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Abstract

Environmental niche modeling outputs a biological species’ potential distribu-

tion. Further work is needed to arrive at a species’ realized distribution. The

Biological Species Approximate Realized Niche (BioSARN) application provides

the ecological modeler with a toolset to refine Environmental niche models

(ENMs). These tools include soil and land class filtering, niche area quantifica-

tion and novelties like enhanced temporal corridor definition, and output to a

high spatial resolution land class model. BioSARN is exemplified with a study

on Fraser fir, a tree species with strong land class and edaphic correlations. Soil

and land class filtering caused the potential distribution area to decline 17%.

Enhanced temporal corridor definition permitted distinction of current, contin-

uing, and future niches, and thus niche change and movement. Tile quantifica-

tion analysis provided further corroboration of these trends. BioSARN does not

substitute other established ENM methods. Rather, it allows the experimenter

to work with their preferred ENM, refining it using their knowledge and experi-

ence. Output from lower spatial resolution ENMs to a high spatial resolution

land class model is a pseudo high-resolution result. Still, it maybe the best that

can be achieved until wide range high spatial resolution environmental data

and accurate high precision species occurrence data become generally available.

Introduction

Environmental niche modeling (ENM) is a popular

approach to ecological niche modeling of biological spe-

cies (Peterson 2011). Two established ENM tools are

MAXENT (Phillips et al. 2004) and openModeller (Sutton

et al. 2007). In their study, introducing MAXENT, the

authors describe the model output as the species’ potential

distribution that could then be used to estimate the spe-

cies’ realized distribution by removing areas where the

species is known to be absent (Phillips et al. 2004). Sut-

ton et al. (2007) opt for the term fundamental niche to

describe the model output of openModeller and other

ENMs including MAXENT. Regardless of the terminology

used to describe ENM output, there are many constraints

on a species realized distribution, for example, topogra-

phy, habitat destruction, anthropogenic land-use, invasive

species, and remnant unreproductive populations (Peter-

son 2011). These factors may either be unknown to the

ENM algorithm or underestimated.

A particular challenge facing experimenters when mod-

eling species distributions over large geographic areas at

high spatial resolution is the paucity of both high resolu-

tion environmental and species occurrence data. At such

scales, the highest resolution climatic data publicly avail-

able is 30-arc second (�1-km) data, for example, World-

Clim – Global Climate Data (2015) and PRISM Climate

Group, Oregon State University (2014). Climatic data are

a core ENM requirement, constraining the spatial resolu-

tion of the output model. Species decimal degree occur-

rence data must be stated to at least two decimal places

for use with 1-km environmental data without introduc-

ing positional error (Heap and Culham 2010). GBIF

(http://www.gbif.org/) is the major online source of these

data, but finding temporally and spatially accurate data,

there is a challenge. For example, there are 330 GBIF

records for Abies fraseri (GBIF.org 2016) but only 18 of

these relating to the 1980–2010 time frame are spatially

precise to within 1 km. By contrast, land-use data are

often available at very high spatial resolution, for
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example, at 30 m in the case of the NLCD 2011 dataset

for the coterminous USA (Homer et al. 2015).

Biological species climate change studies typically involve

baseline and projected climate models. A subset of these

studies has focused on the development of temporal corri-

dors of environmental continuity (Hamann and Wang

2004, 2006). Rose and Burton (2009) used the “Overlay–
Intersect” tool in ArcGIS (http://www.esri.com/software/

arcgis) to map such corridors at the same 1-km resolution

of the ENMs. Further computations were required to count

the grid cells comprising these corridors and convert them

to km2. The resultant maps permitted identification of

these temporal corridors but neither the direction nor

quantification of niche movement.

A fairly recent ecological software innovation is Mod-

Eco (Guo and Liu 2010). This tool allows the modeler to

mix environmental layers at differing extent and resolu-

tion. Output can be at a custom resolution or the mini-

mum/maximum resolution in the environmental group.

However, data uncertainty will be introduced where the

precision of species occurrence data is less than that

required for the chosen output resolution (i.e., the risk

that species locations will be matched with incorrect envi-

ronmental layer values). ModEco offers model suggestions

based on occurrence data type (e.g., presence only, pres-

ence/absence, and abundance data) but occurrence data

precision issues are left to the modeler to recognize.

Consequently, this study’s aim was to show how Bio-

logical Species Approximate Realized Niche (BioSARN)

(https://sourceforge.net/projects/biosarn/) can refine

ENMs through feature file filtering, enhanced temporal

corridor definition, niche area quantification, and output

to a high spatial resolution land class model (LCM).

In order to use BioSARN, the modeler must first con-

struct biological species ENMs using established modeling

techniques. Key issues that should be addressed here are

species occurrence data cleaning (Heap and Culham 2010;

Soley-Guardia et al. 2016), mitigation of sampling bias

(Phillips et al. 2009; Boria et al. 2014), data partitioning/

ENM settings (Phillips et al. 2006), and ENM parameteri-

zation/evaluation (Muscarella et al. 2014; Soley-Guardia

et al. 2016). Subsequently, the modeler must construct

the environmental layers which BioSARN will use to trim

the ENM-generated potential distribution to a closer

approximation of the species’ realized distribution. This

methodology is illustrated by a worked example preceded

by a general description of BioSARN.

BioSARN

General description

Biological Species Approximate Realized Niche (Bio-

SARN) is a JavaTM Desktop MicroSoft Windows

Figure 1. BioSARN “main” screen illustrating

Abies Fraseri example.
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Application with a simple GUI. Depending on scenario,

the user can select a baseline climate ENM (derived from

observed temperature and rainfall data), a projected

future climate ENM and a LCM on the application’s

“main” screen (Fig. 1). ENM output can be filtered by up

to three feature files (e.g., edaphic and topographic data)

on the next screen. Additionally, the user can specify cate-

gorical/continuous data format and applicability of fea-

ture files to either or both climate scenarios. All input

files must be in ASCII format and except the LCM must

have identical range and spatial resolution. Use of the

ASCII file format renders BioSARN compatible with most

commonly used GIS (e.g., ArcGIS, DIVA-GIS, OpenMo-

deller, and Global Mapper). Environmental suitability

thresholds are specified on the “settings” screen. The

“RUN” button is highlighted when BioSARN detects a

runnable scenario and then inaccessible until run termi-

nation and selection of a new scenario. Input and status

information is provided to the user via the “main” screen

console (Fig. 1) and echoed to a time-stamped log.txt file

stored in the file output directory. Feature files and the

LCM are individually analyzed by the Application after

which the user is invited to specify valid classes or value

ranges. BioSARN uses primitive number arrays (with low

software overhead) to reduce compute times. Use of a 64-

bit operating system with a significant RAM is preferable.

BioSARN ran the A. fraseri Scenario 7 example (discussed

later) with an Intel 2.4 GHz Core i-7 processor in under

2 min.

Scenarios

There are eight scenarios. BioSARN selects the only possi-

ble scenario from user input.

Complete scenario descriptions, FAQS, and data error/

issue handling information are available to the user from

the “HELP” button on the main screen.

Under scenario 1, the user combines one or more fea-

ture files with a baseline species ENM. Feature files are

data used to trim the ENM output to better approximate

the species’ realized distribution (e.g., edaphic and topo-

graphic features). The choice of baseline ENM is at the

modeler’s discretion. This is distinguished from the pro-

jected ENM (used in other BioSARN scenarios) which

corresponds to the ENM used by MAXENT’s projection

facility (Phillips et al. 2004). Scenario 1 output consists of

ENM input values exceeding the user-defined environ-

mental suitability threshold and meeting user-specified

feature file values. Otherwise, output grid cell values are

zeroed. Extent and resolution are identical to the ENM.

Scenario 2 computes temporal corridors from input

baseline and projected ENMs applying the user-specified

environmental suitability thresholds. Output data values

are either 0, 1, 2, or 3 (unsuitable, valid for baseline cli-

mate only, valid for both climates, and valid for the pro-

jected climate only).

Table 1 summarizes the input file combination and

output ASCII file grid cell values for each of seven Bio-

SARN scenarios.

Scenario 8 is a quantification analysis of the input

LCM (which can be any ASCII file consisting of categori-

cal data). This analysis can be performed solely on the

LCM or the LCM and up to 225 user-specified tiles.

Information including category counts and area quantifi-

cation is output to an Excel file. Additionally, a shape file

grid is output corresponding to the geographic tile-speci-

fied coordinates in the Excel file. Area calculations con-

sider the latitude/longitude of the LCM.

Table 1. BioSARN scenario file input combinations and output grid values.

BioSARN Scenarios input/output

Scenario

Input ASCII files Output ASCII grid values

Baseline

ENM

Projected

ENM

Feature

files LCM

Original

ENM 0, 1, 2, 31 Highest+12

Highest+12

Highest+2

Highest+3

1 U U U

2 U U U

3 U U U U

4 U U U

5 U U U U

6 U U U U

7 U U U U U

10 = Unsuitable climate; 1 = baseline climate suitability; 2 = both climates suitability; 3 = projected climate suitability.
2The following supplemental values are added to the LCM: Highest+1 LCM value = baseline climate suitability; Highest+2 LCM value = both cli-

mates suitability; Highest+3 LCM value = projected climate suitability.
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Example: approximate realized niche of the
Fraser fir in the USA

Fraser fir, A. fraseri (Pursh) Poir., is a small evergreen

coniferous tree native to the Appalachian Mountains in

southeastern USA (Fig. 2). Its preference for extremely

acid soils and forested locations make A. fraseri an ideal

candidate plant species for BioSARN testing.

Data and methods

Species occurrence data sourcing and cleaning

About 1148 species occurrence data records for A. fraseri

were downloaded from recognized data repositories – 818

from BISON and 330 from GBIF (BISON 2016; GBIF.org

2016). These data were then cleaned as follows:

• 409 records removed with nonspatially referenced

occurrences.

• 27 records removed with coordinates stated <2 decimal

places (Heap and Culham 2010).

• 57 records removed with no temporal reference.

• 225 records removed with temporal references outside

the 1980–2010 baseline climate period.

• 221 records removed with spatially duplicated references.

• 2 records removed from protruding spatially marginal

locations (Soley-Guardia et al. 2016).

• 2 records removed with erroneously transposed coordi-

nates.

The remaining 205 records were then filtered for loca-

tional accuracy. Sixty-two records were removed with

unstated coordinate precision and two records removed

with stated coordinate precision >1000 m.

Sampling bias mitigation

A systematic sampling filter (Fourcade et al. 2014) was

then applied to the remaining 141 occurrences to main-

tain a minimum 3-km distance between points, and thus

reduce sampling bias (Phillips et al. 2009; Boria et al.

2014). The resulting species occurrence dataset consisted of

27 points. The Appalachian Mountain areas where

A. fraseri is found are limited in size, and a 3-km filter was

the maximum that could be used to provide a reasonable

number of occurrence points for modeling purposes.

Environmental layers

The environmental datasets used each consisted of 19

Bioclim layers at 30-arc seconds resolution.

Baseline climate PRISM monthly ppt, tmax, and tmin

data were downloaded for the coterminous USA (ASCII

file format) covering the 30-year period from 1981 to

2010 (PRISM Climate Group, Oregon State University

2014). Steps 5–9 of Ram�ırez and Cabrera’s methodology

(Ram�ırez-Villegas and Bueno-Cabrera 2009) were fol-

lowed to generate 19 Bioclim layers in DIVA-GIS from

this data. Ram�ırez and Cabrera’s paper is freely available

at http://ccafs-climate.org/downloads/docs/Ramirez_Bueno-

Cabrera_2009_tutorial_bcvars_creation.pdf.

The MIROC5 model is closest to the multimodel mean

(MMM) of the 19 available IPCC 5th Assessment ensemble

models for the 2050 (2035–2065 average) projected North

Figure 2. Fraser fir seedlings persist among

trunks of trees killed decades earlier at

Clingmans Dome, Great Smoky Mountains

National Park, Swain County, North Carolina,

USA (35.56° latitude, �83.50° longitude).
©Steven J. Baskauf http://

bioimages.vanderbilt.edu/baskauf/11439.
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American climate (Harris et al. 2014 recommend use of the

MMM where possible). The 8.5 RCP emissions scenario

was used due to the currently high global warming rate.

Nineteen MIROC5 Bioclim layers were downloaded from

WorldClim (WorldClim – Global Climate Data 2015).

ENM construction details

In a study of several ENM applications, Hernandez et al.

(2006) found that MAXENT had the highest accuracy

and spatial concordance for small sample size categories.

Consequently, baseline and 2050 projected climate models

were built with the latest version of MAXENT (3.3.3k).

The same user-defined training and test data were used

for all MAXENT models by partitioning 75% of the

occurrence data for training (20 points) and 25% for test-

ing (7 points) as used by Phillips et al. (2006). Data parti-

tioning point selection was carried out randomly.

Erroneous predictions of suitable habitat under the future

climate scenario were avoided using the MAXENT “fade-

by-clamping” option to remove heavily clamped pixels

from the final predictions. Predictions of climate condi-

tions outside the limits encountered during training were

constrained by disabling the extrapolation option (Phillips

Figure 3. Illustration of BioSARN methodology for realized niche approximation of Abies fraseri – (A) MAXENT baseline climate, (B) MAXENT

2050 climate, (C) Soil model, (D) LCM, (E) BioSARN Scenario 7 model with BioSARN Scenario 8 grid overlay. Tile numbering is left/right, top/

bottom. Note: The NLCD 2011 LCM has an Albers Conical Equal Area projection.
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et al. 2006). The MAXENT default setting of 10,000 back-

ground points was used.

ENM parameterization and evaluation

Multiple MAXENT parameterization scenarios (Mus-

carella et al. 2014; Soley-Guardia et al. 2016) were run to

obtain the best model. First, four MAXENT models were

run using linear (L), quadratic (Q), and hinge (H) feature

classes (FCs) appropriate for sample sizes from 15 to 79

occurrence points (Phillips and Dud�ık 2008). These mod-

els adopted the L, LQ, H, LQH feature combinations used

by Muscarella et al. (2014) and a regularization multiple

(RM) of 1.0.

AUCdiff (AUCtrain � AUCtest) a threshold independent

measure was 0 (0.999 � 0.999) for all models except for

the H model where it was �0.001.

Four further models were run based on the LQH model

(automatically selected by MAXENT) but with RMs of 2.0,

3.0, 4.0, and 5.0. The RM acts in concert across all FCs as a

coefficient multiplied to the individual regularization val-

ues (betas in MAXENT) that correspond to each respective

FC (Phillips and Dud�ık 2008). The LQH model with a 3.0

RM was chosen as the best model because the omission rate

plot was closest to the predicted omission (Phillips et al.

2006) although any of the computed models could have

been used for this study due to their similarity. The envi-

ronmental suitability threshold used for subsequent Bio-

SARN models was the average of the lowest presence

threshold of 0.088 and 10 percentile training presence of

0.473 (i.e., 0.2805) as used by Boria et al. (2014).

Construction of environmental layers for use with Bio-

SARN

A soil layer and land cover classification model (LCM)

were constructed for use with BioSARN. STATSGO soil

data compiled by the Natural Resources Conservation

Service of the U.S. Department of Agriculture were used

to create the soil layer (STATSGO 2015). The topmost

(0–5 cm) of the 11 standard layers defined by Miller and

White (1998) was used.

The National Land Cover Database 2011 (henceforth

referred to as NLCD 2011) is a decision-tree classification

of circa 2011 Landsat satellite data (Homer et al. 2015).

NLCD 2011 has a 16-class USA land cover classification

and 30-m spatial resolution. The LCM for the Appalachians

was clipped from this layer.

BioSARN methodology

Two BioSARN Scenario 6 and two Scenario 7 models

were constructed and all output ASCII files subject to

Scenario 8 quantification analysis to determine the effects

of soil and LCM filtering on MAXENT-generated climatic

niches. STATSGO class 6 (loam) was used for soil filter-

ing as all 27 occurrence points occurred in loam areas.

LCM filtering was carried out with land class values of

41, 42, and 43 (deciduous forest, evergreen forest, and

mixed forest) as these were the classes applying to the 27

occurrence data points used. The overall BioSARN

methodology is illustrated in Figure 3.

Results

Three Abies distribution classes were added to the NLCD

2011 LCM used, namely baseline climate only (96), con-

tinuous climate (97), and 2050 climate only (98). Color-

ing ranged from pale to dark orange (see Fig. 3D legend).

Columns 2 and 5 of Table 2 quantify the land class areas

in Figure 4A and B.

The approximate realized niche of A. fraseri was calcu-

lated to decline 91% from 3328 km2

(3050 km2 + 278 km2) to 287 km2 (278 km2 + 9 km2)

between the 1980–2010 baseline and 2035–2065 projected

climate scenarios (Table 2, column 5). Projected niche

change is characterized by a major contraction of the cur-

rent niche with loss of the southern extension (Table 3,

tiles 6–11).
The potential MAXENT distribution under the baseline

climate was 3998 km2 (Table 2, column 2). Soil and land

Table 2. BioSARN Scenario 8 quantification analysis summary.

Land class

BioSARN Scenario 6 BioSARN Scenario 7

MAXENT (km2) LC (km2) Soil (km2) LC, Soil (km2)

0 0 0 0 0

11 6,082 6,084 6,082 6,084

21 28,238 28,399 28,250 28,399

22 11,394 11,409 11,395 11,409

23 4,124 4,130 4,125 4,130

24 1,512 1,513 1,512 1,513

31 1,924 1,931 1,925 1,931

41 214,155 214,155 214,362 214,362

42 30,205 30,205 30,243 30,243

43 11,719 11,719 11,741 11,741

52 8,645 8,723 8,659 8,723

71 17,597 17,617 17,598 17,617

81 68,813 68,990 68,846 68,990

82 30,339 30,339 30,339 30,339

90 10,306 10,308 10,306 10,308

95 682 682 682 682

96 3,693 3,255 3,428 3,050

97 305 278 305 278

98 75 71 10 9

Sum 0–98 449,808 449,808 449,808 449,808

Sum 96–98 4,073 3,604 3,743 3,337
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class filtering caused this area to decline 17% to

3328 km2 (Table 2, column 5), with a 6% contribution

from soil and 11% from the LCM (Table 2, column 4).

Discussion

The use of soil and LCM filtering showed how BioSARN

can further refine an ENM potential distribution to arrive

at a better approximation of a species’ realized niche. The

addition of three output classes provided enhanced tem-

poral corridor definition permitting the observer to dis-

tinguish current, continuing, and future niches, and thus

niche change and movement (Fig. 4). Tile quantification

analysis provided further corroboration of these trends

(Table 3). Land class area calculations are fairly accurate

as the BioSARN Scenario 8 algorithm utilizes a mathe-

matical equation factoring-in curvature of the Earth’s sur-

face to measure the latitudinal/longitudinal extent, and

Figure 4. BioSARN realized niche approximation for Abies fraseri – (A) BioSARN Scenario 6 distribution with zero filtering and the occurrence

point data overlay, (B) BioSARN Scenario 7 distribution with Soil and LCM class filtering, (C) Google Earth Zoom-in on Clingmans Dome with

BioSARN 7 overlay, (D) GlobalMapper/BioSARN 7 view of Clingmans Dome.
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thus the average grid cell area of the LCM

(772 m 9 799 m in the example).

Close scrutiny of Figure 4D reveals that the Clingmans

Dome occurrence point while in a forested land class cat-

egory borders a developed open space area. The location

of species occurrences is subject to data uncertainty

demonstrating the importance of human expertise (e.g.,

gained via on site observation) in determining appropri-

ate land classes for this species. Unfortunately, this ende-

mic tree species is on the IUCN Red List of Threatened

SpeciesTM http://www.iucnredlist.org/details/32101/0 and

the 91% realized niche contraction projected by this study

will only exacerbate the situation. On the bright side, Fig-

ure 4C and D indicates that reproductive populations of

the Fraser fir should remain at Clingmans Dome for at

least the next 50 years or so.

Lastly, when interpreting the results, the limitations of

the ENM spatial resolution used should be considered. At

800 m, ENMs cannot identify microclimates occurring

within a grid cell nor can they distinguish occurrence

points belonging to remnant nonreproductive populations.

These examples illustrate that ENMs are tools that should

be used in conjunction with an ecologist’s knowledge. Bio-

SARN was developed with this integration in mind.

Conclusions

The Fraser fir results obtained met the stated aim of the

BioSARN application. This approach toward species real-

ized niche refinement does not substitute other estab-

lished ENM methods. Rather, it allows the experimenter

to work with their preferred ENM, refining it using their

knowledge and experience.

Output from lower spatial resolution ENMs to a high

spatial resolution LCM generates a pseudo high-resolution

result. Nevertheless, this is probably the best that can be

achieved until wide range high spatial resolution environ-

mental and accurate high precision species occurrence

data become generally available.
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