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Introduction

Treatment planning systems (TPS) have evolved from 
using actual data to analytical approaches derived from pencil 
beams.[1] The older generations of TPS provided dosimetry 
exclusively in water (without inhomogeneity correction) 
based on regular fields[2] and Clarkson integration[3] for 
irregular fields for patient treatment. However, a patient’s 

body is not homogenous and not water equivalent. Rather, 
it is complex and heterogeneous with natural variation 
in tissues such as lung, cartilage, bone, and implanted 
high‑density and high-atomic number (Z) materials such 
as dental fillings, pacemakers, and prostheses.

Attempts have been made to provide correction factors 
for lung inhomogeneity, beginning with Batho.[4] McDonald 
et al.[5] provided a comprehensive set of tables for lung 
correction with respect to energy, field size, and depth. 
The equivalent tissue‑air ratio was introduced to correct 
for inhomogeneities;[6,7] this was followed by power law.[8,9] 
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ABSTRACT

Modern treatment planning systems provide accurate dosimetry in heterogeneous media (such as a patient’s body) with the help 
of tissue characterization based on computed tomography (CT) number. However, CT number depends on the type of scanner, 
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clinical situations. This is usually performed with a tissue characterization phantom with various density plugs acquired with 
different tube voltages (kilovoltage peak), FOV reconstruction and different scanners to generate CT number to ED tables. This 
article provides an overview of inhomogeneity correction in the context of CT scanning and a new evaluation tool, difference 
volume dose‑volume histogram (DVH), dV‑DVH. It has been concluded that scanner and CT parameters are important for 
tissue characterizations, but changes in ED are minimal and only pronounced for higher density materials. For lungs, changes 
in CT number are minimal among scanners and CT parameters. Dosimetric differences for lung and prostate cases are usually 
insignificant (<2%) in three‑dimensional conformal radiation therapy and < 5% for intensity‑modulated radiation therapy (IMRT) 
with CT parameters. It could be concluded that CT number variability is dependent on acquisition parameters, but its dosimetric 
impact is pronounced only in high‑density media and possibly in IMRT. In view of such small dosimetric changes in low‑density 
medium, the acquisition of additional CT data for financially difficult clinics and countries may not be warranted.
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Use of computed tomography (CT) data did not start until 
the introduction of the generalized equation based on CT 
pixel‑by‑pixel correction.[10] Various other algorithms[11‑15] 
have been proposed over time including algorithm based 
on electron transport.[16] A detailed evolution of the 
inhomogeneity correction and its impact on patient care 
has been provided by AAPM Report 85.[17]

Inhomogeneity corrections were also debated as clinicians 
were reluctant to use them without clinical outcome 
data.[17‑23] However, inhomogeneity correction has become 
an essential part of treatment planning in modern therapy 
and is required for intensity‑modulated radiation therapy 
(IMRT).[24] Recent advances in dose calculation using 
advanced algorithms based on Monte Carlo modeling 
such as pencil beam, convolution/superposition, and 
collapsed cone have facilitated improved dosimetry and 
dose calculation accuracies.[17,25‑27] However, advanced 
dose algorithms require electron density (ED) from CT 
data to account for the effects of inhomogeneity rather 
than physical density scaling as was advocated by the older 
algorithms such as equivalent path length (EPL).[28] To 
correlate the CT numbers in a patient’s CT study with the 
corresponding ED values, a CT number – ED calibration 
curve should be determined. The CT number of any voxel 
is given as below which is represented in Hounsfield units 
(HU):

 
 
 
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CT Number(HU( , , ))= 1000
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Where x, y, z is the coordinate of a voxel, µt and µw are the 
linear attenuation coefficients of tissue in a voxel (x, y, z) 
and water, respectively. CT number is a quantity and HU is 
a unit; however, these terms are interchangeably used. By 
definition, HU is 0 for water and −1000 for air at standard 
temperature and pressure. It is obvious that CT number 
depends on the attenuation property of a medium, and it 
should be dependent on beam energy, density, and atomic 
number.[29] It follows that the CT number of a given tissue is 
not constant. Rather, it depends on tube voltage (kilovoltage 
peak [kVp]), field of view (FOV), scattering conditions, and 
vendor‑specific CT reconstruction algorithms.

The tissue characterization in terms of CT number 
and ED calibration used in TPS have been proposed by 
several investigators[30,31] using a commercial phantom. The 
calibration curve (CT‑ED) is stored in the database of the 
TPS for dose calculation purposes. The CT‑ED curve and its 
impact on dosimetry has been documented in the context 
of older dose calculation algorithms to be 1.3%, 0.8%, 0.5% 
for Co‑60, 6 MV and 21 MV beam, respectively, and was 
independent of either EPL or power law calculation.[32] 

Morgan et al.[33] used advanced TPS and quantified the 
dosimetric impact very similar to data previously presented 

by Jones et al.[34,35] for variation in lung density and field 
size.

The selection of CT‑scanner and technical consideration 
for TPS has been provided by Cao et al.[36] Each CT scanner 
manufacturer optimizes CT images based on the selection 
of body section to be imaged; however, different techniques 
may be used depending on the scan protocol. Since the 
selection of technique on a CT scanner may provide the same 
tissue with a different CT number, the treatment planner 
must know the impact of such changes. The variation of 
CT numbers due to different scanning parameters has been 
noted by many investigators,[37‑39] and some studies have 
been performed to investigate its dosimetric effect by using 
inhomogeneous cubic or anthropomorphic phantoms.[40,41] 
Most of these studies evaluated the absolute doses per 
monitor unit (MU) to a single point (such as isocenter 
or a reference dose point) without consideration of dose 
coverage to targets and critical organs. The impact of 
kilovoltage setting for low‑Z inhomogeneity for a scanner 
has also been reported to be insignificant clinically,[42] 
however variability among different CT scanners studies 
has been limited. Recently Zurl et al.[43] compared CT 
parameters and showed that variation up to 20% in HU 
could be noted; however the impact on dose is limited 
to only 1.5%. Thus, effect of CT number for photon and 
electron beam Monte Carlo calculations has been noted to 
be different and needs attention.[44] Ebert et al.[45] provided 
variability of CT number from a GE scanner at various kV 
settings and tube currents. It was shown that tube current 
(mAs) does not a play role and only kV provides variation 
in CT number.

The objective of this review article is to evaluate the 
variation of CT numbers of different scanning parameters 
such as tube voltage (kVp), and physical and reconstruction 
FOV on several commercial scanners and compare it with 
other publications. The dosimetric impact of different 
CT number ‑ ED calibration from different scanners is 
also evaluated for clinical cases with emphasis on dose 
coverage to tumor targets and its impact to critical organs. 
Conclusions are then made if such CT data are needed 
within the limit of dosimetric accuracy for radiotherapy 
centers and countries where additional scan could be a 
financial hardship to the patients.

Computed Tomography Number to Electron 
Density Calibration

To revisit CT number‑ED calibration, a tissue 
characterization phantom (RMI, Gammex, Middleton, WI, 
USA) was used to evaluate under different scanning conditions. 
The phantom consists of a solid water disk approximating 
the size of an average pelvis that contains interchangeable 
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rods made of various tissue equivalent materials. The 
physical density (g/cm3) ranges from 0.3 (LN‑300 lung) to 
1.84 (cortical bone), and the corresponding ED relative to 
water varies from 0.292 to 1.707. The RMI CT‑phantom 
is commonly used in radiotherapy clinics in the United 
States. The quality assurance in the manufacturing of these 
tissue‑equivalent plugs is very precise (<1% variation), 
which was verified among five phantoms.[46] The phantom 
was placed in the center of a CT gantry by careful alignment 
with lasers and scanned with different imaging protocols 
using various tube voltages (80–140 kVp) on each scanner. 
Two reconstruction fields of view (33 cm and 48 cm) were 
chosen to reconstruct the images with a 512 × 512 matrix 
with 5 mm slice thickness contiguously. After image 
reconstruction, a circular region of interest (ROI) of 1.5 cm 
diameter was placed on each density plug and the mean CT 
numbers of the ROIs were recorded. To minimize the effect 
of image artifacts and beam hardening, multiple CT scans 
of the phantom were acquired with different combinations 
of insert position and the resultant mean CT numbers were 
averaged. The same process was repeated on several scanners 
including wide bore (85 cm) and small bore (72 cm) Philips 
PQ5000 scanners (Philips HealthCare, Andover, MA, USA) 
and a Somatom 4 scanner (Siemens Medical Solutions, 
Malvern, PA, USA). The CT number ‑ ED table was generated 
in each configuration as described by Constantinou et al.[30] 
The resultant CT number ‑ ED conversions were compared 
between different scanners, reconstructed FOV, and tube 
voltages.

Dosimetric Impact of Computed Tomography 
Number to Electron Density Calibration

The CT number ‑ ED calibration tables were imported 
into the Eclipse TPS (Varian Medical Systems, Palo 
Alto, CA, USA) and were used to investigate its impact 
on dose calculations. Under institutional review board 
exempt status, two typical cases (lung and prostate) were 
chosen in this study. Treatment planning was performed 
using the analytical anisotropic algorithm that provides 
superior inhomogeneity correction as reported by many 
investigators.[47‑49] To investigate the dosimetric impact in 
low‑density tissues, three‑dimensional (3D) conformal as 
well as IMRT plans were generated to achieve optimum 
coverage of a representative tumor lesion centrally located 
in the right lung of a patient for both 6 and 15 MV X‑rays. 
In each plan, a different CT number ‑ ED calibration table 
for a given tube voltage (80 kVp–140 kVp) was used for 
inhomogeneity correction. The remaining parameters, 
for example, beam arrangements, and MU were kept the 
same. The difference in dose coverage of the planning 
target volume (PTV) and organs at risk (OAR) (lung and 
heart) were compared by evaluating the dose‑volume 
histograms (DVHs). In the second case, the CT study of 
a prostate cancer patient was chosen so that some beams 

passed through the hip with high‑density bone compared 
to the soft tissue. A 3D treatment plan using 4‑field box 
technique was generated as well as a 7‑field IMRT plan. 
The dose differences in PTV and OAR (rectum, bladder, 
and femoral heads) with various ED tables were evaluated. 
For comparison in both cases and techniques, 3D conformal 
radiation therapy (3DCRT) and IMRT, the MU calculated 
for the 140 kVp CT scan for optimum coverage of the PTV 
was used for calculation in other CT scans with different 
kVp setting. Again, the planning parameters, for example, 
beam arrangements, fields, and MU were kept the same. For 
clinical evaluation of treatment plans, a new concept based 
on volume difference from DVH (dV‑DVH) is introduced to 
provide to compare competing DVHs when the differences 
among the DVHs are negligible. The dV‑DVH of a structure 
is a plot of the difference between the volume of the 
structure covered by a given dose and a reference volume at 
the same dose. The dV‑DVH magnifies the subtle difference 
between DVHs that are closed to each other. This proposed 
concept dV‑DVH provides a better evaluation tools for plan 
comparisons where DVHs have small differences and are 
not differentiated. The clinical implication of dV‑DVH is 
yet to be realized as we believe this is the 1st time that the 
concept of dV‑DVH is introduced in treatment planning.

Outcome of Computed Tomography Number to 
Electron Density Calibration

CT number versus relative ED for different tube voltages 
and reconstructed FOVs were plotted for a Philips PQ5000 
and a Siemens Somatom 4 scanner in Figure 1a and b, 
respectively. The discontinuity (bump) at around density 
1.1 is typical of RMI phantom and has been noted by other 
investigators.[42,46] This is probably due to the artifact in the 
plug that has different chemical compositions but same 
physical density. The differences in CT numbers versus tube 
voltages are minimal in the density region from 0.3 (lung) 
to 1.0 (water). This discrepancy becomes significant for 
high‑density materials and can reach up to 43% for cortical 
bone (1668 HU at 80 kVp vs. 1167 at 140 kVp) with a trend 
that higher kVp yields a lower CT number. This is probably 
due to the increase in photoelectric attenuation for lower 
photon energies which lead to higher CT number. Full‑ 
and half‑FOV reconstructions have little effect on the CT 
numbers of all materials for both scanners; the only exception 
was the 11% difference (1869.4 HU vs. 1686.4 HU) for 
cortical bone at 80 kVp for the Somatom 4 CT.

The illustration in Figure 2 compares the CT number 
to relative ED calibration curves of the two CT scanner 
vendors for the same FOV. Significant differences in CT 
number were observed for high‑density tissues between the 
two scanners. Lower kVp tends to have larger discrepancy 
between scanners with the maximum difference of 15% 
at 80 kVp. The CT number to ED calibration curves for 
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the Philips PQ5000 scanner with different gantry apertures 
(72 cm and 85 cm) are compared as shown in Figure 3. 
Again at low density, there is no difference in CT numbers. 
However, large differences are noted at higher densities 
especially for bone. The maximum difference in CT 
number was 10% occurring at 80 kVp for cortical bone.

Dosimetric Impact in Clinical Cases

The dosimetric impact of ED variation was revisited to 
evaluated two clinically relevant cases (lung and prostate). 
For the lung case, the differences between 3DCRT and 
IMRT were minimal for PTV coverage for all ED tables. 
Figure 4 shows the DVHs for the 3DCRT plans with 6 MV 
beams. It can be seen that for a given structure (PTV or 
OAR), the DVHs are practically indistinguishable for all 
CT number to ED curves obtained with different kVp. 
Similar findings were also observed for 15 MV beam 
(not shown). For the IMRT plans, the small differences 

among the various plans are probably due to the plan 
optimization process. Overall, the differences in DVHs 
caused by different CT number to ED calibrations were 
negligible (<1%) for all 4 plans (6 MV and 15 MV and 
3DCRT and IMRT). This is probably because the CT 
number variation of lung tissue for different tube voltages 
has been shown to be minimal [Figures 1 and 2]. To better 
examine and quantify the small deviation in DVHs, the 
PTV volume coverage of all the ED calibrations was 
compared to that of 140 kVp. The differences in the range 
of dose levels (90–110%) were minimal. For both the 6 MV 
and 15 MV plans, the calibration of 80 kVp led to the 
largest deviation from that of 140 kVp with less volume 
coverage. This might be caused by high‑density material 
presented in the paths of the beams. Nevertheless, the 
maximum difference was only 1.1% for both plans and 
can be considered as clinically insignificant. Similarly, 
no significant difference was found for DVHs of critical 
organs such as spinal cord, heart, and right lung as shown 
in Figure 4.
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Compared with the lung case, the DVHs for the 
prostate PTV demonstrated a slightly larger difference 
between different tube voltage calibrations as shown in 
Figure 5a and b and Figure 6a and b for 3DCRT and IMRT, 
respectively. The dV‑DVH concept was introduced to 
magnify the effect of differences in DVH which is shown in 
the insets [Figures 5b and 6b] whereas differences in DVH 
seem to be small. For both 6 MV and 15 MV plans, lower 
kVp calibration tends to result in less volume coverage for 
dose range from 95% to 100% of the prescription dose. The 
largest differences were −9.6% for 6 MV and −8.3% for 
15 MV fields, respectively, both occurred at the 97.5% of 
dose prescription in 3DCRT. This dose deviation can be 
mainly caused by the presence of large bony structures 
around prostate and the considerable variation of CT 
number ‑ ED versus tube voltage of high‑density materials 
as demonstrated in Figures 1 and 2. With regard to critical 

organs such as rectum and bladder, the tube voltage caused 
very small variation in dose distribution as shown in 
Figures 5 and 6.

The differences are slightly higher in IMRT plans 
as shown in Figure 6b compared to Figure 5b for the 
3DCRT. Some of these differences are inherent to IMRT 
optimization where an exact solution is not achievable 
and variability in inter‑ and intra‑institution and planner 
are significant.[50] The differences in 3DCRT and IMRT for 
the prostate case are <2% and <5%, respectively, based on 
analysis of dV‑DVH as shown in Figures 5b and 6b.

Discussion

Two types of curves CT number versus ED and ED versus 
CT numbers are shown in various references.[31,32,40,42,45] 
However, CT number versus ED curve is better suited as 
ED is unknown variable which should be evaluated based 
on scanners derived CT number. We reevaluated and 
quantified the variation of CT number ‑ ED calibration 
between different vendors, tube voltages, and FOVs and its 
impact on radiation treatment planning and dose calculation 
as shown by other investigators.[32,40,42] After scanning an ED 
calibration phantom using the same scanning parameters 
on six different scanners, Constantinou et al.[30] observed 
more than 200 HU difference in cortical bone between 
different scanner vendors. By analysis of published data for 
a number of scanners, Thomas[32] showed that there was no 
great difference in the relationship between CT number 
to relative ED for low‑density materials between the 
different manufacturers and calibration techniques. These 
are confirmed in this study. For high‑density materials, 
considerable differences between data sets from different 
machines and measurement techniques were observed. 

Figure 4: Dose-volume histograms of planning target volume, spinal 
cord, heart and lung of a tumor lesion centrally located in the right lung 
calculated using computed tomography number to electron density 
calibrations of different tube voltages (80–140 kVp)

Figure 5: (a) Comparison of dose-volume histogram for a prostate three-dimensional conformal radiation therapy with various electron densities 
associated with tube voltages (80–140 kVp) and (b) magnified view of dose-volume histogram for planning target volume only. Also note the plot of 
dV-dose-volume histogram in inset providing useful information where dose-volume histogram cannot be easily differentiated
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Analytic calculation based on effective depth showed that 
changes in inhomogeneity correction factors were less than 
1.5% for a 10% change in CT number. In a similar study, 
CT number was found to be stable with respect to different 
acquisition parameters, except for the tube voltage setting 
that can lead to errors of about 300 HU for high‑density 
materials.[40] The authors also investigated the dosimetric 
impact using a simplified anthropomorphic phantom with 
a single bone embedded in a tissue equivalent material and 
found around 2% maximum error. Guan et al.[41] investigated 
the dosimetric impact of different CT number ‑ ED curves 
for full lung plus three typical bone sites under single beam 
irradiation. The dose per MU was found to be 2% higher 
for 80 kV than that of 130 kV at a depth just beyond bone 
for high‑density bones. For low‑density bones and lung, the 
difference is only 1% or less for different kV. A recent study 
by Zurl et al.[43] indicated that even though the CT number 
variation can be significant, its dosimetric impact is limited 
to only 1.5% concluded from study based on 28 real patients. 
Compared with the above studies, we observed similar 
variation in CT number among different scanners. The 
tube voltage was found to be the most influential factor, 
whereas other scanner parameters have minimal effect. 
We also found that CT number deviations are minimal 
for low‑density materials but become significant for 
high‑density materials. Instead of comparing single point 
dose or MU/Gy in simplified phantoms, we investigated 
the impact on dose‑volume coverage in real patient plans. 
We found very small differences for PTV coverage in lung, 
but relatively higher difference for the prostate case as 
evaluated using dV‑DVH.

As demonstrated in our study, high‑density materials 
may have a large effect on the accuracy of CT number and 
dose calculation. In additional to bones, contrast agents 
and metal implants are two high‑density materials that are 
commonly present in patient CT scans. The influence of CT 

contrast agents on dose calculation had been investigated 
by Ramm et al.[51] A typical bolus of 3 cm3 and CT number 
of 1400 HU was found to cause overdose of up to 7.4% and 
5.4% for 6 MV and 25 MV photon beams, respectively. It 
was suggested that contrast agents with CT number lower 
than 500 HU and volume less than 5 cm in diameter will 
not cause significant changes (<1–3%) in dose calculation. 
The situation of metal implant is more complex because it 
not only causes saturation of the CT number in the metal 
implant itself, but also generates significant artifacts that 
affect the accuracy of CT numbers of other materials. 
It is unfortunate that none of the scanners can provide 
artifact‑free CT data as well as none of the TPS can give 
accurate dose distribution with high‑Z materials.[52‑60] In 
view of such findings, along with the guideline of dosimetric 
considerations for patients with hip prostheses as provided 
in AAPM TG 63 report,[56] it is prudent to eliminate beams 
passing through metals to reduce dosimetric error.

One of the biggest drawbacks in TPS is the estimation of 
actual CT number which is marred by the artifact. Artifact 
reduction algorithms are an active area of research in 
diagnostic imaging for the interpretation on images as well 
as dosimetry in radiation therapy. These algorithms have 
limited success as shown in various references.[28,53,59,61‑74] An 
extended CT‑scale calibration to 16 bit has been proposed 
which has been shown with limited success in the prediction 
of electron densities of metal inserts.[61,75] Some TPS provide 
ad‑hoc corrections by inserting electron/physical density up 
to Z = 22 (4.5 g/cm3) for titanium, however prosthesis such 
as steel, molybdenum, chromium, and various other alloys 
are still beyond reach of most TPS. Monte Carlo‑based TPS 
which are on the horizon might prove to be useful in such 
situations.

For most of the studies reported so far, the dosimetric 
impact of different CT number to ED conversion was 

Figure 6: (a) Comparison of dose-volume histogram for a prostate intensity-modulated radiation therapy with various electron densities associated with 
tube voltages (80–140 kVp) and (b) magnified view of dose-volume histogram for planning target volume only. Also note the plot of dV-dose-volume 
histogram in inset providing useful information where dose-volume histograms cannot be easily differentiated
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mainly focused on photon beams. The variability in CT 
number could be large but its impact on dose in low‑density 
medium or for thorax and pelvic malignancies are limited 
(<2%). In addition, most scanners provide very similar 
CT numbers, as shown by Cheng et al.[46] The influence 
of scanning parameters on CT number and corresponding 
dosimetric impact on dose calculation for electron and 
proton beams require further investigation which has not 
been discussed here due to range and stopping power 
issues.[76]

Summary

Based on previously published papers and revisiting this 
issue from a separate angle, it is concluded that the variation 
of CT number versus scanning parameters and CT scanner 
vendors is different. CT numbers for the same material from 
different CT scanners are expected to be variable. However, 
for low‑density media, CT number changes are minimal 
with scanners and X‑ray energies but deviations could be 
significant for high‑density materials. A higher tube voltage 
gives lower CT number, while other parameters such as 
reconstruction FOV and scanner aperture have little effect 
on CT number. For low‑density tissues, inhomogeneity 
correction can be successfully (±2%) applied with a single 
CT ‑ ED table for 120–140 kVp. Larger variation in dose 
coverage was observed for high‑density tissues between 
different tube voltages. Thus, it may be advisable to perform 
more strict calibrations corresponding to tube energy 
especially when IMRT is used. The dV‑DVH is a simple 
and useful tool for dosimetric comparison as it enhances 
graphically the small differences between the DVHs that 
are superimposed on each other. Validity of acquiring 
different CT data for planning should be evaluated based 
on necessity and actual gain in dosimetry especially for poor 
patients, centers, and countries.
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