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Abstract: A 3D porous graphene structure was directly induced by CO2 laser from the surface of
Kapton tape (carbon source) supported by polyethylene terephthalate (PET) laminating film. A highly
flexible laser-induced porous graphene (LI-PGr) electrode was then fabricated via a facile one-step
method without reagent and solvent in a procedure that required no stencil mask. The method makes
pattern design easy, and production cost-effective and scalable. We investigated the performance
of the LI-PGr electrode for the detection of methamphetamine (MA) on household surfaces and in
biological fluids. The material properties and morphology of LI-PGr were analysed by scanning
electron microscopy (SEM), energy dispersive x-ray (EDX) and Raman spectroscopy. The LI-PGr
electrode was used as the detector in a portable electrochemical sensor, which exhibited a linear
range from 1.00 to 30.0 µg mL−1 and a detection limit of 0.31 µg mL−1. Reproducibility was good
(relative standard deviation of 2.50% at 10.0 µg mL−1; n = 10) and anti-interference was excellent.
The sensor showed good precision and successfully determined MA on household surfaces and in
saliva samples.

Keywords: laser-induced porous graphene (LI-PGr); portable methamphetamine sensor; polyimide
(PI); household surfaces; saliva sample

1. Introduction

Illegal drug use remains a global problem that threatens social stability, human health,
and family harmony. The situation has worsened in recent years. Data released in the latest
World Drug Report 2021 shows that over 275 million individuals used drugs worldwide
over the past year, which is a 22 percent increase from 2010 [1]. Therefore, the development
of rapid, sensitive, selective and cost-effective techniques for the in-situ identification of
illicit drugs is necessary. One of the illegal drugs that most concerns the authorities is
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methamphetamine (MA), which is a highly addictive stimulant that profoundly affects the
central nervous system [2]. MA can be produced on a small scale in any closed apartment for
domestic use or on a bigger scale in clandestine laboratories with sophisticated production
equipment [3]. The simple straightforward procedure of “cooking” MA has resulted in the
establishment of clandestine laboratories in a number of locations and systems [4–6]. The
identification of MA in biological and street samples is critical for organizations such as the
Forensic Science Institute and the Office of Narcotics Control [7]. According to the Ministry
of Public Health in Thailand, the lowest detectable concentration for the current MA test
kit is 1 µg mL−1.

In laboratories, MA analysis has involved techniques such as capillary electrophoresis,
liquid chromatography-mass spectrometry (LC-MS), and gas chromatography-mass spec-
trometry (GC-MS) [8–10]. Despite the sensitivity and selectivity of these techniques, they
may not be suitable for individual or on-site application due to the size and weight of the
equipment, the need for skilled operators, and the high cost. In this context, electrochemical
methods have great potential to meet this demand. Electrochemical systems can offer
low-cost high performance and ease of use when coupled with handheld devices and
mobile phone technology [11–13].

The development of electrochemical sensors has been promoted by the extensive
use of carbonaceous nanostructured materials [14–20]. Graphene is known for its high
surface area, rapid electron mobility, excellent conductivity, and mechanical stability [21–25].
Therefore, several methods of producing graphene with unique structures have evolved,
including thermal decomposition [26,27], mechanical exfoliation [28,29], and the chemical
vapor deposition and chemical/thermal reduction of graphite oxide [30–32]. Although the
graphene products from these methods have perfectly suitable properties, the complicated
procedures require a lot of chemicals, reagents, and time.

In 2014, Lin and co-workers reported a new, one-step approach that produced a
graphene product known as laser-induced graphene (LIG). Using infrared (IR) laser irradi-
ation technology, a polyimide (PI) substrate was modified into a porous graphene structure
with a large specific surface area and excellent electrical conductivity [33]. LIG is created by
photothermal reactions in which the sp3-carbon atoms on PI are converted into sp2-carbon
atoms by IR laser irradiation. The energy from the laser irradiation creates lattice vibrations
that cause high localized temperatures. The C-O, C=O, and N-C bonds in polyimide can be
broken, recombined, and released as gases to produce a porous graphene nanostructure
with pentagonal, heptagonal, and hexagonal lattice structures [33,34]. In addition, this
fabrication technique has attracted considerable attention since it can produce graphitic
structures from a variety of precursors without the usual high cost, flexible patterns, and
chemicals [35–37]. Therefore, laser irradiation technology is an alternative approach to the
production of 3D porous graphene electrodes for electrochemical sensors.

In this study, we present a simple, fast, inexpensive, and re-agentless strategy for the
fabrication of a flexible, laser-induced porous graphene electrode (LI-PGr) using CO2 laser
scribing on a PI precursor of Kapton tape reinforced with a thermal laminating PET film
substrate. The optimized fabrication parameters of LI-PGr included laser speed and power,
and the flexibility of the LI-PGr was tested. Three-dimensional printing technology was
used to manufacture a portable electrochemical device that was integrated with a mobile
phone application for convenient analysis in forensic investigation. The LI-PGr coupled
with the developed portable electrochemical sensor was applied to investigate MA in saliva
samples, as well as on nearby surfaces by means of surface recovery testing.

2. Materials and Methods
2.1. Chemicals and Apparatus

Acetic acid (CH3COOH), boric acid (H3BO3) and phosphoric acid (H3PO4) were pur-
chased from Sigma-Aldrich (St. Louis, MI, USA). Sodium hydroxide was obtained from
Merck (Darmstadt, Germany). Britton–Robinson (BR) buffer at pH 8.0 to 12.0 was prepared
following a previously reported method [38]. All aqueous solutions were prepared with
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ultrapure water with a resistivity of 18 MΩ cm (BarnsteadTM EasyPureTM II water purifica-
tion system, Thermo Fischer ScientificTM, Waltham, MA, USA). Ag/AgCl ink (C2090225P7)
was from Gwent Electronic Materials Co., Ltd. (Torfaen, UK). Laser patterning was car-
ried out with a 50 W CO2 laser tube (XINGRUI (XR) laser, China). The Kapton tape (PI
precursor, width 30 mm) and PET laminating film were purchased from local stores in
Hat Yai, Thailand.

Surface morphologies were examined by scanning electron microscopy (SEM) (Quanta
400, FEI, Hillsboro, OR, USA) equipped with an Energy-Dispersive X-ray Spectroscopy
(EDX) detector. EDX measurements (line spectra) were recorded using an operating voltage
of 20 kV. Raman spectroscopy (Raman touch, Nanoproton, Japan) was performed using
an excitation wavelength of 532.06 nm, a laser current of 100%, an excitation power of
0.44 mW, an excitation power density of 1.2 × 104 W/cm2, an ND Filter of 0.13% (100/255),
a wavenumber range from 0.00 to 4000.00 cm−1, a grating of 1200 gr/mm, and a slit width
of 50 um. The signal was detected using a CCD detector. All of the experiments were
carried out at ambient temperature (~25 ◦C).

2.2. Preparation of Laser-Induced Porous Graphene (LI-PGr) Electrode

A three-electrode system was designed with a working electrode (WE) of 3 mm in
diameter, a counter electrode (CE), and a reference electrode (RE). The pattern was drawn
with the aid of computer drawing software. To fabricate the electrode, Kapton tape was
attached to thermal PET laminating film, and cleaned with ethanol to remove surface
impurities. The electrode pattern was directly engraved in the Kapton tape with a CO2
laser operating at a power of 2.5 to 3.5% at a scan rate of 145–170 mm/sec. The RE was
fabricated by painting Ag/AgCl ink onto the electrode with a paintbrush. The electrode
was then dried for 30 min at 60 ◦C and, finally, individual LI-PGr electrodes were cut out
with scissors. The procedure is illustrated in Figure 1.
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Figure 1. Schematic representation of the laser-induced porous graphene electrode fabrication.

2.3. Electrochemical Measurement and Characterization

All electrochemical experiments in this work used 30 µL sample solutions dropped
onto the detection zone of the LI-PGr electrode. Electrochemical characterization, optimiza-
tion, and analytical performance studies were enabled by a portable potentiostat (Emstat
Pico, PalmSens, Houten, Netherlands) running the PSTrace program version 5.6. The
electrochemical condition of cyclic voltammetric (CV) measurement with the fabricated
electrode was optimized in BR buffer at pH 10.0, scanning the potential between +0.20 and
+1.10 V at a rate of 50 mV s−1. Electrochemical impedance spectroscopy (EIS) parameters
were set as follows: frequency ranged from 5.0 × 104 Hz to 5.0 × 10−2 Hz; frequency
number, 50; Eac, +0.01 V; Edc, +0.25 V. The parameters for differential pulse voltammetric
(DPV) measurement were as follows: E pulse +0.25 V; t pulse 250 ms; E step +0.020 V with
potential scanning between +0.20 V and +0.80 V at a rate of 40 mVs−1. Real samples were
analysed using the developed portable methamphetamine sensor shown in Figure 2. The
device consists of three major parts. There is the body of the device, which was manu-
factured by 3D printing. The body houses an Emstat Pico Module potentiostat, an SPE
connector, and a USB-C connector. There is the sensing component, which is the LI-PGr
electrode that connects to the device via the SPE connector. Lastly, there is the drug sensor
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application installed on the Android mobile phone, which connects to the device via a type
C USB port. More details of the portable device are described in Supplementary Materials
and Figure S1.
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2.4. Sample Analysis
2.4.1. Surface Recovery Experiment

The sample household materials were chosen from materials that were present during
investigations of suspected MA cooking. They included glass, stainless steel, and plastic.
MA samples were deposited by spraying 100 µL of a MA standard solution onto a 100 cm2

area outlined on the surface of the sample material. The concentrations of the solutions
were 0.0, 50.0, and 100.0 µg mL−1, and when dried, the deposited traces of MA were of
0.0, 5.0, and 10.0 µg. Samples were collected by firmly wiping the area with filter paper
saturated with methanol, a procedure adapted from Abdullah and Miskelly [39]. The
surface wipe started in one corner of the square and followed a clockwise direction, then
finished in the middle of the square, as shown in Figure S2. The filter was folded once
more and the procedure was repeated, starting from another corner in an anticlockwise
direction. The procedure was repeated 3 times. Once the area had been wiped, the filter
paper containing the sample was placed in a 15 mL centrifuge tube. MA was extracted by
sonication for 10 min in 5 mL of BR buffer added to the tube at pH 10.0. Finally, the filter
paper was removed and 30 µL of extracted solution were dropped on the detection zone of
the LI-PGr electrode for quantitative analysis.

2.4.2. Saliva Sample

Saliva samples were collected from healthy individuals. Standard solutions of MA at
0.0, 5.0, 10.0, 15.0, 20.0, and 25.0 µg mL−1 were spiked into 1.0 mL sample aliquots.

3. Results
3.1. Optimization of LI-PGr Electrode Fabrication

The laser power and speed used to fabricate the LI-PGr electrode were independently
varied from 2.5 to 3.5% and from 145 to 170 mm s−1, respectively. The optimal parameters
were those that produced the electrode that provided the highest peak current response
of ferric/ferrocyanide ([Fe(CN)6]3−/4−) (5.0 mM) from CV measurement. The results
indicated that the electrode that provided the highest peak current was produced using a
laser power of 3.5% (1.75 W) and a laser speed of 160 mm s−1 (Figure 3A). Therefore, these
conditions were chosen as the fabrication conditions of the LI-PGr electrode.
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3.2. Electrochemical Characterization, Flexibility, and Stability Test of LI-PGr Electrode

The electrochemical properties of the LI-PGr electrode were compared to those of a
commercial SPCE. The electrodes were applied to measure 5.0 mM [Fe(CN)6]3−/4− using
CV and EIS. The LI-PGr electrode produced a higher redox peak current and a smaller
∆E (Ep,a-Ep,c) of 120 mV as compared to the commercial SPCE (Figure 3B). The porous
graphene fabricated by laser scribing had a larger surface area and excellent electrical
conductivity compared to the flat commercial SPCE.

The EIS spectra of the LI-PGr electrode and commercial SPCE were produced in
[Fe(CN)6]3−/4− (5.0 mM). Nyquist diagrams (Figure 3C) displayed a typical semi-circular
profile that indicated the occurrence of a charge-transfer-resistance-limiting process at
high frequencies. The Nyquist plot data were then fitted to a Randles circuit (Figure 3C
(inset)). The obtained charge-transfer resistance (Rct) values of the SPCE and LI-PGr
electrode were found to be 260 ± 2 Ω and 4.7 ± 0.2 Ω, respectively. The smaller Rct of
the LI-PGr demonstrated a higher electrical conductivity than the commercial SPCE. The
charge-transfer rate constant (Ks) values for both electrodes were calculated to determine
the transfer rate of electrons between the electrode surface and target analyte. The Ks value
can be estimated from the equation [40] Ks = RT/n2F2RctC’, where Ks, Rct, n, F, T, R, and
C’, respectively, are the charge-transfer rate constant, the charge-transfer resistance, the
number of electrons that are transferred, Faraday’s constant, the absolute temperature, the
gas constant, and the concentration of the redox probe. The Ks values of the commercial
SPCE and LI-PGr electrode obtained from the above equation were 2.04 × 10−7 and
1.13 × 10−5 m s−1, respectively. The obtained Ks values suggest that the porous structure
of graphene induced by CO2 laser scribing could enhance electron transfer, which was
55.4 times higher between the target analyte and the LI-PGr electrode than between the
target analyte and the commercial SPCE.

The LI-PGr electrode flexibility was tested by bending the electrodes at different angles
for 1 min (Figure 3D–F) and comparing the electrochemical responses obtained by CV in
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[Fe(CN)6]3−/4− (5.0 mM) before and after bending. The electrochemical responses of the
LI-PGr electrode remained almost unchanged after bending at ~45◦ and ~90◦ (Figure 3G).
These results indicate the excellent flexibility of the LI-PGr electrode platform.

The stability of the LI-PGr electrode was investigated by testing the lifetime of the elec-
trode performance. Seven LI-PGr electrodes were constructed and stored in a locked plastic
box filled with N2 gas and stored in a desiccator. The performance of the LI-PGr electrode
was investigated after 2, 4, 6, 8, 10, 12, and 14 weeks by measuring [Fe(CN)6]3−/4− (5.0 mM)
using CV (Figure S3). It was found that, after 10 weeks, the LI-PGr electrode produced
current responses of less than 80% of the initial response. The fabricated LI-PGr electrode
could, therefore, be stored for up to 8 weeks without significant loss of performance.

3.3. Physical Characterizations

The surface morphology of the LI-PGr electrode before and after laser scribing was
recorded by SEM. The SEM image of Kapton tape before laser scribing (Figure 4A) displays
a smooth surface. The SEM top-view shows a scribed region on the Kapton tape (Figure 4B).
The 3D porous graphene structure was composed of interconnected fibrous strands with
an average pore size of approximately 3.8 ± 1.5 µm (Figure 4C). The cross-sectional image
(Figure 4D) is of LI-PGr induced by the CO2 laser at the optimal power and speed. A
3D porous graphene layer of around 61 ± 3 µm thickness was revealed. These porous
structures enhanced the penetration of electrolytes to the active-surface sites of the LI-PGr
electrode. The component elements of the LI-PGr were evaluated by EDX analysis. The
EDX spectrum of the LI-PGr electrode (Figure 4E) revealed a composition of about 98.8%
carbon and 1.2% oxygen.
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The formation of graphene after the laser-inducing process was substantiated by
Raman spectroscopy. The Raman spectrum of the LI-PGr electrode (Figure 4F) displays
three notable peaks, including the D band, the G band, and a 2D band at approximately
1349, 1582, and 2690 cm−1, respectively. The G band was linked to vibrations in the plane
of carbon bonds with sp2 hybridization. In contrast, the D and 2D bands demonstrate the
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primary in-plane and the second order in-plane vibrations, respectively. Additionally, the
ratio of intensities between the D- and G-peaks (ID/IG) was used to evaluate the correlation
of the degree of disorder of the carbon structure. The ID/IG ratio of the fabricated LI-PGr
electrode was 1.03, confirming the formation of graphene on the Kapton tape after laser
scribing [41,42].

3.4. Electrochemical Behavior of MA on LI-PGr Electrode

The electrochemical oxidation of MA at the commercial SPCE and LI-PGr electrode
was evaluated using CV at a scan rate of 50 mV s−1 in BR buffer (pH 10.0) with and without
10.0 µg mL−1 MA. Without MA, only the background current was observed for both the LI-
PGr (red dot line) and the commercial SPCE (black dot line) electrodes (Figure 5A). Notably,
the LI-PGr electrode showed a background current smaller than that of the commercial
SPCE, implying that the LI-PGr electrode possesses excellent conductivity but produces a
low capacitive current, which is more suitable for analytical purposes. The results obtained
in the presence of MA revealed the irreversible behavior of the analyte at both electrodes,
which produced only oxidation peaks. The anodic peak current at the LI-PGr was about
221% that of the commercial SPCE. These results show that the oxidation of MA at the
LI-PGr electrode was excellent, which can be attributed to the high electroactive surface
area and conductivity of the LI-PGr electrode.
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Figure 5. (A) CVs were obtained from an SPCE (black line) and the LI-PGr (red line) in BR buffer of
pH 10.00 with (solid line) and without (dot line) 10 µg mL−1 MA. (B) CV responses at different scan
rates (20–200 mV s−1) were produced at the LI-PGr electrode in the presence of 10.0 µg mL−1 MA.
(C) The plot is of the square root of the scan rate (ν1/2) vs. the peak current (I). (D) The plot of log ν

vs. log I. (E) i–t curves of LI-PGr electrode with and without 10.0 µg mL−1 MA at 0.70 V. (F) The plot
of I vs. t−1/2 and (G) the plot of Icat/IL vs. t1/2.

To better understand the electron transport mechanism that occurs at the LI-PGr elec-
trode surface, the influence of the scan rate on the oxidation peak of MA was investigated
using CV. For 10.0 µg mL−1 of MA, the anodic peak current increased continuously with
the scan rate from 20 to 200 mV s−1 (Figure 5B). As regards the results, increasing the
scan rate shifted the oxidation peak potential to a more positive potential, which implied
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the influence of kinetics limitation in the electrochemical reaction. Figure 5C shows the
linear plot of the peak current (Ip) against the square root of the scan rate (ν1/2) following
the linear regression equation of Ip = (1.80 ± 0.08) ν1/2 + (4.1 ± 0.8) with a correlation
coefficient equal to 0.991. The plot indicated that MA oxidation at the LI-PGr electrode
surface was a diffusion-controlled process. In addition, the relationship of log peak current
versus log scan rate (log Ip vs. log ν ) was used to typify the kinetic behavior of the reaction.
The plot in Figure 5D exhibits the linear relationship of log Ip vs. log ν, in which the linear
equation was log Ip = (0.470 ± 0.009) log ν − (0.42 ± 0.02); r = 0.998. The obtained slope
value of 0.470 ± 0.009 was close to the theoretical value of 0.5, which confirmed the reaction
as a diffusion-controlled process.

The theoretical assumption of the diffusion-controlled behavior of MA at the LI-
PGr electrode surface was tested by investigating the anodic peak current response after
increasing the pre-concentration time of MA from 0 to 90 s. The anodic current responses of
MA did not change significantly when the preconcentration time was increased (Figure S4).
This result confirmed that the oxidation reaction of MA at the LI-PGr electrode surface was
completely controlled by diffusion, and thus, there was no need to apply a preconcentration
step to increase the signal in the determination of MA.

The MA diffusion coefficient (D) and catalytic rate constant (kcat) of the LI-PGr
electrode toward MA oxidation were estimated using a chronoamperometric method
by measuring 10.0 µg mL−1 MA in BR buffer at pH 10.0 at a potential of 0.70 V
(Figure 5E). The D value of MA at the LI-PGr electrode was estimated by employ-
ing the slope value of the I vs. t−1/2 plot (5.8 µA s1/2) (Figure 5F) with the Cottrell
equation, I = nFAD1/2C/π1/2t1/2 [43], where n, A, and C, respectively, are the electron
number, the real surface area, and the concentration of the analyte. The D value of MA
at the LI-PGr electrode was 1.21 × 10−5 cm2 s−1. The kcat value of the LI-PGR toward
MA oxidation was estimated from the slope of the ICat/IL vs. t1/2 plot (0.22 s−1/2)
(Figure 5G) using the Galus equation, ICat/IL = π 1/2(kcatCbt)1/2 [44], where ICat, IL, C,
and t, respectively, are the current responses of MA and the blank, the concentration of
MA, and time. The kcat value was calculated to be 2.26 × 105 mol−1 L s−1.

3.5. Effect of pH

The pH of the BR buffer was an essential factor that affected the electrochemical
response of MA on the LI-PGr electrode. The effect was evaluated using DPV in 0.04 M
BR buffer at pH levels ranging from 8.0 to 12.0 (Figure S5). The peak current gradually
increased with increments of pH from 8.0 to 10.0 and decreased with increments from 10.0
to 12.0. Since MA oxidation is related to the donation of lone-pair electrons at the secondary
amino group of MA, this phenomenon can be described using the pKa value of MA, which
is 9.87. The protonation of MA can occur at pH levels of between 8.0 and 9.0, in which
case the MA molecule is oxidized with difficulty. In contrast, at pH levels above 10.0, the
deprotonation of the secondary amino group of the MA molecule can occur. Therefore, BR
buffer at pH 10.0 was selected for MA detection.

3.6. MA Detection using the LI-PGr Electrode

The analytical performance of the LI-PGr electrode for the MA detection was investi-
gated using the DPV technique due to its low charging contribution to background current
and high current response. The anodic peak current of MA at concentrations between 1.00
and 100 µg mL−1 as shown in Figure 6A.
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Figure 6. (A) DPV responses of MA (1.00 to 100 µg mL−1) at the LI-PGr electrode coupled with the
developed portable device. (B) DPV responses of MA (1.00 to 30 µg mL−1) at the LI-PGr electrode;
inset—amplified anodic peak current of MA at a concentration of 1.00 µg mL−1. (C) Calibration
curve of current signal of MA versus its concentration (1.00–100 µg mL−1). (D) The relative current
responses from ten LI-PGr electrode preparations. (E) Anti-interference ability of the developed
sensor. (F) DPV responses of MA (10.0 µg mL−1), pseudoephedrine (10.0 µg mL−1), alprazolam
(10.0 µg mL−1), clonazepam (10.0 µg mL−1), diazepam (10.0 µg mL−1), and a mixed solution of MA
(10.0 µg mL−1) and clonazepam (10.0 µg mL−1).

In addition, Figure 6B shows the amplified anodic peak current of MA at concentra-
tions of between 1.00 and 30.0 µg mL−1 and the inset of Figure 6B shows the amplified
anodic peak current of MA at a concentration of 1.00 µg mL−1. The maximum anodic
peak of MA occurred at +0.40 V, and linearly increased with the MA concentration. The
LI-PGr electrode-based sensor presented two linear ranges of MA detection: from 1.00 to
30.0 µg mL−1 and from 30.0 to 100 µg mL−1 (Figure 6C). The DPV response in this study
exhibited a shift in response potential due to the material-dependent rate of current transfer
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from the bulk solution to the electrode, which is termed “mass transport”. Diffusion,
where molecules in a high-concentration region randomly move to a low-concentration
region, occurs satisfactorily when the analyte is at a low concentration. However, at high
concentrations, the diffusion process is disrupted. In this case, mass transport is conse-
quently affected. Hence, to compensate and re-establish mass transport, the increased
potential is applied by the electrochemical system, subsequently leading to a shift in the
peak potential [45,46]. The limit of detection (LOD) was 0.31 µg mL−1 (LOD = 3*S.D. of
the intercept/slope of the calibration curve). The analytical performances obtained with
our portable MA sensor were compared with the performances of other electrochemical
sensors for the detection of MA (Table S1). The proposed sensor did not return the lowest
LOD or widest linear range when compared with other electrochemical sensors. However,
this proposed sensor exhibited ease of preparation and could prepare three electrodes on
one single piece using a one-step laser irradiation system. Moreover, only 30 µL of sample
solution was used for electrochemical measurement and this sensor provided a convenient
method of detecting MA with a portable device that produced highly accurate results from
a rapid, simple, and stable electrode fabrication process. In addition, the proposed sensor
developed in this study had sufficient sensitivity to detect the concentration of metham-
phetamine according to the requirements of the Ministry of Public Health in Thailand; the
lowest detectable concentration for the current methamphetamine test kit is 1 µg mL−1.

3.7. Reproducibility and Interference Study

The reproducibility of the LI-PGr electrode was assessed by evaluating the current
signal from ten electrodes prepared in the same condition. Figure 6D shows the relative
current response of 10.0 µg mL−1 MA from ten electrode repetitions. The RSD was 2.50%,
which is acceptable according to the Association of Analytical Communities (AOAC)
guidelines [47]. This result indicates the good reproducibility of the LI-PGr electrode
preparation and MA detection.

The effects of interferences on MA detection with the developed LI-PGr electrode
were tested by measuring 10.0 µg mL−1 MA in the presence of the common interferences,
glucose, sucrose, ascorbic acid, urea, uric acid, K+, Mg2+, Na+, Cl−, SO4

2−, and CO3
2−.

No interference was observed in the presence of 1000-fold concentrations of glucose and
sucrose, and 100-fold concentrations of urea, uric acid, ascorbic acid, Na+, Mg2+, K+,
Cl−, SO4

2−, and CO3
2− (Figure 6E). Furthermore, the selectivity of the LI-PGr electrode

was also tested by comparing it to some other compounds such as pseudoephedrine,
alprazolam, clonazepam, and diazepam. The results shown in Figure 6F demonstrate that
pseudoephedrine, alprazolam, clonazepam, and diazepam have no significant current
signal (despite pseudoephedrine having high structural similarity to MA) using the LI-PGr
sensor, with the exception of clonazepam. However, in a mixture of MA and clonazepam,
with the same concentration of both, the obtained current signal for MA and clonazepam
could clearly separate the two with no significant current signal and potential change. As a
result of this finding, the LI-PGr electrode appears to be highly selective for MA.

3.8. Application with Real Samples

The applicability of the proposed LI-PGr electrode and a developed portable MA
sensor device was evaluated by detecting MA in two types of samples: household surfaces
and biological fluids (i.e., saliva). In this study, trace amounts of MA were recovered from
common household surfaces including glass, stainless steel, and plastic. MA was deposited
at 0, 5, and 10 µg/100 cm2 onto selected surfaces and measured with the developed
portable device coupled with the LI-PGr electrode. Figure S6 shows the DPV response of
MA on each surface sample. The obtained percent recoveries were between 84.1 ± 0.9 and
98.4 ± 0.3 (n = 3) (Table 1). In addition, the measurement of MA in the saliva sample was
demonstrated by determining MA standards spiked at 5, 10, 15, 20, and 25 µg mL−1. The
percent recoveries obtained ranged from 84 ± 4 to 104 ± 8 (n = 3) (Table 2). These good
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recovery results indicated that the new, simple electrochemical sensor platform proposed
here for MA detection could successfully be applied in forensic investigation.

Table 1. Recoveries of MA on household surfaces including glass, stainless steel, and plastic from
surface areas of 100 cm2.

Common Household
Surface

Spiked
(µg/100 cm3)

Found (µg mL−1)
(n = 3)

% Recovery
(n = 3)

Glass
0 N.D. -
5 5.6 ± 1.2 98.4 ± 0.3
10 9.0 ± 0.5 90 ± 5

Stainless steel
0 N.D. -
5 4.3 ± 0.3 86 ± 6
10 8.41 ± 0.09 84.1 ± 0.9

Plastic
0 N.D. -
5 4.4 ± 0.2 87 ± 3
10 8.6 ± 0.3 86 ± 3

N.D.: not detected.

Table 2. Determination of MA concentrations in saliva sample using the proposed LI-PGr electrode
coupled with a developed portable device with the recovery values of MA from saliva sample.

Saliva
Sample

Spiked
(µg mL−1)

Found (µg mL−1)
(n = 3)

% Recovery
(n = 3)

S1 0 N.D. -
S2 5 4.2 ± 0.2 84 ± 4
S3 10 10.4 ± 0.5 104 ± 5
S4 15 16 ± 2 104 ± 8
S5 20 19.9 ± 0.9 99 ± 4
S6 25 24.3 ± 0.7 97 ± 3

N.D.: not detected.

4. Conclusions

In summary, we created a new, simple, and extremely flexible laser-induced porous
graphene electrode as well as a portable electrochemical device for methamphetamine
screening and quantification. CO2 laser scribing on a polyimide precursor of Kapton tape,
on a substrate of polyethylene terephthalate thermal laminating film, was used to create the
laser-induced porous graphene electrode in a quick procedure. The housing of a portable
electrochemical drug sensor was made using a 3D printing system, and it was connected to
a mobile phone running an interface application. The proposed electrode was sensitive and
specific to methamphetamine and had a highly porous graphene structure with excellent
conductivity. Furthermore, the sensor was used to detect methamphetamine on household
surfaces as well as in saliva samples. It was possible to conduct recovery on these surfaces
and samples in a satisfactory manner. Finally, we believe that the developed portable sensor
device, in combination with the fabricated porous graphene electrode, has great potential
in forensic investigation and other fields.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano12010073/s1, Figure S1: A portable electrochemical device and fully functional EmStat
Pico USB connection with a USB to UART convertor to interface with a type-C USB connection
and an SPE connector, Figure S2: Illustration of wiping pattern on a sampling area of 100 cm2

during the surface recovery experiment, Figure S3: CVs and relative current response of 5.0 mM
ferric/ferrocyanide on the LI-PGr electrode at different storage times (2, 4, 6, 8, 10, 12, and 14 weeks),
Figure S4: The effect of different pre-concentration times (0, 30, 60, and 90 s) on the peak current of
10.0 µg mL−1 MA at the LI-PGr electrode, Figure S5: The effect of pH buffer on the peak current of
10.0 µg mL−1 MA at the LI-PGr electrode, Figure S6: DPV responses of MA on the glass surface at the
concentration 0.0 (A), 5.0 (B) and 10.0 µg mL−1 (C); on the stainless-steel surface at the concentration
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0.0 (D), 5.0 (E) and 10.0 µg mL−1 (F); and on the plastic surface at the concentration 0.0 (G), 5.0 (H)
and 10.0 µg mL−1 (I). Table S1: Comparison of analytical performances of the proposed MA sensor
with some previously reported MA sensors.
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