation in HLA-B, a well-known cervical cancer suscep-
tibility gene [8,16]. Moreover, we also used the ONCOKB database to identify available
therapeutic targets and found that eight genes can be targeted by fulvestrant plus alpelisib,
olaparib, talazoparib, rucaparib and others, highlighting the potential clinical significance
of therapeutic agents targeting these mutated genes.

In this article, we validated the presence of many specific pathogenic mutations in
Chinese cervical cancer patients. There are several limitations in the current study. We
did not uncover new molecular targets for cervical cancer in the Chinese cervical cancer
population, possible due to the number of the samples and the limitation of the clinical
samples from a single center. However, we performed a comprehensive analysis and
presented more details of our findings, which have been partially confirmed by some other
studies. We did not investigate the relationship between HPV integration and cervical
cancer due to the lack of HPV status in the patients. We will include this information in
future studies. We did not investigate the association of PIK3CA mutations and survival
outcomes of cervical cancer patients in our cohort. As of December 2020, except for four
patients lost to follow-up, only two patients had lymph metastasis or died (one each), and
the remaining patients were progression-free. In the future, we will further expand the
study and continue to follow patients to evaluate the significance of these variations in
patient outcomes.
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5. Conclusions

Overall, we conducted a gene-panel sequencing analysis of 32 paired cervical cancer
samples. Important gene variations and pathways were identified to provide a theoretical
basis for potential drug target validation and further elucidation of the molecular mecha-
nisms of cervical cancer. Nevertheless, additional relevant studies are needed to further
evaluate their prognostic significance in cervical cancer.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/genes13020287/s1, Figure S1: Bubble chart to show the significantly
enriched KEGG pathways of the hub genes, Table S1: Detailed clinical characteristics of the patients in
this study, Table S2. Probable oncogenic somatic variations identified in the study and labeled in the
ONCOGENIC database, Table S3: Demographic and baseline characteristics of the study population
stratified by FIGO stage.
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