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Introduction
In recent years the development of scRNA-seq technology has enabled a more thor-
ough analysis of how transcriptome expression varies among different cells [1–9] 
responding to various physiological conditions and external environmental changes 
[10–13]. Generally, RNA-seq measures the transcription of specific genes by performing 
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reverse-transcription on RNA molecules to transform them into a library of comple-
mentary DNA (cDNA) fragments. The cDNA fragments are then sequenced using high-
throughput sequencing technology and aligned to a reference genome or transcriptome 
used to create an expression profile (counting the number of recorded reads) of the genes 
[14]. Ideally, the number of recorded reads should correspond to the number of mRNA 
molecules present in the cell; however, the amount of cDNA amplification, the sequenc-
ing depth, and the efficiency of the capture and reverse-transcription steps greatly influ-
ence that correspondence. Differences in these technical factors across the sequenced 
cells can and typically do, therefore, partially obscure the relationship between the num-
ber of reads and the expressed gene’s actual molecular counts.

As a result, the major challenge with a dataset produced by scRNA-seq is how to deal 
with a high degree of noise [15–18]. Some noise is due to the inefficiency of mRNA 
capture and its consequence of using amplification techniques relying on only a small 
amount of available RNA in a single cell. Furthermore, amplification techniques are 
prone to distortion and contamination [19–21]. More specifically, reverse transcrip-
tion and cDNA amplification steps miss some mRNAs and, as a result, there are missing 
transcripts in the subsequent sequencing step. Current scRNA-Seq technologies cap-
ture a mere 10-40% of transcripts in a given cell [22]. The scRNA-seq capture missing 
an expressed gene is known as a ’dropout’ event. Some literature distinguishes true zero 
expression events from dropouts by assuming that non-expressed genes would be com-
monly observed in other cells from a given population with moderate or high expression 
[23], but this often is an oversimplification, and tools built upon it may introduce bias. 
This bias and others, which include modifying non-zero values, have introduced a gen-
eral reluctance to use imputation tools to analyze the scRNA-seq data [24]. However, 
dropout events cause lower-than-expected performance when employing traditional 
data mining algorithms since most of these algorithms do not work well with missing 
values and sparse (zero-inflated) data. Imputing these dropout values without introduc-
ing new bias becomes essential in scRNA-seq data analysis.

Many current approaches have been proposed to address the issue of dropout 
events. Zero-Inflated Factor Analysis (ZIFA) adopts a factor analysis (FA) approach 
for dimensionality reduction to work with a zero-inflated model. Like FA, ZIFA’s 
data generation process assumes that cell sub-types initially exist as points in a latent 
(unobserved) low-dimensional space. Next, these points are projected as points in a 
latent high-dimensional space corresponding to the gene expression matrix using lin-
ear transformation and added Gaussian-distributed noise; this allows each measure-
ment to have some probability of being zero using the dropout model that controls 
the influence of the latent distribution expression values. [25]. Markov Affinity-based 
Graph Imputation of Cells (MAGIC) [22] assumes that the denoised data’s underlying 
structure is a manifold (meaning only locally the distance is Euclidean) and imputes 
the missing expression values by sharing information across similar cells based on 
heat diffusion. This method’s essential step is to create a Markov transition matrix 
by normalizing single cells’ similarity matrix from a large sample size (often thou-
sands of cells). In the imputation of a single cell, the other cells’ weights come from 
the transition matrix. The developers suggest that MAGIC can recover gene-gene 
interactions well on several datasets [22]; however, this technique modifies values of 
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genes unaffected by dropout events which introduces bias and sometimes fails to pre-
serve the actual zero values [26]. DrImpute [27] identifies similar cells using cluster-
ing. Imputation is performed by averaging the expression values from similar cells. 
This process repeats multiple times, followed by averaging those multiple estimations 
to generate the final imputation. scImpute [26] evaluates which values are caused by 
dropout events in data and performs imputation only on values that are likely to be 
dropouts. First, scImpute learns each gene’s dropout probability in each cell based 
on a mixture model. Next, it imputes the most probable dropout values in a cell by 
gathering information about the same gene from other similar cells only using genes 
predicted to be unaffected by the dropout events. mcImpute [28] is an imputation 
algorithm for scRNA-seq data that models gene expression as a low-rank matrix and 
estimates the dropout values in the process of recovering the full gene expression data 
from sparse single-cell data by iteratively applying soft-thresholding on the singular 
values of scRNA-seq data. The most distinguishing feature of mcImpute is its lack of 
assumptions about gene expression distribution. Deep count autoencoder(DCA) [29] 
builds an auto-encoder to model the distribution of the genes using a zero-inflated 
negative binomial prior. An autoencoder consists of two main parts: an encoder that 
maps the expression data into the compressed model and a decoder that maps the 
compressed model to a reconstruction of the expression data. The compression is 
intended to filter out the noise present in the data, and performs well in practice as 
long as enough data is available. DeepImpute [30] is a neural network (NN) based 
approach that constructs multiple NN models to impute the dropout events using 
divide and conquer through dropout layers and loss functions to learn patterns in the 
data.

This work takes advantage of the effectiveness of consensus clustering as a similarity 
measure and introduces the ccImpute algorithm that utilizes this similarity measure to 
impute the dropout events in the scRNA-seq data effectively. We compute the consensus 
matrix using an approach inspired by the SC3 algorithm [31]. However, rather than using 
three different distance measures, two dimensionality reduction techniques: Principal 
Component Analysis (PCA) [32] and Laplacian eigenvalues [33] found in the original 
algorithm, we utilize weighted Spearman distance measure followed up by PCA dimen-
sionality reduction with data subsets chosen based on relative principal component vari-
ance for larger datasets. Our approach results in substantial speedup and improvement 
of the similarity measure. Next, we let the most similar cells as established by a consen-
sus matrix cast weighted votes to determine whether a given value is a dropout or a true 
zero. This is followed by computing the dropout events’ values as the weighted mean of 
most similar cells using a linear equation solver. We empirically show that our approach 
successfully recovers both linear and non-linear patterns in the data while introducing 
the least bias. We demonstrate that our approach has a polynomial runtime that com-
pares favorably to imputation algorithms with polynomial (DrImpute, DCA, DeepIm-
pute) and exponential runtime (scImpute). The runtime performance of our approach 
is only second to MAGIC (polynomial runtime). Further, recent results from applying 
mini-batch K-means on scRNA-seq [34] and the possibility of using a more efficient cen-
troid selection scheme than random restarts [35] can improve the runtime performance 
making ccImpute even more suitable for big datasets.
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Results
Overview of the ccImpute algorithm

ccImpute relies on a consensus matrix to approximate how likely a given pair of cells 
is to be clustered together and thus considered to be of the same type. Both the gen-
eral technique and success of SC3 inspired our approach in generating a consensus 
matrix. SC3 computes Pearson, Spearman, and Euclidean distance measures between 
cells followed by linear PCA and non-linear Laplacian dimensionality reductions, 
resulting in six data transformations. Each of these is further split into subsets, each 
having a different range of reduced dimensions. Each subset is then clustered using 
the K-means algorithm, and the results of all runs are then aggregated into a consen-
sus matrix. We have experimentally determined (see Additional file 1: supplementary 
material Section 2, and supplementary Tables 1, 2 and 3) that the weighted Spearman 
measure alone yields better imputation results than the combination of unweighted 
Euclidean, Spearman, and Pearson measures. This can be attributed to the fact that 
introduced weights emphasize the genes that are less affected by the dropout events. 
Thus the new measure reduces the impact of closeness based on zero values in poorly 
expressed genes. Finally, we have observed that the use of Laplacian non-linear data 
dimensionality reduction does not improve performance with the new measure. The 
graphical representation of the differences in generating a consensus matrix between 
the two approaches is shown in Fig. 1.

Fig. 1  The approach for computing the consensus matrix. The top portion corresponds to the original SC3 
algorithm, and the bottom corresponds to the modified version used in our approach. The main difference 
is using a single more complex distance function along PCA reduction rather than three separate distance 
functions with two separate dimensionality reduction approaches



Page 5 of 17Malec et al. BMC Bioinformatics          (2022) 23:291 	

Consequently, we lower the number of data transformations (by a factor of six) as the 
quality of the consensus matrix is improved. Once the consensus matrix is computed, 
the values are processed to remove noise and prepared for further matrix operations. 
Dropout vs. true zero values are distinguished by having the cells vote. This is followed 
by computing the values determined to be dropouts as a weighted mean of its neigh-
bors with weights derived from the consensus matrix. The gene expression counts of 
neighbors may change as a result of imputation. We leverage an efficient linear equation 
solver to effectively model the change.

More detailed algorithm elements are outlined in the methods section. In the follow-
ing subsections, we describe the performance characteristics of ccImpute.

ccImpute is effective in improving downstream analysis

We tested how well ccImpute can improve the quality of downstream analysis by measur-
ing the difference in how well dimensionality reduction techniques, such as PCA(linear) 
and t-SNE (non-linear)–both known to be significantly affected by the presence of the 
dropout events–reduce the data while preserving the data characteristics. We compared 
the quality of K-means clustering on the reduced data using the Adjusted Rand Index 
(ARI) against the known labels of the datasets. This allows measuring to what degree 
imputation affects the simplest task of grouping the like cells. Our ten scRNA-seq data-
sets are comprised of five publicly available datasets and five synthetically generated 
datasets. We compared ccImpute with five other state-of-the-art algorithms: MAGIC, 
DrImpute, scImpute, DCA, and DeepImpute. ccImpute’s imputation resulted in the best 
improvement of K-means clustering quality as measured by ARI scores on data reduced 
both by PCA and t-SNE as summarized in Figs. 2 and 3.

ccImpute distorts the data the least

Whether actual or dropout values in scRNA-seq datasets, most of the matrix is 
populated by zeroes. Thus, intuitively only a fraction of zeroes can be reliably rec-
ognized as dropout values and imputed since the estimation of dropout values has 
to happen given the limited remaining data. Given the hesitancy to use imputation 

Fig. 2  The Adjusted Rand Index (ARI) scores of K-means clustering on PCA reduced scRNA datasets vs. 
imputation method. Clustering performance is a strong indicator of improved downstream performance, as 
long as the data is not heavily biased due to imputation. PCA is a linear technique, and this metric aims to 
measure the impact of the imputation on correcting the linear patterns in the data. The range of possible 
values is in the interval [−1, 1] , with a higher value indicating better performance. ccImpute is the best 
performing approach on all datasets. scImpute, DCA, and DeepImpute only work with raw unnormalized 
datasets and cannot impute the Usoskin dataset. Further, scImpute and DrImpute timed out on the larger 
datasets
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tools in the research community due to introduced bias, we evaluate the impact of 
imputation algorithms on changing expression values. As shown in Fig. 4, ccImpute 
separates the clusters most successfully when taking into consideration imputation 
of zero values exclusively and comparing average silhouette widths of clustering 
assignments based on actual labels. As shown in Figs. 2, 5 and 6, ccImpute superior 
improvement in clustering quality and cluster separation is achieved while modify-
ing the least amount of values. This demonstrates that the dropout values alone are 
the principal cause for the degradation of the downstream analysis, and competing 
imputation approaches modify more values with inferior outcomes, which suggests 
artificial bias added to the data.

Fig. 3  The Adjusted Rand Index (ARI) scores of K-means clustering on t-SNE reduced scRNA datasets vs. 
imputation method. Clustering performance is a strong indicative of improved downstream performance, 
as long as the data is not heavily biased as a result of imputation. t-SNE is a non-linear technique, and this 
metric aims to measure impact of the imputation on correcting the non-linear patterns in the data. The 
range of possible values is in interval [−1, 1] , with higher value indicating better performance. ccImpute is 
the best performing approach on all datasets, and the only algorithm that did not hurt the performance of 
t-SNE algorithm on any of the datasets. scImpute, DCA, and DeepImpute only work with raw unnormalized 
datasets and cannot impute the Usoskin dataset. Further, scImpute and DrImpute timed out on the larger 
datasets

Fig. 4  The bar plots show Silhouette widths values across the datasets with clustering assignments 
corresponding to the labels and Euclidean distances between imputed cells data. This metric shows 
if the imputation of the zero values exclusively has improved the separation of the cell data in the 
multidimensional space. The range of possible values is in the interval [−1, 1] , with a higher value indicating 
better performance. ccImpute is the best performing approach overall, with scImpute performing slightly 
better on the Pollen dataset and DCA on some simulated datasets showing varied values where constant 
values are expected due to the characteristics of the simulated data. scImpute, DCA, and DeepImpute 
only work with raw unnormalized datasets and cannot impute the Usoskin dataset. Further, scImpute and 
DrImpute timed out on the larger datasets
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ccImpute is a scalable machine learning method

ccImpute has O(N 3) runtime where N corresponds to a cell sample size. Since most of 
the operations in our approach are linear algebra operations involving matrices, and 
such operations are already optimized in most computing environments due to the 
presence of BLAS and LAPACK libraries, ccImpute runs much faster in practice. As 
seen in Fig. 7 the runtime of ccImpute compares favorably to imputation algorithms 
with polynomial (DrImpute, DCA, DeepImpute) and exponential runtime (scImpute). 
The runtime performance of our approach is only second to MAGIC (polynomial 
runtime). Furthermore, a major bottleneck of our approach is the K-means algorithm 
runs needed for computing the consensus matrix. However, our approach is not tied 
to any specific clustering algorithm, and further optimizations are possible to lower 
the runtime. One of such modifications mentioned earlier is mini-batch K-means 
with a more intelligent cluster selection scheme. Concerning hardware, approaches 
that rely on TensorFlow (DCA, DeepImpute) may take advantage of GPU accelera-
tion and, with proper setup, will considerably exceed the speeds of the parallel CPU 
setup we used in our experiments. Our approach is an excellent candidate for GPU 

Fig. 5  Zero values make up a large portion of the scRNA-seq expression counts. It’s expected that a 
significant portion of these values corresponds to true zero expression or is zero since there is not enough 
information to impute any other value credibly. The bar plots show the proportion of zero count values that 
are replaced by a value of 0.5 or higher due to imputation. Many imputation approaches modify a significant 
fraction of zero values without being correlated with improved downstream analysis performance. In other 
words, these approaches introduce more bias, which negatively impacts the scRNA-seq expression data 
analysis. ccImpute outperforms the competitors in downstream analysis while modifying much fewer values. 
scImpute, DCA, and DeepImpute only work with raw unnormalized datasets and cannot impute the Usoskin 
dataset. Further, scImpute and DrImpute timed out on the larger datasets

Fig. 6  PCA graph PC2 vs. PC1 for the Deng dataset for all the compared imputation algorithms. Among all 
the considered imputation approaches, ccImpute shows the most resemblance to the non-imputed data 
while having the best separation between different groups of cells and modifying the least amount of values
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acceleration and is expected to have a competitive run-time with GPU acceleration 
implementation.

Discussion
Dropout events present a challenge in downstream analysis of the scRNA-seq data. This 
work presents an imputation method based on the existing success of consensus clustering. 
We demonstrate that our method deals with the problems of dropout events in scRNA-seq 
better than any of the state-of-the-art approaches by improving K-means clustering accu-
racy and like cell separation after linear (PCA) and non-linear dimensionality reductions 
(t-SNE), both affected by the presence of dropout events. Our technique allows a formal 
assessment of the degree noise affects clustering assignments. Thus, we can focus on rela-
tionships between cells that are not affected much with the presence of a bit of noise. We 
use this information in the form of a consensus matrix to establish what values are to be 
imputed by employing weighted voting. This is followed by a weighted mean imputation 
of the values determined to be dropout events. We demonstrate experimentally that our 
method not only improves the performance of downstream analysis best, but also does 
with least bias introduced to the count values. We also include an additional set of results in 
the Additional file 1: supplementary material Section 1 and supplementary Figures 1 and 2 
that confirm our findings in light of supervised machine learning.

Methods
Data pre‑processing

Five experimentally obtained (Blakeley, Pollen, Deng, Darmanis, Usoskin) and five syn-
thetically generated scRNA-seq datasets with details summarized in Table  1 were used 

Fig. 7  The plot shows runtimes (s) for the imputation algorithms under consideration. DrImpute and 
scImpute did not scale favorably with data size and timed out at the maximum allotted time of 160 minutes 
on the simulated datasets. MAGIC was the fastest method with polynomial runtime complexity. ccImpute 
was the second fastest on datasets with less than 8000 cells, with DeepImpute taking the second fastest after 
8000 cells. This shows ccImpute has competitive runtime, and with further optimizations such as swapping 
K-means for a faster clustering algorithm, this approach may take the lead in both runtime performance and 
quality of imputation
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to benchmark the performance of our imputation approach. Pollen and Blakeley have the 
highest quality of labeling since their labels depend on either experimental conditions or 
cell lines. Labels for Usoskin and Darmanis were derived computationally with expert feed-
back. Finally, Deng consisted of the same cell type in different developmental stages. For 
the Darmanis dataset we removed the cells that were labeled as hybrids. Any of the genes 
that were not expressed in any cells were removed. The normalized matrix N was computed 
by dividing raw read counts for each cell by a cell’s total read count, then multiplied by a 
scale factor of 1, 000, 000, and finally, the log-transformed matrix T was computed using 
(log2(X + 1) ). The synthetically generated data had four cell populations with uneven dis-
tributions (.3, .2, .35, .15) and only dropout noise added to all cells without any additional 
noise.

Weighted Spearman distance

As the first step, each dataset was reduced to a N × N  weighted Spearman distance matrix 
with weights corresponding to genes’ variances. This reduction began by ranking the gene 
expression vectors, then computing the Pearson correlation coefficient on those vectors. 
The rank of the jth element is:

where aj is the sum of all weights W less than or equal to the ranked outcome βj:

where f() is a function that returns 1 if βi < βj is true, and 0 otherwise. The term bj deals 
with ties. The vector of tied ranks is v = (aj + w

′

1, aj + w
′

1 + w
′

2, . . . , aj +
n
k=1 w

′

k)
T 

with W ′ being a vector containing the weight of tied units. The mean value of the tied 
values vector will depend on the ordering of the weights. To solve this problem, the 
overall mean of all permutations of the weights is calculated using:

rankj = aj + bj

aj =

n
∑

i=1

wi f (βi < βj)

bj =
n+ 1

2
w̄j

Table 1  The scRNA-seq datasets used to benchmark the quality of imputation. k represents the 
number of cell clusters reported in the original study

The datasets generated and/or analysed during the current study are available in the Github repository, https://​github.​com/​
khazum/​ccImp​uteDa​tasets

Dataset # Samples # Features k Cell Origin References

Blakeley 30 16862 3 Human blastocyst samples [43]

Deng 286 18884 10 Stages of mouse pre-implementation 
development

[44]

Pollen 301 23730 11 Human cell lines [5]

Darmanis 420 21516 8 Human cortical samples [45]

Usoskin 622 19532 4 Mouse lumbar [1]

sim-n n 20000 4 Splatter synthetically generated data [46]

https://github.com/khazum/ccImputeDatasets
https://github.com/khazum/ccImputeDatasets
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where wj is the mean weight of all tied units. After ranking vectors X and Y, they are 
plugged into weighted Pearson correlation coefficient formula:

Principal component analysis (PCA)

Principal Component Analysis (PCA) transformation was computed on weighted Sper-
man Distance matrix with the variables shifted to be zero centered and scaled to have 
unit variance. PCA [36] is a statistical data (dimensionality) reduction procedure that 
takes D = {x1, . . . , xn} ∈ ℜ

m as an input and returns ˆD , which is a d-dimensional repre-
sentation of D where d < m . ˆD is found as follows: 

(1)	 Center D (Mean Normalization): 

 where I denotes n × n identity matrix and e = (1, . . . , 1) ∈ ℜ
n.

(2)	 Compute Singular Value Decomposition of ˆD : 

 where σ1 ≥ · · · ≥ σr > 0 are strictly positive singular values of ˆD and u1, . . . ,ur 
and v1, . . . , vr are corresponding left and right singular vectors respectively. r is the 
rank of matrix D.

(3)	 Construct d-dimensional ( d < r ) principal component representation of D (Final 
ˆD ): 

In PCA the data D is transformed to a lower dimensional coordinate system based in 
the co-variance matrix of D . This transformation can be done (i) Linearly or (ii) Non-
linearly. In this work, we refer to linear PCA as PCA. In PCA a set of linearly correlated 
variables is mapped into a new set of linearly uncorrelated variables using an orthogonal 
linear mapping. These new variables, called principal components, are a linear combina-
tion of the original variables. Principal components are orthogonal and decrease in the 
amount variance in the originals they account for. The first component captures most of 
variance, the second less, and so on until all the variance is accounted for. Kernel PCA 
(nonlinear PCA is) non-linearly maps the data using the kernel trick [37, 38].

Geometrically, given m-dimensional data, PCA fits a d-dimensional ellipsoid to the 
data where principal components are axes of the ellipsoid. Small and long axes repre-
sent small and large variances, respectively. The data is reduced by omitting the small 
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axes. PCA performs well when when the data is high dimensional and the variables 
are correlated. Correlation is an indication of redundancy between the variables. 
Additionally, PCA is sensitive to the relative scaling of the original variables.

K‑means clustering algorithm

Clustering [39, 40] a descriptive data analytics method and aims to partition data 
into blocks such that the difference between data in a block is as small as possible. 
K-means (KM) is the most commonly used clustering algorithm despite its simplic-
ity and almost 60-year lifetime [41, 42]. KM clusters in a greedy fashion. Assume 
each data point x is a vector over ℜm . Then KM partitions D ( |D| = n) into a set of 
non-empty blocks X0,X1, . . .Xk such that ∪iXi = D and X ∩ Y = ∅ for all disjoint sets 
X ,Y ∈ D . A distance metric d : D

2
→ ℜ≥0 measures closeness of data, and the most 

commonly used is Euclidean distance ( L2 norm).
The KM algorithm takes as input data D , the number of clusters k, and a distance 

metric d and produces a set of centroids C1,C2, . . . ,Cℓ that effectively partition D . 
After randomly initializing k centroids {C1,C2, . . .Ck} , KM iteratively runs as follows: 

(1)	 Assign each data datum to nearest centroid: 

(2)	 Update centroids {C1,C2, . . .Ck} : 

The simplest approach to updating centroids is calculating the average of the block. 
Iteration continues until the set of centroids is stable; in other words, convergence is 
guaranteed in a finite number of steps by showing that for some non-negative error 
function

is monotonically decreasing during each iteration.
The initialization of the starting set of centroids greatly affects KM’s performance. 

While in theory convergence is assured, achieving this in practice is another matter. 
Often, the iterate is part of the stopping condition. While relatively easy to under-
stand and implement, the strategy has a significant weakness in that by simply 
increasing k, error will be made smaller without any apparent value to the output of 
the algorithm itself. Given that the algorithm is so simple, finding other limitations 
in KM is not difficult. For example, while many metrics are available Euclidean dis-
tance has historically been the first choice. Recent work showing a more general class 
of distance, Bregman divergences, has proven useful in signal processing and speech 
recognition. This allows, under some conditions, a broadening of the data amenable 

argminj=1,...k ||Cj − x||, i = 1, . . . n

Cj =

(

1

|Cj|

) |Cj |
∑

xi∈Cj

xi

n
∑

i=1

k
∑

j=1

||xi − Cj||
2
2
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to KM. However, as a corollary to its sensitivity to outliers, when D becomes dense, 
convergence severely slows. While this means KM is in practice now O(nmki), it also 
requires more discriminatory power–even ignoring the curse of dimensionality, a 
general problem all algorithms face.

Computing consensus matrix

We used PCA to transform the weighted Spearman distance matrix, that was further split 
into several sub-datasets each corresponding to a different number of most significant 
principal components. Our goal was to produce sub-datasets to measure aggregated KM 
clustering similarity with respect of varying amount of noise added. For datasets with 
500 cells or more, we started with all principal components that were equal or less than 
0.01 relative variance and kept adding sub-datasets until reaching the number of prin-
cipal components with 0.008 relative variance or less. For small datasets, this was done 
using a specific range following the sequence [0.04N , 0.04N + 1, . . . , 0.07N − 1, 0.07N ] , 
since the relative variance values in this scenario hold little statistical significance. The 
total number M of the subsets was limited to 15 by selecting every other floor(M/15) 
sub-dataset. This was followed by KM clustering on each sub-dataset with 1e + 09 max 
iterations and 1000 random restarts. The number of random restarts was reduced to 50 
for datasets with more than 2000 cells. For each individual clustering result a binary sim-
ilarity matrix was constructed from the corresponding cell labels: if two cells belong to 
the same cluster, their similarity is 1, otherwise the similarity is 0. A consensus matrix C 
is calculated by averaging all similarity matrices. This process is summarized in Fig. 1.

Imputing dropout events

The pseudocode of the ccImpute is outlined in Algorithm 1. As the first step in lines 2 
and 4 the influence of the cell itself and all entries below a threshold value in the con-
sensus matrix are removed to lower the influence of unlikely cell clustering assign-
ments. This threshold value should be lower for higher quality clustering approaches and 
higher for lower quality approaches. In line 6: the remaining entries are reweighed so 
that each row values become a probability vector, and the resulting non-valid numbers 
are replaced with 0 in line 8. In lines 11-14, each cell casts a weighted vote to decide if 
a given value is a dropout. A cell’s vote magnitude is its consensus value with the cell 
it is voting on. If the cell’s gene entry value is non-zero, the vote is positive and nega-
tive otherwise. If the sum of votes is above zero, the gene count value of a cell is con-
sidered a dropout and needs to be imputed. Otherwise, it is left unchanged. Next, the 
values determined to be dropouts are computed as a weighted mean of its neighbors 
with weights derived from the consensus matrix. Since some of the dropout values to 
be imputed depend on other not yet imputed values, this problem is reformulated as a 
system of linear equations in lines 18-33. In line 35, the values of dropouts are computed 
using a linear equation solver. This is followed by replacing the dropout values in the 
original matrix with newly computed values in lines 36-38.

Evaluation

To evaluate the performance of the ccImpute algorithm, we compared how well the pro-
posed imputation improves the quality of the PCA/K-means clustering and t-SNE/K-means 
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clustering as compared to other imputation approaches (DrImpute, scImpute, DCA, 
MAGIC and DeepImpute comparing the Adjusted Random Indices. We further compared 
the separation of the data points corresponding after each imputation method using aver-
age Silhouette widths with clustering assignments corresponding to true labels and dis-
tances corresponding to Euclidean distances between the data points. We also measured 
how many zero entries have changed due to imputation. Since some approaches have 
added noise to the zero entries, we considered any imputed non-log transformed values of 
less than 0.5 to be zero. This was recorded as a percentage of total zero values. Finally, we 
evaluated the runtime versus size of the dataset for each of the algorithms. Each experiment 
was repeated 100 times for datasets with less than 2000 cells and 10 times otherwise.

Evaluation metrics

Adjusted rand index ARI

Given two clustering assignments X and Y of n data points, the Rand Index (RI) is:

where a corresponds to the pair of data points that are in the same cluster in X and Y, b 
corresponds to pair of data points that are in different clusters in X and Y, c corresponds 
to pair of data points that are in the same cluster in X but in different clusters in Y, and 
d corresponds to pair of data points that are in different clusters in X but in the same 
cluster in Y.

Adjusted Rand index (ARI)is adjusted for chance as follows:

Average Silhouette width

For each data point i in Cluster CI , the Silhouette Score:

where

with d(i, j) being a a distance metric between i and j, and for |C1| > 1:

and for |C1| = 1 , s(i) = 0 . The average Silhouette width s̄ over n data points:

RI =
a+ b

a+ b+ c + d

ARI =
(RI − Expected(RI))

max(RI)− Expected(RI)

s(i) =
b(i)− a(i)

max(a(i), b(i))

a(i) =

(

1

|Ci| − 1

)

∑

j∈CI ,i �=j

d(i, j)

b(i) =
b(i)− a(i)

max(a(i), b(i))

s̄ =

∑n
i s(i)

n
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Experimental platform

All experiments were run on a general-purpose Lenovo NeXtScale nx360 M5 compute 
node equipped with two 12-core Intel Xeon E5-2680 v3 CPUs and four 480 GB solid-
state drives. The number of cores available for computation was set to 16. The R version 
4.1.1 was compiled with the Intel compiler version 2021.4.0 using the Intel MKL library 
to maximize the FLOP performance of matrix operations in our experiments.

Packages, and input parameters

The SC3 v3.14 package was downloaded from R Bioconductor, and served as foundation 
to generate the consensus matrix in our approach.

The Rtsne v0.15 R package was used with perplexity=30 for most datasets with 
exception of Blakeley where perplexity=9 was set to account for low number of sam-
ples. This was followed by kmeans core function from stats package v3.6.2 in R with 
algorithm=Hartigan-Wong and options: iter.max=109 and nstart=1000 for datasets 
with less than 2000 cells, and nstart=50 otherwise.

R MAGIC v3.0.0 was used with default settings, and no gene filtering.
DrImpute was installed from the Github repository: gongx030/DrImpute. The data 

was run without gene filtering step.
scImpute v0.0.8 was installed from Github repository: Vivianstats/scImpute. The algo-

rithm was run with default settings, and number of cores set to 15.
DCA v0.3.1 was installed via preferred installer program in python. The data was 

imputed with defaults settings.
DeepImpute Release 1 was installed via preferred installer program in python. The 

algorithm was run with default settings.
Splatter v1.18.2 was installed from Bioconductor. The data was generated with groups 

setting, group membership probabilities (.15, .20, .30, .35),built-in dropout setting 
applied to all cells, and no batch noise added.
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