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Abstract  

BACKGROUND: Renal dysfunction is very common in patients with advanced liver cirrhosis and portal 
hypertension. The development of renal failure in the absence of clinical, anatomical or pathological causes renal 
of failure is termed hepatorenal syndrome (HRS). 

AIM: The present study was constructed to investigate the possible protective effects of nebivolol (Nebi) against 
D-galactosamine (Gal)-induced HRS in rats. 

MATERIAL AND METHODS: Rats were treated with Nebi for ten successive days. On the 8th day of the 
experiment, they received a single dose of Gal. Serum levels of Cr, BUN, Na+ and K+ as well as AST, ALT, total 
bilirubin (TB), NH3 and endothelin-1 (ET-1) were determined following Gal administration. Moreover, renal and 
liver contents of MDA, GSH, F2-isoprostanes (F2-IPs), tumor necrosis factor-alpha (TNF-α), nuclear factor kappa-
B (NF-кB), total nitric oxide (NO), in addition to activities of caspase-3 (Cas-3), heme oxygenase-1 (HO-1), 
inducible and endothelial NO synthase (iNOS and eNOS) enzymes were also assessed. Finally, histopathological 
examination was performed. 

RESULTS: Nebi attenuated Gal-induced renal and hepatic dysfunction. It also decreased the Gal-induced 
oxidative stress and inflammatory recruitment. 

CONCLUSION: Results demonstrated both nephroprotective and hepatoprotective effects of Nebi against HRS 
and suggested a role of its antioxidant, anti-inflammatory, anti-apoptotic and NO-releasing properties. 

 

 

 

 

Introduction 

 

Renal failure occurs in 40-80% of patients 
with end-stage liver disease and is associated with an 
unfavourable prognosis. The development of renal 
failure in the absence of clinical, anatomical, or 
pathological causes of renal failure is termed the HRS 
[1]. 

Typical features of HRS include oliguria, 
hyponatremia, azotemia and hyponatremia. Although 
the pathophysiological mechanism underlying HRS is 
still incompletely understood, marked renal 

vasoconstriction in the presence of splanchnic and 
systemic vasodilation may play an important role, and 
may thus reduce the renal arterial blood flow and the 
glomerular filtration rate, resulting in renal impairment 
[2-4]. One of the hallmarks of HRS is that there are 
relatively few histological changes in the kidneys, and 
that renal failure is secondary to haemodynamic and 
functional changes in the kidney. So far, no effective 
strategies are available for the treatment or prevention 
of HRS. Instead, patients are usually managed by 
maintaining their adequate hemodynamic status and 
intravascular volume. A better understanding of the 
pathophysiological mechanism underlying the 
transition from liver damage to renal failure helps to 
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guide its treatment [2, 4, 5]. 

Galactosamine is a potent hepatotoxic 
substance, which can cause hepatocyte death both by 
necrosis and apoptosis secondary to inhibition of 
hepatic RNA synthesis [6]. Studies also found that 
animals rapidly developed functional acute renal 
failure in addition to acute damage and liver failure, 
following intoxication with Gal [7]. Following a single 
injection of high dose Gal, rats develop acute liver 
failure with development of a hyperdynamic 
circulation. It was reported that Gal- induced liver 
injury is associated with the development of renal 
failure [8]. 

Many factors may contribute to Gal-induced 
HRS. Patients who develop HRS, particularly in the 
context of acute liver failure or alcoholic hepatitis, 
have increased circulating concentrations of the 
potent vasoconstrictor peptide endothelin-1 (ET-1) [9]. 

Additionally, NO is elevated in patients with 
cirrhosis; the imbalance between it and 
vasoconstrictors such as ET-1 in the renal 
microcirculation has been proposed to be responsible 
for the deterioration of kidney function in these 
patients. Moreover, a progressive rise in levels of NO 
had been proposed during progressive renal 
dysfunction in cirrhosis [10]. NO produced by iNOS is 
reported to have aggravated liver and kidney injury, 
while eNOS expression preserved physiological 
functions [11]. 

Moreover, oxidative stress is markedly 
elevated in chronic liver disease and has gain 
attention as a potentially important factor in altered 
hemodynamics and renal dysfunction in cirrhosis. It 
induces renal vasoconstriction not only by quenching 
NO, but also by increasing production of F2-IPs (F2-
isoprostanes; formed as a result of free radical-
mediated non-enzymatic peroxidation of membrane-
bound arachidonic acid which can be used to evaluate 
local or systemic lipid peroxidation in vivo) and ET-1 in 
addition to damaging DNA and provoking apoptosis 
[12]. Markedly increased levels of both factors in 
patients with HRS in conjunction with increased 
systemic oxidative stress in cirrhosis raises the 
possibility of a pathogenetic role of oxidative stress in 
HRS [13]. Excessive oxidative stress has been 
suggested as a reason for HO-1 up-regulation, and 
this enzyme is known to play a role in the 
inflammatory process and oxidative tissue damage in 
Gal-induced acute liver injury. On the other hand, 
previous studies denoted that decreased renal HO-1 
expression plays an important role in the 
pathogenesis of experimental HRS [14]. 

It has been well recognized that an 
unregulated inflammatory response is a key 
mechanism of Gal-induced acute hepatotoxicity. TNF-
α is a pro-inflammatory cytokine secreted by liver 
kupffer cells as an inflammatory response [15]. It 
modulates the necrotic, apoptotic and inflammatory 
pathways in Gal-induced hepatotoxicity by activating 

transcription factors as NF-кB. In respect of apoptosis, 
TNF-α combines with TNF-α receptor on the 
hepatocyte membrane activates caspase-3 and 
eventually induces apoptosis at an early stage 
through a series of signal transmission [16]. It has 
been reported that the transcription factor NFкB plays 
an important role in the induction of iNOS because an 
NFкB binding site has been identified in the promoter 
region of the iNOS gene. Inducible NOS-induced NO 
production is believed to play an important role in 
hepatocellular injury following endotoxemia and TNF-
α stimulation [17]. 

Portal hypertension is an almost unavoidable 
complication of cirrhosis and provides the driving force 
for most of its complications, such as oesophagal and 
gastric varices, variceal bleeding, ascites, 
spontaneous bacterial peritonitis, hepatorenal 
syndrome, as well as portal-systemic encephalopathy. 
For medical treatment of portal hypertension, beta-
blockers are used to decrease splanchnic inflow and 
may be combined with nitrates to reduce intrahepatic 
resistance [18]. 

Nebivolol is a third generation selective β1-
adrenergic receptor blocker with vasodilator properties 
mediated by a direct stimulatory effect on the eNOS-
L-arginine-NO pathway [19]. Treatment with Nebi has 
been shown to decrease renal fibrosis and glomerular 
injury as well as improving endothelial dysfunction. 
These effects have been attributed to vasodilatation, 
reduction in oxidative stress in addition to the 
enhancement of NO bioavailability [20]. Nebi may 
have beneficial effects on portal pressure, by 
decreasing splanchnic blood flow and decreasing 
intrahepatic resistance. Indeed, Nebi has been shown 
to be effective in a small case series of portal 
hypertensive patients with and without ascites [21]. 

Taken into consideration, these 
pharmacological properties of Nebi, with its 
renoprotective and hepatoprotective effects, could be 
of potential interest to patients with HRS. For that, the 
present study was performed to investigate the 
possible protective effects of Nebi against Gal-
induced HRS in rats. 

  

 

Material and Methods 

 

Animals 

Adult male Sprague Dawley rats, weighing 
250-300 gram, were used in the present study. 
Standard food pellets and tap water were supplied ad 
libitum. Rats were kept under controlled conditions, 
with a 12 h light/dark cycles, at an ambient 
temperature of 22 ± 2

o
C and a humidity of 65–70%. 

This study was carried out in strict accordance with 
the recommendations in the guide for the care and 



Basic Science 
_______________________________________________________________________________________________________________________________ 

_______________________________________________________________________________________________________________________________ 

882                                                                                                                                                                                                                      http://www.mjms.mk/ 
http://www.id-press.eu/mjms/ 

 

use of laboratory animals of the National Institutes of 
Health. The study protocol was approved by the 
guidelines of the Research Ethical Committee of the 
Faculty of Pharmacy, Cairo University, Cairo, Egypt 
(Permit Number: PT 734). 

  

Drugs 

Nebi was obtained from Sigma-Aldrich (USA). 
It was available as a powder and used in the current 
study at two dose levels of 10 and 20 mg/kg/day, p.o. 
[22]. Nebi was freshly prepared at the beginning of 
each experiment by being suspended in distilled water 
and volumes were adjusted so that each rat received 
1 ml suspension/100 g body weight [23]. All other 
used chemicals were of the highest purity available. 

 

Experimental Design 

Hepatorenal syndrome was induced in rats 
using a single dose of Gal solution in sterile saline 
(1.1 g/kg, i.p.) [7]. Animals were randomly allocated 
into four groups; each group consisted of 12 rats. The 
first and second groups received saline and served as 
normal and control groups, respectively. Rats of all 
groups except the first received a single dose of Gal 
solution in sterile saline g/kg, i.p. on the 8th day of the 
experiment. Groups 3 & 4 received Nebi (10 & 20 
mg/kg/day, respectively, p.o.). Administration of Nebi 
was carried out for ten successive days. Animals were 
allowed free access to food and tap water during the 
experiment. 

  

Serum biochemical analysis 

Blood samples were withdrawn via the retro-
orbital plexus under ether anaesthesia from all rats on 
day 10, after two h of the last drug administration. 
Sera were separated for assessment of renal 
functions by measuring blood urea nitrogen (BUN), 
serum creatinine (SCr), potassium (K+) and sodium 
(Na+) levels, using specific commercial kits, (Stanbio, 
USA, catalogue No. 2050), (Quimica Clinica Aplicada 
S.A., Spain, catalogue No. 998891), (Quimica Clinica 
Aplicada S.A., Spain, catalogue No. 99111), and 
(Teco Diagnostics, USA, catalogue No. S600-50), 
respectively. Additionally, liver function tests were also 
assessed by measuring aspartate aminotransferase 
(AST), alanine aminotransferase (ALT), total bilirubin 
(TB) in addition to ammonia (NH3) levels using 
specific commercial kits, (Quimica Clinica Aplicada 
S.A., Spain, catalogue No. 998720), (Quimica Clinica 
Aplicada S.A., Spain, catalogue No. 997610), 
(Quimica Clinica Aplicada S.A., Spain, catalogue No. 
992714) and (MyBioSource Co., Inc., California, USA, 
catalogue No. MBS841579), respectively. Moreover, 
endothelin-1 (ET-1) level was estimated to judge the 
severity of vasoconstriction, using specific commercial 
ELISA kit (Immuno Biological Laboratories Co., Ltd, 

Gunma, Japan, catalogue No. 27165). 

 

Renal and liver tissue biochemical and 
histopathological analysis 

Directly after collecting the blood samples, 
rats were sacrificed by cervical dislocation under ether 
anaesthesia, and both kidneys and liver tissues were 
isolated. The right kidneys and part of the liver tissues 
were rinsed in chilled 0.9 % NaCl (pH 7.4) then 
homogenised using a homogeniser (MPW- 120, Med 
instruments, Poland) to yield a 20% (w/v) tissue 
homogenate. The homogenates were used for 
estimation of kidney and liver contents of lipid 
peroxides in term of malondialdehyde (MDA) [24], 
reduced glutathione (GSH) [25], F2-isoprostanes (F2-
IPs) using commercial ELISA kit (OXIS Health 
Products Co., Inc., Portland, catalogue No. 21049), 
tumor necrosis factor-alpha (TNF-α) using commercial 
ELISA kit (RayBiotech Co., Norcross GA, USA, 
catalogue No. ELR-TNF-α-001c), nuclear factor 
kappa-B (NF-κB) using commercial reagent kit 
(Wuhan Eiaab Science Co., Wuhan, China, catalogue 
No. E1824r), nitric oxide (NO) measured as NO3-
/NO2- (nitrite and nitrate, stable metabolites of NO) 
using commercial reagent kit (Cayman chemical 
company, Germany, catalogue No. 780001). 
Moreover, kidney and liver activities of caspase-3 
(Cas-3), inducible nitric oxide synthase (iNOS), 
endothelial nitric oxide synthase (eNOS) as well as 
heme-oxygenase-1 (HO-1) enzymes were also 
assessed, using specific commercial ELISA kits, 
(Uscn Life Science Co., Wuhan, China, catalogue No. 
E90626Mu), (Bioassay Technology Laboratory Co., 
Shanghai, China, catalogue No. E0704ra), (Wuhan 
Eiaab Science Co., Wuhan, China, catalogue No. 
E0868r) and (Uscn Life Science Co., Wuhan, China, 
catalogue No. E90584ra), respectively. 

The left kidneys and the remaining parts of 
liver tissues from all groups were removed and fixed 
in 10% neutral buffered formal saline for at least 72 h. 
All the specimens were washed in tap water for half 
an hour and then dehydrated in ascending grades of 
alcohol, cleared in xylene and embedded in soft 
paraffin. Paraffin sections of 5 µm thick were stained 
with haematoxylin and eosin (H&E) [26], for 
histopathological examination. Images were captured 
and processed using Adobe Photoshop version 8.0. 

 

Statistical Analysis 

All the values are presented as means a ± 
standard error of the means (SEM). Comparisons 
between different groups were carried out using one-
way analysis of variance (ANOVA) followed by Tukey 
HSD test for multiple comparisons [27]. GraphPad 
Prism software, version 5 was used to carry out these 
statistical tests. The difference was considered 
significant when p ˂ 0.05. 
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Results 

 

Serum biochemical analysis 

Induction of HRS in rats by a single dose of 
Gal markedly increased SCr and BUN levels on day 
ten by 217% and 372%, respectively. A marked 
decrease in Na+ level by 10% and increase in K+ by 
54% level was also observed in Gal treated rats as 
compared with normal rats. Pretreatment of rats with 
Nebi (10 & 20 mg/kg) led to a significant reduction in 
SCr by 33% and 51% as well as BUN by 41% and 
64%, respectively, compared to Gal group. 
Pretreatment of rats with Nebi (10 and 20 mg/kg) led 
to a significant elevation in Na+ by 8% and 10%, 
respectively, and to a significant reduction in K+ by 
17% and 28%, respectively, compared to Gal group 
(Table 1). 

Table 1: Effects of Nebi on serum levels of creatinine, blood 
urea nitrogen, sodium and potassium 

Parameters 
 
 
Groups 

SCr 
(mg/dl) 

BUN (mg/dl) 
Na

+
 

(mEq/L) 
K

+
 

(mmol/L) 

Normal (Saline) 
0.64 

b 
± 0.04 16.71 

b 
± 0.57 137.86 

b 
± 0.34 3.81 

b 
± 0.09 

Control Gal (1.1 g/kg) 
2.03

a 
± 0.06 78.80 

a  
± 0.59 123.57 

a 
± 0.57 5.87 

a 
± 0.07 

Nebi (10 mg/kg) + Gal 
1.36 

a b 
± 0.02 46.57 

a b   
± 0.65 132.86 

a b 
± 0.34 4.90 

a b 
± 0.03 

Nebi (20 mg/kg) + Gal 
1.00 

a b 
± 0.03 28.29 

a b   
± 0.87 136.00 

a b 
± 0.31 4.20 

a b 
± 0.08 

Saline, rats treated with saline and considered as normal rats; Gal, rats treated with 
galactosamine and served as control; Nebi + Gal, rats treated with galactosamine and 
nebivolol; SCr, serum creatinine; BUN, blood urea nitrogen; Na+, serum sodium; K+, 
serum potassium. Data are presented as mean ± SE, n=12; a Significantly different from 
Saline; p ˂ 0.05; b Significantly different from Gal; p ˂ 0.05. 
 
 

Saline, rats treated with saline and considered 
as normal rats; Gal, rats treated with galactosamine 
and served as control; Nebi + Gal, rats treated with 
galactosamine and nebivolol; SCr, serum creatinine; 
BUN, blood urea nitrogen; Na+, serum sodium; K+, 
serum potassium. Induction of HRS in rats by a single 
dose of Gal markedly increased AST, ALT, NH3 and 
TB levels on day ten by 339%, 432%, 1493% and 
406%, respectively. Pretreatment of rats with Nebi (10 
& 20 mg/kg) notably declined levels of AST by 50% 
and 71%, ALT by 51% and 73%, NH3 by 68% and 
84% and TB by 45% and 62%, respectively, 
compared to Gal group (Table 2). 

Table 2: Effect of Nebi on serum levels of aspartate 
aminotransferase, alanine aminotransferase, ammonia and 
total bilirubin 

Parameters 

Groups 

AST 

(U/ml) 

ALT 

(U/ml) 

NH3 (µg/ml) TB 

(mg/dl) 

Normal (Saline) 23.00 
b 

± 0.62 22.86 
b 

± 0.55 0.58 
b 

± 0.01 0.35 
b 

± 0.01 

Control Gal (1.1 g/kg) 
100.86

a 
± 0.91 121.57

a  
± 0.95 9.24

a 
± 0.24 1.77

a 
± 0.04 

Nebi (10 mg/kg) + Gal 50.14 
a b 

± 0.51 59.43 
a b   

± 0.20 2.99 
a b 

± 0.07 0.97 
a b 

± 0.01 

Nebi (20 mg/kg) + Gal 28.86 
a b 

± 0.34 33.29 
a b   

± 1.13 1.52 
a b 

± 0.04 0.67 
a b 

± 0.01 

Saline, rats treated with saline and considered as normal rats; Gal, rats treated with 
galactosamine and served as control; Nebi + Gal, rats treated with galactosamine and 
nebivolol; AST, serum aspartate aminotransferase; ALT, alanine aminotransferase; NH3, 
serum ammonia; TB, total bilirubin. Data are presented as mean ± SE, n=12. A 
Significantly different from Saline; p ˂ 0.05. B Significantly different from Gal; p ˂ 0.05. 
 

 Induction of HRS in rats by a single dose of 
Gal markedly increased ET-1 levels on day ten by 
759%. Pretreatment of rats with Nebi (10 and 20 
mg/kg) resulted in a significant cutback in ET-1 levels 
by 57% and 73%, respectively, compared to Gal 
group (Table 3). 

Table 3: Effect of Nebi on serum levels of endothelin-1 

Parameters ET-1 (pg/ml) 

Groups  
Normal (Saline) 

10.34 
b 

± 0.33 
Control Gal (1.1 g/kg) 

88.87
a 

± 0.55 
Nebi (10 mg/kg) + Gal 

38.00 
a b 

± 0.82 
Nebi (20 mg/kg) + Gal 

24.29 
a b 

± 0.53 

Saline, rats treated with saline and considered as normal rats; Gal, rats treated with 
galactosamine and served as control; Nebi + Gal, rats treated with galactosamine and 
nebivolol; ET-1, serum endothelin-1. Data are presented as mean ± SE, n=12. A 
Significantly different from Saline; p ˂ 0.05. B Significantly different from Gal; p ˂ 0.05. 

  

 

Renal and liver tissue biochemical 
analysis 

Induction of HRS in rats using Gal obviously 
augmented the normal renal and hepatic MDA 
contents by 493% and 508%, respectively and 
diminished GSH contents by 76% and 78%, 
respectively. Pretreatment of rats with Nebi (10 and 
20 mg/kg) led to a significant dwindle in renal MDA 
contents by 59% and 76% and hepatic MDA contents 
by 57% and 72%, respectively, compared to Gal 
group (Fig. 1a). On the other hand, a recognisable 
rise in renal GSH contents by 71% and 123% and 
hepatic GSH contents by 87% and 136%, 
respectively, were seen as compared to Gal group 
(Fig. 1b). 

 

Figure 1: Effect of Nebi on Kidney and liver contents of MDA (left) 
and Kidney and liver contents of GSH (right). Saline, rats treated 
with saline and considered as normal rats; Gal, rats treated with 
galactosamine and served as control; Nebi + Gal, rats treated with 
galactosamine and nebivolol; MDA, malondialdehyde; GSH, 
reduced glutathione. Data are presented as mean ± SE, n=12. A 
Significantly different from Saline; p ˂ 0.05. b Significantly different 
from Gal; p ˂ 0.05 

  

Induction of HRS in rats using Gal strikingly 
increased the normal renal and hepatic F2-IPs 
contents by 403% and 666%, respectively and 
increased NF-кB contents by 329% and 799%, 
respectively. Pretreatment of rats with Nebi (10 and 
20 mg/kg) led to a significant decline in renal F2-IPs 
contents by 60% and 72% and hepatic F2-IPs 
contents by 42% and 63%, respectively, compared to 
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Gal group (Fig. 2a). Moreover, Pretreatment of rats 
with Nebi (10 and 20 mg/kg) led to a significant drop 
in renal NF-кB contents by 49% and 65% as well as 
hepatic NF-кB contents by 60% and 77%, 
respectively, compared to Gal group (Fig. 2b). 

 

Figure 2: Effect of Nebi on Kidney and liver contents of F2-IPs (left) 
and Kidney and liver contents of NF-кB (right). Saline, rats treated 
with saline and considered as normal rats; Gal, rats treated with 
galactosamine and served as control; Nebi + Gal, rats treated with 
galactosamine and nebivolol; F2-IPs, F2-isoprostanes; NF-кB, 
nuclear factor-кB. Data are presented as mean ± SE, n=12. A 
Significantly different from Saline; p ˂ 0.05. b Significantly different 
from Gal; p ˂ 0.05 

  

Induction of HRS in rats using Gal evidently 
amplified the normal renal and hepatic TNF-α content 
by 950% and 666%, respectively and augmented 
Cas-3 activity by 699% and 629%, respectively. 
Pretreatment of rats with Nebi (10 and 20 mg/kg) led 
to a significant reduction in renal TNF-α contents by 
57% and 73% and hepatic TNF-α contents by 60% 
and 76%, respectively, compared to Gal group (Fig. 
3a). Additionally, Nebi (10 & 20 mg/kg) achieved a 
marked fall in renal Cas-3 activity by 51% and 74% 
and hepatic Cas-3 activity by 57% and 76%, 
respectively, compared to Gal group (Fig. 3b). 

 

Figure 3: Effect of Nebi on (A) Kidney and liver contents of TNF-α 
and (B) Kidney and liver Cas-3 activity. Saline, rats treated with 
saline and considered as normal rats; Gal, rats treated with 
galactosamine and served as control; Nebi + Gal, rats treated with 
galactosamine and nebivolol; TNF-α, tumour necrosis factor-alpha; 
Cas-3, caspase-3. Data are presented as mean ± SE, n=12. a 
Significantly different from Saline; p ˂ 0.05. b Significantly different 
from Gal; p ˂ 0.05 

  

Induction of HRS in rats using Gal markedly 
intensified the normal renal and hepatic NOx contents 
by 533% and 563%, respectively and raised renal & 
hepatic iNOS activity by 592% and 311%, 

respectively. Pretreatment of rats with Nebi (10 and 
20 mg/kg) led to a significant decline in renal NOx 
contents by 58% and 76% and hepatic NOx contents 
by 60% and 78%, respectively, compared to Gal 
group (Fig. 4a). In the same line, pretreatment of rats 
with Nebi (10 and 20 mg/kg) led to a significant 
regression in renal iNOS activity by 63% and 77% and 
hepatic iNOS activity by 56% and 68%, respectively, 
compared to Gal group (Fig. 4b). 

 

Figure 4: Effect of Nebi on (A) Kidney and liver contents of NOx and 
(B) Kidney and liver iNOS activity. Saline, rats treated with saline 
and considered as normal rats; Gal, rats treated with galactosamine 
and served as control; Nebi + Gal, rats treated with galactosamine 
and nebivolol; NOx, nitrite and nitrate, stable metabolites of NO; 
iNOS, inducible nitric oxide synthase. Data are presented as mean 
± SE, n=12. a Significantly different from Saline; p ˂ 0.05. b 
Significantly different from Gal; p ˂ 0.05 

  

Induction of HRS in rats using Gal 
prominently decreased the normal renal HO-1 activity 
by 76% and increased hepatic HO-1 activity by 717%. 
On the other hand, normal renal eNOS activity 
decreased by 52% and normal hepatic eNOS activity 
increased by 903%. Pretreatment of rats with Nebi (10 
and 20 mg/kg) led to a significant surge in renal HO-1 
activity by 86% and 210% and renal eNOS activity by 
53% and 96%, respectively, compared to Gal group. 
On the contrary, pretreatment of rats with Nebi (10 
and 20 mg/kg) led to a significant reduction in hepatic 
HO-1 activity by 56% and 69% in addition to hepatic 
eNOS activity by 67% and 84%, respectively, 
compared to Gal group (Fig. 5 a & b). 

 

Figure 5: Effect of Nebi on (A) Kidney and liver HO-1 activity and 
(B) Kidney and liver eNOS activity. Saline, rats treated with saline 
and considered as normal rats; Gal, rats treated with galactosamine 
and served as control; Nebi + Gal, rats treated with galactosamine 
and nebivolol; HO-1, heme-oxygenase-1; eNOS, endothelial nitric 
oxide synthase. Data are presented as mean ± SE, n=12. a 
Significantly different from Saline; p ˂ 0.05. b Significantly different 
from Gal; p ˂ 0.05 
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Histopathological features of the renal 
and liver tissues 

The renal tissue of the normal rats showed 
the normal histological structure of the glomeruli (g) 
and tubules (t) at the cortex besides the normal 
histological structure of the tubules at the 
corticomedullary portion (cm) (Fig. 6 A & B).  

 
Figure 6: Photomicrographs of renal and liver sections from rats 
treated with the following: Saline (A) & (B) show normal histological 
structure of the glomeruli (g) and tubules (t) at the cortex besides 
the normal histological structure of the tubules at the 
corticomedullary portion (cm) 
 

The liver tissue of the normal rats showed the 
normal histological structure of the portal area (Pa) 
and surrounding hepatocytes (h) besides the normal 
histological structure of the of the central vein (cv) 
(Fig. 7C & D). 

  
Figure 7: Photomicrographs of renal and liver sections from rats 
treated with the following: Saline (C) & (D) show the normal 
histological structure of the portal area (Pa) and surrounding 
hepatocytes (h) besides the normal histological structure of the of 
the central vein (cv) 
 

In rats treated with Gal (1.1 g/kg) and 
sacrificed after 48 h from Gal administration, the renal 
tissues showed a marked congestion in the blood 
vessels (v) and glomeruli (g) associated with 
perivascular edema and inflammatory cells infiltration 
(m) and degeneration in the lining epithelium of the 
tubules (d) in addition to focal hemorrhage in the 
corticomedullary portion (h) (Fig. 8 E & F). 

 
Figure 8: Photomicrographs of renal and liver sections from rats 
treated with the following: Gal (E & F) the renal tissues show a 
marked congestion in the blood vessels (v) and glomeruli (g) 
associated with perivascular edema and inflammatory cells 
infiltration (m) and degeneration in the lining epithelium of the 
tubules (d) in addition to focal hemorrhage in the corticomedullary 
portion (h) (H & E X 40) 

 

In rats treated with Gal (1.1 g/kg) and 
sacrificed after 48 h from Gal administration, the liver 
tissues showed marked diffuse coagulative necrosis in 
the hepatocytes (hn) surrounding the central vein (cv) 
(Fig. 9 G). 

 

Figure 9: Photomicrographs of renal and liver sections from rats 
treated with the following: Gal (G) the renal tissues show a marked 
congestion in the blood vessels and glomeruli (g) associated with 
perivascular edema and inflammatory cells infiltration (m) and 
degeneration in the lining epithelium of the tubules (d) in addition to 
focal hemorrhage in the corticomedullary portion (h), while the liver 
tissues show marked diffuse coagulative necrosis in the 
hepatocytes (hn) surrounding the central vein (cv) (H & E X 16) 
 

The renal tissues of rats with Gal-induced 
HRS that were pretreated with Nebi (10 mg/kg/day) 
showed glomerular congestion (g) in addition to 
tubular degeneration (d) with tubular cystic dilation (c) 
in corticomedullary portion (Fig. 9 H & Fig. 10 I). The 
liver tissues of rats with Gal-induced HRS that were 
pretreated with Nebi (10 mg/kg/day) showed 
inflammatory cells aggregation (m), congestion in 
portal vein as well bile duct hyperplasia (bd) in 
association with hepatocellular degeneration (arrow) 
(Fig. 10 J).  

 

Figure 10: Photomicrographs of renal and liver sections from rats 
treated with the following: Nebi (10 mg) + Gal (I & J) the renal 
tissues show glomerular congestion (g) in addition to tubular 
degeneration (d) with tubular cystic dilation (c) in corticomedullary 
portion, while the liver tissues show inflammatory cells aggregation 
(m), congestion in portal vein as well bile duct hyperplasia (bd) in 
association with hepatocellular degeneration (arrow) 
 

The renal tissues of rats with Gal-induced 
HRS that were pretreated with Nebi (20 mg/kg/day) 
showed inflammatory cells infiltration (m) in between 
the tubules of the cortex and congestion in blood 
vessels (v) with focal inflammatory cells infiltration in 
between the degenerated (d) and cystically dilated (c) 
tubules (Fig. 11 K & L).  

The liver tissues of rats with Gal-induced HRS 
that were pretreated with Nebi (20 mg/kg/day) showed 
inflammatory cells infiltration (m) in between the 
degenerated hepatocytes (arrow) in addition to diffuse 
kupffer cells proliferation (arrow) in between the 
hepatocytes (Fig. 12 M & N).  
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Figure 11: Photomicrographs of renal and liver sections from rats 
treated with the following: Nebi (20 mg) + Gal (K & L) the renal 
tissues show inflammatory cells infiltration (m) in between the 
tubules of the cortex and congestion in blood vessels (v) with focal 
inflammatory cells infiltration in between the degenerated (d) and 
cystically dilated (c) tubules. The liver tissues show inflammatory 
cells infiltration (m) in between the degenerated hepatocytes 
(arrow) (H & E X 40) in addition to diffuse kupffer cells proliferation 
(arrow) in between the hepatocytes (H & E X 80) 

 

 

Discussion 

 

A hepatorenal syndrome is a form of 
functional renal impairment due to debilitated renal 
blood flow, which happens typically in kidneys that are 
histologically normal, accompanied with severe 
complications of progressive liver disease and usually 
affects patients with cirrhosis and ascites [28]. 

 

Figure 12: Photomicrographs of renal and liver sections from rats 
treated with the following: Nebi (20 mg) + Gal (M & N) the renal 
tissues show inflammatory cells infiltration (m) in between the 
tubules of the cortex and congestion in blood vessels (v) with focal 
inflammatory cells infiltration in between the degenerated (d) and 
cystically dilated (c) tubules. The liver tissues show inflammatory 
cells infiltration (m) in between the degenerated hepatocytes 
(arrow) (H & E X 40) in addition to diffuse kupffer cells proliferation 
(arrow) in between the hepatocytes (H & E X 80) 
 

The current study revealed a significant 
increase in AST, ALT, NH3 and TB serum levels in 
control positive HRS group compared with the normal 
one, an effect that was documented in earlier studies 
[7, 28, 29]. 

A significant increase in SCr, BUN and K+, as 
well as significant decrease in serum Na+ levels, were 
observed in control positive HRS group compared to 
the normal one. These findings are corroborated by 
previous studies [7, 28, 29]. The pathogenesis of the 
development of renal failure in this model corresponds 
with the mechanisms observed in typical HRS. It 
progresses from damage to the liver parenchyma to 
the development of portal hypertension, enlargement 
of the splanchnic vascular bed, reduction of the 
effective volume of fluid in the systemic circulation, 
and subsequent vascular baroreceptor stimulation, 

followed by activation of numerous vasoconstriction 
factors, including the renin-angiotensin system, 
sympathetic nervous system, or arginine vasopressin 
system. These mechanisms lead to renal cortical 
vasoconstriction, renal hypoperfusion and renal failure 
[30]. 

In the present study, rats subjected to Gal 
provoked a significant elevation in serum ET-1 levels 
as compared with normal rats. This is by the 
outcomes of earlier studies [31-35]. Many factors may 
contribute to Gal-induced HRS. Patients who develop 
HRS, particularly in the context of acute liver failure or 
alcoholic hepatitis, have increased circulating 
concentrations of ET-1 [9]. 

In the present work, control positive HRS 
group depicted a significant increase in the renal and 
hepatic content of MDA, with a decrease in GSH 
contents. These results are in harmony with other 
studies [12, 36, 37]. Several mediators implicated in 
the pathogenesis of HRS are regulated through 
products of lipid peroxidation or redox changes in 
signalling pathways. Thus the development of oxidant 
stress may be important in the pathogenesis of HRS 
[38]. 

Moreover, Oxidative stress is markedly 
elevated in chronic liver disease and has gain 
attention as a potentially important factor in altered 
hemodynamics and renal dysfunction in cirrhosis. It 
induces renal vasoconstriction not only by quenching 
NO but also by increasing production of F2-IPs and 
ET-1 in addition to damaging DNA and provoking 
apoptosis [12]. Markedly increased levels of both 
factors in patients with HRS in conjunction with 
increased systemic oxidative stress in cirrhosis raises 
the possibility of a pathogenetic role of oxidative 
stress in HRS [13]. 

In the current work, F2-IPs contents in the 
liver and kidney were drastically boosted in the 
positive HRS group. This finding was by other studies 
[9, 39, 40]. The F2-IPs are formed by lipid 
peroxidation. One of the major F2-IPs formed in vivo, 
namely 8-iso-PGF2. F2-IPs synthesis is increased in 
patients with HRS and denotes increased lipid 
peroxidation [38]. Free-radical-generated F2-IPs also 
stimulates DNA synthesis and the ET-1 expression on 
endothelial cells. F2-IP is a highly potent renal 
vasoconstrictor that selectively increases pre-
glomerular vascular resistance and leads to a 
reduction in the glomerular filtration rate [41]. 

Results of the current study illustrated that 
induction of HRS using Gal produced a substantial 
rise in the renal and hepatic contents of NF-кB, TNF-α 
as well as Cas-3 activity as compared with normal 
animals. The present data are in agreement with 
previous studies [12, 15-17, 35, 42]. It has been well 
recognized that an up regulated inflammatory 
response is a key mechanism of Gal-induced acute 
hepatotoxicity. TNF-α is a pro-inflammatory cytokine 
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secreted by liver kupffer cells as an inflammatory 
response [15]. TNF modulates the necrotic, apoptotic 
and inflammatory pathways in Gal-induced 
hepatotoxicity by activating transcription factors as 
NF-кB [43]. In respect of apoptosis, TNF-α combines 
with TNF-α receptor on the hepatocyte membrane 
activates caspase-3 and eventually induces apoptosis 
at an early stage through a series of signal 
transmission [16]. 

In the present study, rats subjected to Gal 
showed a significant elevation in the renal and hepatic 
contents of NOx besides iNOS activity. These results 
are consistent with prior studies [29, 42, 44-46]. 
Previous findings have shown that NO, a potent 
vasodilator, plays an important role in the 
development of hyperdynamic syndrome and 
peripheral vasodilation during cirrhosis [3]. Increased 
NO level and synthetase activity in patients with liver 
cirrhosis have adverse effects on the functions of 
renal tubules and glomeruli whereas inhibition of NO 
synthetase prevents the development of renal failure 
in an animal model of HRS [47, 48]. NO produced by 
iNOS is reported to have aggravated liver and kidney 
injury, while eNOS expression preserved physiological 
functions [11]. 

Furthermore, in patients with cirrhosis; the 
imbalance between NO and vasoconstrictors such as 
ET-1 in the renal microcirculation has been proposed 
to be responsible for the deterioration of kidney 
function in these patients [10]. Additionally, 
endotoxemia up-regulates inducible forms of HO-1 
and iNOS. Inducible NOS is primarily found in Kupffer 
cells and hepatocytes. Once activated, it can produce 
up to 1000 times more NO than eNOS. Inducible 
NOS-induced NO production is believed to play an 
important role in hepatocellular injury following 
endotoxemia and TNF-α stimulation [17]. 

Previous studies also revealed that the 
transcription factor NFкB plays an important role in the 
induction of iNOS because an NFкB binding site has 
been identified in the promoter region of the iNOS 
gene and that blocking NFкB results in an attenuation 
of iNOS gene expression. Furthermore, ET-1 has 
been shown to activate NFкB in human 
myofibroblastic hepatic stellate cells [17]. 

In the present investigation, hepatic HO-1 in 
addition to eNOS activities were elevated, 
nevertheless all at once renal HO-1 besides eNOS 
activities were declined in Gal treated rats as 
compared with the normal group. A similar pattern 
coincided with previous studies [14, 49-53]. 

Excessive oxidative stress has been 
suggested as a reason for hepatic HO-1 up-
regulation, and this enzyme is known to be readily 
inducible by stressors [54]. On the other hand, 
previous studies denoted that decreased renal HO-1 
expression plays an important role in the 
pathogenesis of experimental HRS [14]. 

HO-1 has constitutive and inducible isoforms 
[55, 56]. HO-1, a 32-kDa inducible protein [57], 
catalyses the rate-limiting step in the oxidative 
degradation of heme to biliverdin, releasing equimolar 
amounts of CO and iron [55]. CO, a gaseous 
messenger similar to NO, mediates various 
physiological functions [58] including vasodilation [59]. 
HO-1 activity is the primary source of circulating CO 
[60], and HO-1 contributes to vasodilation mainly 
through HO-1-derived CO [61]. Thus, the declined 
HO-1 expression in the kidney may be responsible for 
a decrease in vasodilation. Also, oxidants can cause 
localised renal vasoconstriction [62]. Therefore, the 
antioxidant action of HO-1 and its products can 
preserve renal arterial blood flow. Decreased HO-1 
expression in the kidney of Gal rats impairs their 
ability to buffer locally produced oxidants, thus leading 
to decreased renal arterial blood flow and deteriorated 
renal function. Additionally, eNOS expression follows 
a similar, tissue-specific pattern with HO-1 expression. 
Decreased eNOS and HO-1 expression in the 
kidneys, results in reduced amounts of NO and CO 
available resulting in renal vasoconstriction and 
reduced RBF occurring during cirrhosis [63]. Taken 
together, decreased HO-1 and eNOS expression in 
kidney plays an important role in the pathogenesis of 
experimental HRS [14]. 

Surprisingly, the HO-1 level was significantly 
higher in livers of Gal group, suggesting that there is 
more CO in the hepatic circulation [64]. It is possible 
that during cirrhosis the up-regulation of systemic CO 
resulting from increased HO-1 protein expression in 
the liver may also reduce HO-1 protein expression in 
the kidney due to a negative-feedback loop in an 
attempt to restore circulatory integrity [53]. 

Previous studies showed that over-expression 
of HO-1 could be harmful to the liver of rats with 
cirrhosis induced by bile duct ligation [14], which was 
also reported by [65]. In normal Sprague-Dawley (SD) 
rats, increased HO-1 activity as a pro-oxidant 
mechanism resulted in iron accumulation in the liver 
and increased portal pressure through hyperdynamic 
circulation and vasodilation; in contrast, decreased 
HO-1 activity reduced intracellular iron levels and 
oxidative stress besides reducing portal pressure and 
improving fibrosis [66]. 

HO-1 catalyses heme into iron and plays an 
important role in iron homeostasis. High levels of HO-
1 could result in the accumulation of free divalent iron, 
thus increasing oxidative injury in fibroblast cell 
cultures [49]. Deposition of iron in the liver often 
triggers oxidative stress and inflammation and induces 
liver cell damage to membranes, proteins, and DNA 
[52]. 

Endothelial dysfunction is concomitant with 
changes in vascular structure associated with many 
forms of vascular diseases, such as portal 
hypertension, occurring in all forms of liver injury. This 
is associated with abnormal production of eNOS. 
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eNOS is up regulated by various mechanisms; 
including phosphorylation, subcellular localisation, and 
protein-protein interactions [67]. A large number of 
studies demonstrated that heat shock protein 90; a 
stress protein, interacting with eNOS plays a role in 
excessive NO production in the rat superior 
mesenteric artery [68]. 

Normal eNOS localisation is dramatically 
altered in endothelial cells of mesenteric arteries 
isolated from cirrhotic rats with portal hypertension. In 
those vessels, the Golgi localisation is lost, and eNOS 
diffuses within the cells and migrates more toward 
plasma membrane [69]. 

The severity of portal hypertension seems to 
be an important factor that influences eNOS activation 
in the splanchnic circulation. Initially, high portal 
pressure induces vasoconstriction in arterial 
splanchnic circulation due to a myogenic reflex 
caused by a sudden increase in portal pressure, 
which then causes phosphorylation and activation of 
eNOS through Akt/protein kinase B activation, 
ultimately leading to increase NO production and 
vasodilatation in the arteries of the splanchnic 
circulation [70]. 

In the current study, there was a significant 
histopathological alteration in the Gal- treated rats. 
The livers extensively displayed diffuse coagulative 
necrosis [35, 71]. In the same line, the kidneys 
revealed congestion in the blood vessels, glomeruli 
associated with perivascular oedema, inflammatory 
cells infiltration, degeneration in the lining epithelium 
of the tubules and focal haemorrhage in the 
corticomedullary portion due to the elevated level of 
ROS and the upshot of pro-inflammatory cytokines 
[42]. 

In the present study, animals treated with 
Nebi (10 & 20 mg/kg) exhibited a significant 
improvement in the liver above and renal function 
tests as compared with the diseased group. These 
findings are in agreement with previous studies using 
Nebi in different models of hepatotoxicity and 
nephrotoxicity [23, 72-74]. Nebi exerts NO-mediated 
vasodilation in the renal vasculature in addition to 
conventional beta-blocking effects. Published data 
indicate that higher doses of Nebi might increase β2 
receptor blocking activity which could be beneficial 
regarding decreasing splanchnic blood flow and portal 
hypertension [75] which was also proved by a 
previous study [76]. 

Current treatment with Nebi showed a 
remarkable drop in ET-1 levels as compared with Gal 
treated rats. Nebi reduced ET-1 levels in human 
pulmonary endothelial cells from pulmonary arterial 
hypertensive lungs [77] and during oxidative stress in 
human umbilical vein endothelial cells [20]. Moreover, 
Nebi can reduce ET-1 secretion in human coronary 
endothelial and smooth muscle cells [78]. Moreover, 
an in-vivo study demonstrated that Nebi suppresses 

ET-1-mediated vasoconstrictor tone in adults with 
elevated blood pressure [79]. 

Obtained data in the current study showed 
that animals treated with Nebi revealed an obvious 
enhancement in the oxidative stress markers in both 
kidney and liver. This is manifested by a significant 
decreased in renal and hepatic MDA, F2-IPs contents 
in addition to a significant increase in the antioxidant 
pool of GSH contents. Recently, it was reported that 
Nebi showed marked amelioration of oxidative stress 
induced in different models of hepatic and renal injury 
[23, 72, 74, 80, 81]. Moreover, [82] et al. 
demonstrated that Nebi exerts systemic antioxidant 
effects through significantly decreasing the urinary 
excretion of the 8-iso-PGF2α (one of the major F2-
IPs). Nebi's antioxidant activity is due to a reduction of 
ROS produced by an NADPH oxidase system that 
makes an important contribution to oxidative stress by 
uncoupling eNOS [83]. Increased tissue levels of ROS 
diminish the bioactivity of NO by conversion of locally 
released NO to peroxynitrite (ONOO−), which itself 
contributes to tissue injury and oxidative stress [84]. 
Nebi reduces the NO-scavenging radical superoxide 
anion, by redirecting deranged NOS activity, from 
superoxide to NO production, thereby reducing lipid 
peroxidation and oxidative stress [85]. Also, increase 
in GSH may be ascribed to the observed increase in 
HO-1 expression as HO-1 mediates an increase in 
GSH levels [86] and modulates iNOS [87]. By 
decreasing oxidative stress, Nebi inhibits NF-кB 
activation, which leads to the decrease of various pro-
inflammatory cytokines [88]. 

In the present study, the effect of Nebi on 
renal and hepatic TNF-α contents is consistent with 
the results of [20] et al. who found that Nebi 
significantly reduced the oxidative stress-induced 
TNF-α gene expression in human umbilical vein 
endothelial cells. Furthermore, Nebi down-regulated 
TNF-α gene expression in human coronary artery 
smooth muscle cells [88]. On the other hand, Nebi 
decreased case-3 immuno-reactivity in cerebral 
ischemia/reperfusion in rats [89]. 

Surprisingly, the NO releaser, Nebi, in the 
present study reduced the hepatic and renal total NOx 
contents which increased with Gal administration. 
Likewise, hepatic and renal iNOS activities were 
significantly reduced in the presence of Nebi. This 
finding attracts attention that the source of such NOx 
increase occurred with Gal; it seems that the major 
spring of NOx is iNOS which was weakly expressed 
with Nebi treatment. Quantities of NO generated by 
eNOS is small while large amounts of NO are 
generated by iNOS [74]. It was reported that Nebi 
enhanced eNOS expression and reduced iNOS 
expression [90]. It is also known that sustained iNOS-
mediated NO generation may mediate lipid 
peroxidation and pro-apoptotic effects [74]. 

Current treatment with Nebi markedly 
increased expression of renal eNOS and HO-1 
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activities as compared to HRS group which were 
weakly expressed with Gal toxicity. Decreased eNOS 
and HO-1 expression in the kidneys, resulted in 
reduced amounts of NO and CO available resulting in 
renal vasoconstriction and reduced RBF occurring 
during HRS which was counteracted by Nebi. On the 
other hand, Nebi noticeably diminished hepatic eNOS 
and HO-1 activities which were strongly conveyed in 
Gal toxicity. Previous studies showed that over-
expression of HO-1 could be harmful to the liver of 
rats with cirrhosis induced by bile duct ligation [14], 
which was also reported by [65]. In normal Sprague 
Dawley (SD) rats, increased HO-1 activity as a pro-
oxidant mechanism resulted in iron accumulation in 
the liver and increased portal pressure through 
vasodilation; in contrast, decreased HO-1 activity 
reduced intracellular iron levels and oxidative stress 
besides reducing portal pressure and improving 
fibrosis [66]. Endothelial dysfunction is associated with 
many forms of vascular diseases, such as portal 
hypertension, occurring in all forms of liver injury. 
During endothelial dysfunction, hyperactive 
endothelial cells are observed in patients with portal 
hypertension. This is associated with abnormal 
production of an endothelial cell-derived eNOS [67]. 
All this consequence was reversed with Nebi 
treatment. 

In this experiment, there was a significant 
histopathological improvement in the liver and kidney 
of the Nebi (both doses) treated HRS group showing 
little glomerular congestion and minute tubular 
degeneration with tubular cystic dilation in a 
corticomedullary portion in kidney and congestion in 
portal vein as well as bile duct hyperplasia in the liver 
due to the decreased level of ROS and the down-
regulation of pro-inflammatory cytokines [91]. 

Finally, the present study has highlighted for 
the first time, the possible mechanisms responsible for 
Nebi mediated HRS improvement and its antioxidant 
action. These findings support its useful effect in the 
prevention of HRS in patients with advanced liver 
diseases or as an add-on medication with known anti-
HRS therapy. 

In conclusion, the present study revealed that 
treatment of rats with Nebi (10 or 20 mg/kg/day, p.o.) 
protected against renal and hepatic damage involved 
in Gal-induced HRS. The findings demonstrated the 
involvement of the anti-oxidant, anti-inflammatory, 
anti-apoptotic and NO-releasing properties of this drug 
and suggested its involvement in the renoprotective 
and hepatoprotective effect in Gal-induced HRS 
model?  
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