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Abstract

Background: The brain is a major site of microRNA (miRNA) gene expression, but the spatial expression patterns of miRNAs
within the brain have not yet been fully covered.

Methodology/Principal Findings: We have characterized the regional expression profiles of miRNAs in five distinct regions
of the adult rat brain: amygdala, cerebellum, hippocampus, hypothalamus and substantia nigra. Microarray profiling
uncovered 48 miRNAs displaying more than three-fold enrichment between two or more brain regions. Notably, we found
reciprocal expression profiles for a subset of the miRNAs predominantly found (. ten times) in either the cerebellum (miR-
206 and miR-497) or the forebrain regions (miR-132, miR-212, miR-221 and miR-222).

Conclusions/Significance: The results indicate that some miRNAs could be important for area-specific functions in the
brain. Our data, combined with previous studies in mice, provides additional guidance for future investigations of miRNA
functions in the brain.
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Introduction

MicroRNAs (miRNAs) are a group of small 19–24 nt non-

coding RNAs that control protein levels through inhibition of

mRNA translation or stability [1,2]. Over-expression or knock-

down of individual miRNAs has shown that miRNAs can affect

the mRNA levels of many genes [2–4]. It has therefore been

suggested that a miRNAs may affect several cellular processes and

be involved in punctual control of the cellular state and the

precision of developmental processes [5].

A relatively large number of the known miRNAs are expressed

in the mammalian brain [6,7], but very little is known about the

functions regulated by these brain-expressed miRNAs. Some

studies have shown an involvement of miRNAs (e.g. miR-9a and

miR-124) in neuronal development and differentiation [8–10].

Conditional deficiency of the miRNA maturation enzyme Dicer in

the developing mouse telencephalon leads to postnatal death due

to hypotrophy of neurons and neurogenic progenitors, whereas

Dicer ablation has a far smaller effect in the neural stem-cells [11].

Likewise, disruption of Dicer is also associated with the

degeneration of cerebellar Purkinje cells and the development of

ataxia in mice [12]. miR-132 has also been related to neuronal

morphogenesis [13,14], and both miR-132 and miR-219 have

been shown to modulate the circadian clock [15]. Other studies

have indicated that some miRNAs are involved in synapse

functioning [16–18].

Interestingly, several miRNAs have been shown to be involved

in neurological and psychiatric diseases. We have previously

shown associations between schizophrenia and SNPs located in the

vicinity of the mir-206/mir-133b cluster and mir-198 [19].

Furthermore, miR-133b is involved in the maturation and

function of the midbrain dopaminergic neurons that malfunction

in patients with Parkinson’s disease [15,20]. Recently, miR-219

has been shown to target calcium/calmodulin-dependent protein

kinase II gamma subunit [21], which is involved in N-methyl-d-

aspartate glutamate receptor-mediated signalling and implicated

in schizophrenia. Moreover, the mir-175 locus is localized within

the candidate region for the Waisman syndrome (early-onset

parkinsonism) and X-linked mental retardation [22]. Finally, the

DGCR8 gene positioned at chromosome 22q11, which is a strong

susceptibility region for schizophrenia, is involved in miRNA

maturation [23]. Thus, the presence of miRNAs in adult brain

tissues and their association with brain dysfunctions indicate that

some miRNAs are involved in maintaining the functions of the

brain, not only during development, but also throughout life [24].

The brain is the most complex tissue in the mammalian

organism, and it shows both regional and left-right subdivision in

function and anatomy in many structures. This is well-known in

humans [25], but there is accumulating evidence of functional

asymmetries and associated anatomical lateralization of the left

and right brain hemispheres also among non-primates within the

vertebrate lineages (amphibians, birds, fish, mammals and reptiles)
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[26–28]. At the molecular level, hemispheric asymmetry in mRNA

expression has been reported both between the left and right

hippocampus in rats [29] and in the developing human and mouse

cortex [30].

The functions of brain-expressed miRNA have been investigat-

ed in recent years, but the detailed mapping of miRNA expression

patterns in the brain is sparse and the functions of most of the

miRNAs in normal brain tissue still remain to be elucidated. Their

regulatory properties, the pleiotrophic effects they are assumed to

have, and their high abundance in the brain indicate that miRNAs

may be involved in area-specific functions of the adult rat brain.

So we investigated whether brain-expressed miRNAs are equally

abundant in various brain regions in unstimulated male rats.

Materials and Methods

2.1 Samples
Adult male Sprague-Dawley rats (obtained from Taconic,

Denmark) were sacrificed by decapitation. The brain was quickly

removed and samples were immediately dissected on a cold

surface, snap-frozen in pulverized dry ice, and stored at 280uC
until further processing. For each animal, 3–4 brain regions were

dissected from the right and left hemispheres separately. In total,

samples from 6 different brain regions were obtained and each

brain region was sampled from a total of 4 animals.

The rat brain stereotaxic atlas was used for identification and

delineation of brain regions (Paxinos and Watson) [31]. The

hippocampus was exposed by removal of the cortex and the entire

hippocampal structure was dissected out. The prefrontal cortex

was dissected from a 1 mm slice (centered around Bregma

3.2 mm). An area delineated by the upper and lower part of the

forceps minor corpus callosum was dissected from the slice. The

hypothalamus and the amygdala were sectioned from a 1 mm slice

centered around Bregma 23.14 mm. We used the internal capsule

and the mammillothalamic tract to delineate the hypothalamus.

We used the mammillothalamic tract, the piriform cortex and the

optic tract to delineate the amygdaloid region (AM). An area of the

ventral mesencephalon enriched with substantia nigra was

dissected from a ,0.8-mm slice centered around Bregma

25.20 mm. This region was delineated by the horizontal midline

of the mesencephalon and the lateral border of the mesenceph-

alon. The medial third of the slice was removed (with section lines

parallel with the dorsoventral midline). The cerebellum was

dissected as a whole.

All animals were handled in strict accordance with good animal

practice under licence from the Danish Animal Experimentation

Inspectorate and following the guidelines of the European Commu-

nities Council Directive of 24 November 1986 (86/609/EEC).

2.2 RNA isolation
Frozen samples were quickly homogenized in QIAzol Lysis

Reagent (Qiagen, Germany) and the ,200 nt RNA fraction

(including miRNAs) was immediately extracted using the RNeasyH
Lipid Tissue Mini Kit (Qiagen, Germany) following the modified

protocol which enables purification of miRNA and total RNA

from the same sample in subsequent steps.

2.3 miRNA array hybridization and analysis
The NCodeTM Multi-Species miRNA Microarray dual-colour

system V2 (Invitrogen, Carlsbad, CA, USA) was used for miRNA

expression analysis. These miRNA microarrays can detect all

known mature miRNAs in mirBase 9.0 and include specific probes

for 236 known rat miRNAs. Each probe is spotted in triplicate on

each array. All samples were hybridized against a human brain

universal reference RNA sample (AM6051, Applied Biosystems,

Foster City, CA, USA). This design allowed for comparison

between hemispheres as well as regions. Each miRNA sample

(600 ng) was poly-A tailed and tagged with the sequence tag for

Alexa FluorH 5 fluorophor using the NCodeTM miRNA Labeling

System (Invitrogen, Carlsbad, CA, USA), while the universal

reference RNA was labelled using Alexa FluorH 3. Samples were

hybridized against the reference to NCodeTM Multi-Species

miRNA Microarrays (Invitrogen, Carlsbad, CA, USA) overnight

using the NCodeTM Multi-Species miRNA Microarrays Kit

(Invitrogen, Carlsbad, CA, USA) and following the instructions

given by the manufacturer. Arrays were then hybridized with

Alexa FluorH 3 and Alexa FluorH 5 capture reagents and washed.

Hybridization was performed on a MAUI hybridization station

(BioMicro Systems, Inc, Salt Lake City, UT, USA). Each array

was subsequently scanned using an Agilent DNA microarray

scanner, and images were processed using the GenePix Pro

software (Molecular Devices, Sunnyvale, CA, USA).

Data analyses were conducted using the freely available

statistical program ‘‘R’’ and several packages from the Biocon-

ductor project. The LIMMA package [32–34] was used for

normalization and differential expression analysis of the micro-

array data. Raw data were background-adjusted using the

‘‘normexp’’ correction method with an offset of 50. Print-tip-loess

normalization was subsequently used to adjust data within each

array as recommended by Hua et al [35] for miRNA cDNA

arrays. To allow for comparisons between arrays, we used

Gquantile normalization. The Gquantile procedure forces the

intensities obtained from the green channel (the signal from the

universal reference) to the same value for all the arrays and adjusts

the signal from the red channel (the samples under investigation)

accordingly. The signals from replicate spots within each array

were averaged for the subset of probes that are specific for rats

(n = 236) and a linear model was fitted for each of these rat-specific

miRNAs. The Benjamini and Hochberg (BH) method was used to

control the false discovery rate [36] and thereby adjust for multiple

testing of several miRNAs at the same time. A transcript was

considered present if the probe signal was at least double that of

the background, which corresponds to a raw signal of 100 units.

The data has been deposited in NCBI’s Gene Expression

Omnibus [37] with the accession number GSE16725 and can

be accessed at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE16725. The within-region variability of selected miR-

NAs were calculated as the standard deviation (sd) of the fully

normalized data and the F-test was used to test for equal variances

between individual miRNA and the mean sd of all miRNA within

a region.

To examine the quality of the expression data we performed

unsupervised hierarchical clustering on the fully normalized

expression data using the ‘‘R’’ package’s ‘‘cluster’’, ‘‘bioDist’’

and ‘‘Mfuzz’’ [38] with options for Spearman distribution and

Ward clustering. The branch lengths of a cluster dendrogram are

measures of the distance between the samples and thus a visual

presentation of the variability between samples within and

between regions. Heat maps were used to provide a visual

representation of the relative differences between the various brain

regions (regardless of hemisphere) and were generated in ‘‘R’’

using the ‘‘gplots’’, ‘‘RColorBrewer’’ and ‘‘fields’’ packages. The

heat maps are based on the results obtained from the cluster

analysis and only miRNA genes that showed statistically significant

differences (p,0.01) in expression between two or more regions

after correction for multiple testing by BH and had an absolute

log2 fold-change greater than 10 or a log2 fold-change larger than

3 are represented in the figures.

Brain Expressed miRNA
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2.4 qRT-PCR evaluations of microarray results
For some microRNAs (specified below), a TaqManH Micro-

RNA Assay from Applied Biosystems (AB, Foster City, CA, USA)

was used for qRT-PCR evaluation of the results of the microarray

analyses. The qRT-PCR reactions were performed on the same

RNA samples that were applied to the microarrays. Normalization

was done with miR-103 (part # 4373158) as an endogenous

control and the abundance of each miRNA was determined using

the relative standard curve method. The selected miRNAs were

rno-let-7a (part # 4373169), rno-miR-132 (part # 4373143), rno-

miR-206 (part # 4373092) and rno-miR-320 (part # 4395388).

Reverse transcription was carried out in triplicate with the

TaqManH MicroRNA RT Kit (AB, Foster City, CA, USA) using

the manufacturer’s recommended protocol on each of the 4

biological replicates from the relevant regions and hemispheres

(see Table 1). Real-time PCR was performed in duplicate on an

iCyler real-time PCR instrument (Bio Rad Laboratories Inc, Dr.

Hercules, CA, USA) using 26 Universal PCR Master Mix, no

AmpErase UNG (AB, Foster City, CA, USA). The endogenous

reference (miR-103) was chosen from the microarray expression

data set on the basis of the following criteria: uniform and

relatively high expression levels in all brain regions and

hemispheres. Differences between the two hemispheres were

calculated as a ratio of the average miRNA abundance in the right

and left hemispheres respectively, and two-tailed t-tests were used

to test the hypothesis if there were differences between the right

and left-hand sides of each region.

Results

miRNA profiling in brain regions
Tissue-specific expression patterns can provide important clues

to the physiological function of a miRNA. Comprehensive studies

on miRNA expression throughout the mouse brain have been

published [39,40], but comparable studies in rats are lacking.

Using miRNA gene expression arrays, we measured the expression

of a large set (n = 236 miRNA) of known miRNAs across six

regions of the rat brain. This expression set represents the normal

miRNA expression profile and allowed us to examine global trends

in miRNA gene expression in the brain of adult male rats.

We used hierarchical clustering to examine the quality of the

data from all six brain regions. Samples obtained from the

individual regions were grouped together into clusters that

reflected their biological relationship (Figure 1 and Figure S1).

The variability between the brain regions (measured by the height

of the dendrogram branches) is considerably larger than the

variability within the regions. This suggests that the overall

expression patterns of the miRNA have a tissue-specific signature.

One exception from this pattern was a subset of the samples

obtained from the prefrontal cortex, which were grouped within

the amygdaloid and hippocampus clusters (Figure S1). However,

the sample from the amygdala and the hippocampus were clearly

different and separated into biologically meaningful groups. The

prefrontal cortex is small in rats and samples from this region may

therefore be enriched with tissue from surrounding areas. In view

of the diffused clustering of the samples obtained from the

prefrontal cortex, all samples from this region were excluded from

subsequent analyses. When data from the prefrontal cortex were

omitted, we found that the miRNA expression profiles accurately

distinguished the various regions of the brain (Figure 1). Most

pronounced was the cerebellum, which clustered separately from

the four regions in the forebrain.

Most of the miRNA on the array was detected in all samples

across all regions (mean = 181 miRNAs) and in a majority of cases

only subtle differences were seen between the different regions.

Only 15.3% (36 miRNAs) of the miRNAs had very low

abundances in all regions (with probe signals less than twice the

background). In line with studies in mice and zebra fish, we found

that especially miR-124a and miR-29a were highly abundant in all

regions, whereas the expression levels for miR-9 were more

moderate (data not shown) [7,41–45]. Strong region-specific

expression patterns were seen for a minor set of nine miRNAs,

which showed more than a ten-fold change (p,0.01) in

abundances between regions (Figure 2). Although the relative

abundances of these nine miRNAs were low (i.e. compared to

miR-124a), the transcripts were well above the background levels.

The most pronounced differences in expression patterns among

these nine miRNAs were seen for the miR-221 family members

(miR-221 and miR-222), which showed a cerebellar reduction of

more than 60-fold compared to the hippocampus and the

amygdaloid region. Forebrain enrichment was also seen for the

two members of the miR-132 family (miR-132 and miR-212),

which were also most highly expressed in the hippocampus and

amygdaloid regions. Inversely, miR-206 and miR-497 were

relatively more abundant (.10 times) in the cerebellum compared

with the various forebrain regions, whereas the hypothalamus

clustered separately from the other regions due to the expression of

miR-489, which was nearly absent in the cerebellum and the

hippocampus. The diversity in miRNA expression patterns is

depicted in Figure S2, which shows miRNAs with more than

three-fold region-specific enrichment between any two regions of

the brain. In all, we found moderate (three-fold) region-specific

enrichment of 48 miRNAs (e.g. miR-138, miR-195 and miR-218,

Figure S2).

miR-206 has previously been classified as a muscle-specific

miRNA [46] that is localized to the neuro-muscular junctions and

it has been shown to be regulated by neuronal stimulation of the

muscle fiber [47]. Thus, the presence of miR-206 in the

cerebellum was intriguing and we used qRT-PCR to verify the

presence of this miRNA in the cerebellum, the amygdala and the

hippocampus. The qRT-PCR results showed good correlation to

data from the array analysis with miR-206 being 276 and 396

Table 1. qRT-PCR failed to replicate array data on right/left
miRNAs asymmetry in the brain.

Array data qRT-PCR data

miRNA Region R/L FC P Adj. P R/L ratio P

let-7a hip 0.67 0.007 0.52 1.08 0.95

hyp 1.70 0.0003 0.04 0.71 0.73

miR-132 hip 0.73 0.02 0.78 0.99 0.68

hyp 1.39 0.01 0.48 0.91 0.62

miR -320 hip 0.66 0.005 0.52 1.16 0.52

hyp 1.42 0.02 0.66 0.95 0.42

miR -448 cb 0.46 0.03 1.00 nd nd

hip 2.18 0.04 0.96 nd nd

miR -497 cb 1.61 0.02 1.00 nd nd

hip 1.60 0.02 0.96 nd nd

cb: cerebellum; hip: hippocampus; hyp: hypothalamus; R/L FC: Fold change
between the right and left hemisphere of the given region; P: nominal P-value;
Adj. P: Adjusted P-value corrected for multiple testing by BH; R/L ratio: Ratio of
the relative miRNA expression levels in the right and left hemispheres, nd: not
done.
doi:10.1371/journal.pone.0007225.t001
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more abundant in the cerebellum than in the amygdala and the

hippocampus respectively.

Analyses of asymmetric expression of miRNA in the brain
To investigate whether miRNA expression levels differed

between the two hemispheres, we compared miRNA abundances

of the right and left side of the brain within each region. As shown

in Table 1, nominal differences between the right and left

hemispheres were found for five miRNAs in two regions.

However, the differences were subtle (fold-change less than 2)

and only data for one miRNA (let-7a) were resistant to correction

for multiple testing in one region (the hypothalamus). The within-

region variability of miR-132 (sd = 0.38 and 0.37), miR-320

(sd = 0.38 and 0.44), miR-497 (sd = 0.47 and 0.27) and let-7a

(sd = 0.40 and 0.55) did not differ from the regional average of the

hippocampus (sd = 0.39) and the hypothalamus (sd = 0.43) respec-

tively (P-values from 0.13 to 0.95). However, the variability of

miR-448 in the cerebellum (sd = 1.58) and the hippocampus

(sd = 1.29) did differ from the regional mean (P,0.01).

To examine whether the findings from the array data

represented true right/left differences, we used qRT–PCR to

measure the relative abundance of let-7a, miR-132 and miR-320.

We found no evidence for hemispheric differences in gene

expression levels for either of the miRNAs investigated (Table 1),

which suggests that the minor right/left differences seen in the

array data represent false positive findings.

Discussion

We have characterized the miRNA expression profiles in both

hemispheres of five anatomically distinct brain regions, thus

providing an overview of the miRNA present in the rat brain.

Overall the brain tissues were characterized by having measurable

levels of the majority of the known rat miRNAs. This is consistent

with data on mouse brain tissues published previously [6,7,43].

Differentially expressed miRNAs in five brain regions
Our data provides a detailed map of miRNA brain expression

in rats and shows that there are some differences in the expression

in the cerebellum of a subset of the detectable transcripts, which

are either highly enriched (miR-206 and miR-497) or nearly

depleted (miR-132, miR-212, miR-221 and miR-222). Accumu-

lations of miR-497 in the cerebellum, of miR-7 in the

hypothalamus, and of miR-221 and miR-222 in the hippocampus

have also been described in mice [39] and zebrafish (larval and

adult brain), where miR-222 is expressed in specific groups of

differentiating cells in the rostral parts of the brain [42]. Moreover,

the expression profile for miR-34a overlaps with that reported in

Figure 1. Cluster dendrogram of miRNA expression profiles demonstrates samples grouped according to their biological origin in
the brain of adult male rats. The dendrogram shows that the samples from five brain regions are grouped according to their biological
relatedness, suggesting that the miRNA expression profiles overall contain region-specific information. The branch lengths of the dendrogram are
measures of the difference between samples and show that the within-region variability in miRNA abundances is low compared to the between-
region variability. Average standard deviations of the regional miRNA expression levels are 0.43 (am), 0.37 (cb), 0.39 (hip), 0.43 (hyp) and 0.47 (sn). am:
amygdala; cb: cerebellum; hip: hippocampus; hyp: hypothalamus; sn: substantia nigra.
doi:10.1371/journal.pone.0007225.g001

Brain Expressed miRNA
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zebrafish [42]. In line with previous studies in mice, we also found

moderate enrichment of miR-195 [39,40] in the cerebellum and of

miR-218 in the hippocampus [39] (Figure S2).

In the light of the anatomical and functional differences

between brain regions, miRNA region-specific expression may

not be surprising. However, it is intriguing that the expression of a

subset of the miRNAs appears to be mutually exclusive between

different parts of the brain. The cerebellum is mainly involved in

controlling movement and coordination and the neuronal circuits

in the cerebellar cortex are conserved across most of the vertebrate

lineages [48]. So the distinction of the cerebellum from the

forebrain regions, as seen in the miRNA expression profiles, may

reflect this evolutionary conservation and suggest that some

miRNAs regulate either cerebellar or some forebrain-specific

functions. Indeed, the overlapping expression patterns of miR-222

in zebrafish, mice and rats suggest that this miRNA is important

for some specialized hippocampal functions.

Suggested functions of miRNAs with regional expression
profiles

Some clues to the function of the individual miRNAs may be

deduced from information on their target genes. Most of the known

validated targets for the nine miRNAs that show large regional

differences in their abundances in the rat brain (highlighted in

Figure 2) have been found in tissues and cells outside the central

nervous system. Still, some known miRNA-mRNA relationships

may be worth attention, although precautions should be taken when

extrapolating findings from somatic cells to the brain.

miRNA boundaries: the control of converging pathways?
Some of the miRNAs that we found to be expressed in a

mutually exclusive way between the different brain regions are

regulators of proteins involved in the same molecular processes or

even sharing the same mRNA targets. This suggests that there is

an overlapping functional relationship between some of these

miRNAs.

One example is a potential functional cross-talk between miR-

206 (enriched in the cerebellum) and miR-7 (enriched in the

hypothalamus and amygdala). It has recently been shown that the

insulin-like growth factor 1 (IGF-1) is targeted by miR-206 [49]

and that miR-7 is a repressor of insulin receptor substrate 1 (IRS1)

and 2 (IRS2) [50]. IGF-1 is the cognate substrate for the insulin-

like growth factor 1 receptor (IGF-1R) and receptor binding of

IGF-1 induces autophosphorylation and the recruitment of IGF-

1R adaptor proteins such as IRS1 and IRS2 to initiate the

intracellular signal transduction. IGF-1 and IGF-1R are both

expressed throughout the brain in neurons, astrocytes and in the

vasculature, but circulating IGF-1 also crosses the blood-brain

barrier with high affinity. The close interdependence between the

actions of IGF-1 and IRS1/IRS2 suggests that miR-206 and miR-

7 could be involved in tissue or cell-specific regulation of the

functions mediated by IGF-1-signalling pathways in the brain.

In the brain, the actions of IGF-1 are modulated by estrogen

receptor alpha (ESR1), which directly interacts with several

components of the IGF-1 transduction pathway including IGF-

1R and IRS1 [51]. Interestingly, in vitro studies in breast cancer

cell lines have demonstrated that miR-206 [52–54] represses the

Figure 2. Heat map of miRNAs, displaying more than ten-fold region-specific enrichment between regions in the adult male rat
brain. Overview of the miRNA genes that show statistically significant differences (p = 0.01) in expression levels between two or more regions (after
correction for multiple testing by BH) and have an absolute log2 fold-change greater than 10. The abundance of individual miRNA in each sample is
depicted using a colour code, where relatively high or low abundances of transcripts are shown in red and blue respectively. am: amygdala; cb:
cerebellum; hip: hippocampus; hyp: hypothalamus; sn: substantia nigra.
doi:10.1371/journal.pone.0007225.g002

Brain Expressed miRNA
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translation of ESR1 mRNA. As such, the translational regulation

of ESR1 represents another remarkable functional cross-talk

between miRNAs, which we show to be expressed in a mutually

exclusive manner between the cerebellum (miR-206) and the

hippocampus/amygdaloid regions (miR-221/miR-222).

Strikingly, two of the downstream targets of IGF-1 signalling,

namely connexin 43 and zona occludens 1, are also validated

targets for miR-206 [46,55] and miR-212 [56,57] (depleted from

the cerebellum) respectively. Furthermore, miR-34a (up-regulated

in the cerebellum and the substantia nigra) may modulate the

cellular response to IGF-1 through the regulation of vascular

endothelial growth factor A, which is targeted by miR-34a [58].

The examples outlined indicate that several of the miRNAs that

show mutually exclusive expression patterns in the brain have a

potential functional overlap that converge onto IGF-1 signalling

pathways and downstream targets. Normal brain development

and function depend on IGF-1 signalling in spatial and temporal-

specific patterns, and IGF-1 acts as an autocrine or paracrine

factor to promote proliferation of neuronal progenitors, neuronal

and oligodendrocyte differentiation and survival [59]. Moreover,

IGF-1 stimulates glucose uptake by nerve terminals, homeostasis,

and anabolic processes, and it is also strongly induced in astrocytes

in response to central nervous system injury [60].

Multiple levels of regulation may be necessary to shift the action

of IGF-1 toward the required function. The required functions

may depend on the micro-environmental conditions, cell type, or

subcellular localization, and the differential expression of regula-

tory miRNAs may facilitate the process for obtaining strict tissue-

specific and timely control of such functions.

Supporting Information

Figure S1 Cluster analysis demonstrating miRNAs grouped

according to their regional expression profiles in adult male rat

brain including samples from the prefrontal cortex. The dendro-

gram shows that the samples from six brain regions are grouped

according to their biological relatedness except samples from

prefrontal cortex (pfc). The branch lengths of the dendrogram are

measures of the difference between samples and show that the

within-region variability in miRNA abundances is low compared to

the between-region variability. am: amygdala; cb: cerebellum; hip:

hippocampus; hyp: hypothalamus; sn: substantia nigra.

Found at: doi:10.1371/journal.pone.0007225.s001 (2.39 MB

DOC)

Figure S2 Heat map highlighting genes showing more than

threefold difference in miRNA abundances between regions in

adult male rat brain. Genes that showed statistical significant

differences (p = 0.01) in expression between two or more regions

after correction for multiple testing by BH and had an absolute

log2-fold-change greater than 3 are represented. am: amygdala;

cb: cerebellum; hip: hippocampus; hyp: hypothalamus and sn:

substantia nigra.

Found at: doi:10.1371/journal.pone.0007225.s002 (2.39 MB

DOC)
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