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Abstract
To provide optional force and speed control parameters for brain–computer interfaces (BCIs), an effective feature extrac-
tion method of imagined force and speed of hand clenching based on electroencephalography (EEG) was explored. Twenty 
subjects were recruited to participate in the experiment. They were instructed to perform three different actual/imagined 
hand clenching force tasks (4 kg, 10 kg, and 16 kg) and three different hand clenching speed tasks (0.5 Hz, 1 Hz, and 2 Hz). 
Topographical maps parameters and brain network parameters of EEG were calculated as new features of imagined force 
and speed of hand clenching, which were classified by three classifiers: linear discrimination analysis, extreme learning 
machines and support vector machines. Topographical maps parameters were better for recognition of the hand clenching 
force task, while brain network parameters were better for recognition of the hand clenching speed task. After a combination 
of five types of features (energy, power spectrum of the autoregressive model, wavelet packet coefficients, topographical 
maps parameters and brain network parameters), the recognition rate of the hand clenching force task was 97%, and that of 
the hand clenching speed task was as high as 100%. The brain topographical and the brain network parameters are expected 
to improve the accuracy of decoding the EEG signal of imagined force and speed of hand clenching. A more efficient brain 
network may facilitate the recognition of force/speed of hand clenching. Combined features could significantly improve the 
single-trial recognition rate of imagined forces and speeds of hand clenching. The current study provides a new idea for the 
imagined force and speed of hand clenching that offers more control intention instructions for BCIs.

Keywords  Brain-computer interfaces · Microstate · Topography · Brain network · Imagined force and speed of hand 
clenching

Introduction

Brain-computer interfaces (BCIs) are a revolutionary 
human–computer interaction (Remsik et al. 2016; Zhang 
et al. 2016; Ahn and Jun 2015) that are expected to provide 
potential communication and control applications for spe-
cific patients or specific scenes (Baykara et al. 2016; Yin 

et al. 2015a, b; Ang et al. 2015). At present, the practical 
technology of BCIs still needs to narrow the gap between 
research and the real world.

The motor imagery BCIs is an important aspect of the 
BCIs paradigm (He et al. 2015), which is driven by the 
implicit psychological activity of the subjects, in which an 
EEG signal is readily detectable in healthy (Yuan and He 
2014), as well as disabled, individuals with neuromuscular 
diseases or injuries, including spinal-cord injury, amyo-
trophic lateral sclerosis (ALS), and stroke (He et al. 2013). 
Many efforts have been devoted to using BCIs to interface 
with physical devices by bypassing the neuromuscular 
pathways, including virtual helicopters (Doud et al. 2011), 
physical quadcopters (LaFleur 2013), wheelchairs (Tanaka 
et al. 2005; Carlson and Millan 2013a) and telepresence 
robots (Carlson et al. 2013b). These BCIs have the poten-
tial to restore lost or impaired functions of people severely 
disabled by various devastating neuromuscular disorders or 
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spinal-cord damage and to enhance or supplement functions 
in healthy individuals (He et al. 2015).

Many studies have demonstrated that the neural activ-
ity before or during exercise encodes direction, speed, and 
other information about movement (Aschersleben 2002; 
Kopp et al. 2000; Gerloff et al. 1998; Gu et al. 2009a, b, c; 
Nascimento and Farina 2008; Farina et al. 2007; Yuan and 
He 2014). So far, researchers have proposed many methods 
to extract EEG patterns of motor imagery, such as Energy 
(Gu et al. 2009a; Li et al. 2004; Fu et al. 2017; Yin et al. 
2015a, b; Sun et al. 2015), Hilbert–Huang transform (Fu 
et al. 2017; Yin et al. 2015a, b; Sun et al. 2015), Autoregres-
sion (AR), Adaptive autoregression (AAR) (Schlögl et al. 
1997; D’Croz-Baron et al. 2012; Yom-Tov and Inbar 2002), 
Wavelet transform (WT), Wavelet package transform (WPT) 
(Zhou et al. 2012, Hsu 2010; Farina et al. 2007), Common 
spatial pattern (CSP) (Yang and Hu 2013), EEG source 
imaging (ESI) (He et al. 2015; Edelman et al. 2016), entropy 
(Wang et al. 2012), EEG microstate (Biasucci et al. 2011; 
Pirondini et al. 2017; Minguillon et al. 2014) and some other 
methods (Yom-Tov and Inbar 2002; Jochumsen et al. 2013).

Based on these features, certain classification accuracies 
are obtained, but the accuracy and stability of recognition 
need to be improved greatly for the actual application. The 
functional states of the brain are constantly changing, and 
the EEG signal has a high time resolution, which enables it 
to detect the instantaneous states of the brain. Microstate 
analysis is one of the methods of analyzing the instantaneous 
states of the brain, which defines the states of the multichan-
nel EEG signals by spatial topographies of electric potentials 
over the electrode array (Lehmann et al. 1987). When the 
EEG signal is considered as a time series of topographies, 
there are two remarkable properties. First, although there 
are a large number of topographies of an EEG signal, the 
majority of signals can be represented by few maps. Second, 
a single topography remains dominant for approximately 
80–120 ms before abruptly transitioning to another topogra-
phy. These periods of quasi-stability of a single topography 
are microstates. Thus, the multichannel EEG signals could 
be represented by a series of microstates at discrete intervals 
(Khanna et al. 2014).

At present, there are more studies on the microstate 
analysis of resting-state EEG (Khanna et al. 2015), such as 
behavioral states (Lehmann et al. 2010), personality types 
(Schlegel et al. 2012), neuropsychiatric disorders (Kikuchi 
et al. 2011), sleep classes (Brodbeck et al. 2012), and per-
ceptual awareness (Britz et al. 2014). However, there are few 
studies on the microstate analysis of task-state EEG, such as 
auditory stimulation (Ott et al. 2011) and visual stimulation 
(Antonova et al. 2015). Studies on the motor imagery task 
for BCI are much fewer, such as executing motor imagery of 
the affected and unaffected hands of stroke patients’ (Bias-
ucci et al. 2011) pure planar reaching movements as well as 

reaching and grasping of different objects (Pirondini et al. 
2017; Minguillon et al. 2014). There is scant research on 
the microstate analysis of actual/imagined hand clenching 
force/speed based on EEG, and there is even scanter research 
on the further application of the single-trial recognition of 
hand clenching force and speed. Therefore, this study used 
topographical maps parameters to identify the hand clench-
ing force and speed of the single trial.

In addition to the above, functional differentiation and 
integration of the human brain are the two major organiza-
tional principles of human brain function (Liang et al. 2010). 
Although different regions of the brain have relatively dif-
ferent functions, completing a very simple task also requires 
interaction and mutual coordination of multiple different 
functional regions, and these brain regions together consti-
tute a complete network; that is, the execution of the brain 
function always depends on extensive interaction of multi-
ple brain regions. The complex network analysis based on 
graph theory, an effective method for studying neural con-
nections or functional connections between the brain regions 
which has greatly promoted the understanding of the human 
brain network’s organization pattern, is an areas of intense 
research in neuroscience (Liang et al. 2010; Jiang et al. 
2009; Zhang et al. 2015a, b; Zhang et al. 2013; Xu et al. 
2014; Laufs et al. 2012; Li et al. 2016). “Node” and “edge” 
are two important concepts in graph theory. Therefore, the 
two steps of building the brain network are as follows: defi-
nition of network nodes and network connections. For EEG 
recording, the electrodes are used as network nodes, and 
various measures, such as correlation, synchronization like-
lihood, and coherence, can be used to calculate their func-
tional connectivity (Rubinov and Sporns 2010; Vinck et al. 
2011; Qin et al. 2010; van den Heuvel et al. 2009). Partial 
directed coherence (PDC) analysis is often used to research 
the directional relations between multichannel time series, 
which was put forward by Baccalá and Sameshima (2001) to 
describe the directed relationship between the multivariate 
time series. Many researchers have constructed EEG net-
works using PDC for post-stroke depression (Wang et al. 
2015), cognitive load (Chen et al. 2015), seizure (Gang 
et al. 2016), and somatosensory vibration (Ma et al. 2016). 
These studies inspired us to adopt a brain network to analyze 
actual/imagined hand clenching force/speed based on EEG. 
The functional connection between the brain regions, which 
reflects the changes in brain activity and the integration of 
function during the execution or motor imagery period, may 
be probably employed to identify the force/speed of hand 
clenching.

Aiming at the single-trial recognition of the actual/imag-
ined force and speed of hand clenching, we for the first time 
tried to use the topographical maps parameters and the 
brain network parameters as new characteristics of EEG to 
improve the recognition accuracy. In addition, the traditional 
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features (energy, power spectrum of AR and wavelet packet 
coefficient) were also extracted for a comparative study. 
After constructing the EEG eigenvectors, three classifiers 
of LDA, extreme learning machines (ELMs) and SVM were 
used to identify the new feature vectors. The current study 
was expected to provide an additional force-control and 
speed-control intention instruction for the motor imagery 
BCI system and to provide some inspiration for the realiza-
tion of more advanced brain-control robots.

Materials and Methods

Subjects

Twenty healthy subjects (12 males and 8 females, with an 
average age of 22.8 ± 5.1 years and an undergraduate and 
master’s degree) were enrolled in EEG data acquisition. All 
subjects were right-handed and had no history of sensorimo-
tor impairment or mental illness that affected brain function. 
Before the experiment, they gave informed consent for the 
study, which was approved by the Research Ethics Board 
of the Kunming University of Science and Technology, and 
were given a motor imagery aptitude test questionnaire.

Experimental Protocol

For the hand clenching force task, the subjects were 
instructed to execute/imagine three different forces (4 kg, 
10 kg and 16 kg) involving the right hand, measured by a 
grip force scale for executing hand clenching forces during 
the training and the formal EEG signals acquisition. For the 
hand clenching speed task, the subjects were instructed to 
execute/imagine three different speeds (0.5 Hz, 1 Hz and 

2 Hz) involving the right hand using a comfortable force, 
paced by metronome during the training and the formal EEG 
signals acquisition. During the experiment, myoelectricity 
(EMG) was collected simultaneously to reflect the changes 
of executing hand clenching force/speed, illustrated in Fig. 1, 
in which the EMG lasted one second at rest, seven seconds at 
executed force/speed period, and there were no recordings at 
imagined task. EMG electrode was placed at the ventral side 
of forearm approximately five centimeters from the wrist.

During the experiment, the subjects were seated in a com-
fortable chair and asked to remain calm. Each subject at each 
force or speed task participated in three sessions, and each 
session involved 30 trials (10 trials for 4 kg, 10 kg and 16 kg 
forces respectively or 10 trials for 0.5 Hz, 1 Hz and 2 Hz 
speeds respectively). The imagined tasks followed executed 
tasks. Figure 2 illustrates the timing diagram of a single trial 
for executed/imagined force/speed of hand clenching.

A beep sound indicated the beginning of each trial, and 
simultaneously a cross (+) was displayed in the center of 
the screen for 2 s, during which the subjects were asked to 
remain relaxed and be ready for the trial. Then, a cue in the 
form of a picture appeared on the white screen indicating 
the force of a hand clenching performance/imagination of 
4/10/16 kg or a speed of 0.5/1/2 Hz. The sequence of forces/
speeds was randomized. The cue lasted 1.5 s, and the sub-
jects were instructed to get ready for actual/imagined hand 
clenching force/speed. The subjects began to execute the 
cued task when the cued picture disappeared from the screen 

Fig. 1   EMG of hand clenching forces at 4 kg, 10 kg, and 16 kg and speeds at 0.5 Hz, 1 Hz, and 2 Hz

Fig. 2   Timing schematic diagram of executed/imagined force/speed 
of hand clenching
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and a black star-shaped fixation cursor appeared on the white 
screen. The task was maintained for a period of 3 s until the 
fixation cursor disappeared from the screen, and during the 
period no online identification results were provided for the 
subject. When the task ended, the screen went blank, and the 
subject was given a 6–8 s rest before the next trial.

A trial lasted 10.5–12.5 s, and the total time of each ses-
sion lasted 5.25–6.25 min. The experiment consisted of 
three sessions with a 10 min break between them. The entire 
experiment was finished within 1 h, including the prepara-
tion time. During the trials, subjects were asked to avoid 
blinking, slow eye movement, the activities of facial mus-
cle and other body parts except for the random rest interval 
between trials.

Subjects were trained about the imagined task every day 
for 1 h, and the training lasted 2 weeks before data acquisi-
tion. The subjects were instructed to perform a kinematic 
imagery of the hand movement, rather than visual imagery 
(i.e. recalling or feeling themselves clenching a hand with 
different forces and speeds at the first personal perspec-
tive, rather than mentally watching them or another person 
executing the task). Substantial training was conducted to 
enhance the compliance of the subjects until the researchers 
verified that subjects performed the movement appropriately 
and until the subjects reported vivid imagery of the task in a 
questionnaire on motor imagery ability.

A total of nine EEG electrodes over the primary motor 
area and the supplementary motor area were used in this 
research (FC3, FCz, FC4, C3, Cz, C4, CP3, Pz, and CP4). 
The EEG recording was referenced to the bilateral mastoid 
(M1 and M2) and grounded at electrode Fpz. Electrodes 
were made of a Ag–AgCl powder. The EEG signals were 
acquired by Neuroscan Synamps 2 at a sampling frequency 
of 1000 Hz. The electrode impedance was reduced to 5000 
Ω before the experiment. The electro-oculogram (EOG) was 
also recorded to ensure that no EOG artifact existed during 
the motor imagery task’s period (Fu et al. 2015).

Data Processing and Feature Extraction

Data Preprocessing

The EEG signals were pre-processed with the EEGLAB 
toolbox for MATLAB, which were re-referenced to the 
common average reference, high-pass filtered with a 
0.05 Hz zero-phase FIR filter to remove offset and trend, 
low-pass filtered with a 48 Hz zero-phase FIR filter, and 
down-sampled to 125  Hz. And the EEG signals were 
inspected for artifacts with a procedure based on Inde-
pendent Components (ICs) using ADJUST plug-in (Brun-
ner et al. 2013): IC scalp maps and frequency spectra were 

inspected, and ICs that displayed features indicative of 
artifacts were removed (Mognon et al. 2011).

Feature Extraction

Topographical Maps Parameters

Topographical maps derive from microstate analysis. The 
microstate analysis of EEG is carried out as follows: first, 
the global field power (GFP) of K electrodes is calculated, 
and the local maximum values of GFP are obtained, which 
represent instants of strongest field strength and highest 
topographical signal-to-noise ratio; second, the peaks of 
GFP are employed to generate topographical maps of the 
electrode array, and the topographic maps are grouped into 
clusters; finally, the parameters of each microstate cluster 
are calculated.

The calculation formula of GFP is as follows (Khanna 
et al. 2014):

where Vi(t) represents the instantaneous electric field of elec-
trode i, Vmean(t) represents the average instantaneous electric 
field of all the K electrodes. GFP reflects the electric field 
intensity at each t moment of the brain, which is typically 
used to measure the response of the brain to an event or to 
describe the rapid changes of brain activity.

To obtain representative microstates clusters, all topo-
logical maps corresponding to local maximum values of 
GFP had to be clustered. The optimal number of clusters 
was indicated by cross validation (Pascualmarqui et al. 
1995; Koenig et al. 2014).

The parameters of the microstates offer a variety of 
quantifications of the EEG signals with potential neuro-
physiological relevance (Khanna et al. 2015). The dura-
tion of a microstate reflects the stability of its underlying 
neural assemblies. The occurrence of a microstate reflects 
the tendency of its underlying neural generators to become 
activated. The time coverage of a microstate reflects the 
relative time coverage of its underlying neural generators 
compared to others. The amplitude of a microstate reflects 
the strength or degree of the neurons in underlying neural 
generators. The four parameters are computed as follows:

Duration of a microstate is the average time of dura-
tion during which a given microstate remained stable 
whenever it appears.
Occurrence of a microstate is the average number of 
occurrence per second that the microstate becomes 
dominant during the recording period.

(1)GFP =

√(∑k

i

(
Vi(t) − Vmean(t)

)2)
∕k
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Occurrence of a microstate is the average number of 
occurrence per second that the microstate becomes domi-
nant during the recording period.
Amplitude of a microstate is the average GFP during the 
microstate dominance.

In the current study, duration, occurrence, time coverage, 
and amplitude of topographical maps were employed for rec-
ognition, and the number of topographical maps parameters 
is presented in Table 1.

Brain Network Parameters

In the current study, partial directed coherence (PDC) 
(Baccalá et al. 2001) was used to measure connectivity of 
the brain’s functional network. The PDC formulas are as 
follows:

where Ci is the AR model coefficient of the EEG signals 
X
(
x1, x2,… , xn

)
 of N leads in the time domain, ak,j(f ) is the 

ith element of the jth column in A(f ) . The value range of 
PDCxj→xk

 is [0, 1], representing the proportion of the signals 
flowing from xj to xk to that of all signals flowing from xj ; 
the one close to 0 indicates that there is no connection 
between the two channels, and the one close to 1 indicates 
that the two channels are strongly linked, and the intensity 
of information flow is high.

In the current study, nine electrodes were used as network 
nodes, and the information flow intensity calculated by PDC 
was used as the edge of the network. For the generated brain 

(2)�(f ) =

p∑

i=1

Cie
−j2�if∕fs

(3)A(f ) = I − A(f) = I −

p∑

i=1

Cie
−j2�if∕fs0

(4)PDCxj→xk
(f) =

ak,j(f )
�∑m

i=1
�ai,j(f )�2

network, two topological parameters, clustering coefficient and 
shortest path length, were quantitatively described.

Clustering coefficient measures the degree of collectiviza-
tion of a network, indicating that the neighbors of node i could 
become neighbors. The clustering coefficient Ci of a node i is 
the ratio of the number of edges (ei) in the node’s neighbors 
and the number of possible edges ( ki(ki−1)

2
 ), as follows:

Due to a large number of nodes in complex network, the 
average clustering coefficient of all the nodes from the per-
spective of statistics rather than clustering coefficient of each 
node is researched, i.e.,

Shortest path length depicts the optimal path from a node’s 
information to another node in the network, indicating that 
the information passing through the shortest path transfers 
faster and thereby system resources are saved. The path of 
least edges between two nodes i and j is called the shortest 
path between the two nodes, and the number of edges passing 
through the path is the shortest path length lij between nodes 
i and j.

In the research on complex networks, the shortest path 
length between each two nodes is seldom investigated, but the 
average shortest path length of the whole network is usually 
investigated, as follows:

In the current study, the clustering coefficient and the short-
est path length of Theta (4–8 Hz), Alpha (8–13 Hz) and Beta 
(13–30 Hz) bands were employed for recognition, and the 
number of brain network parameters is presented in Table 1.

Traditional Methods of Feature Extraction

To carry out the comparative study in this study, the following 
traditional feature-extraction methods were also employed:

Energy  The ERD/ERS phenomenon of EEG provides a sci-
entific basis for BCIs based on motor imagery. Energy is one 
of the most common features of EEG; in this paper, the energy 
formula is provided in Eq. (8) (Pfurtscheller and Lopes 1999):

(5)Ci =
2ei

ki(ki − 1)

(6)C =< Ci >=
1

N

∑

i∈V

Ci

(7)L =
2

N(N − 1)

∑

i,j∈V ,i≠j

lij

(8)En(%) =
en − ec

ec
× 100

Table 1   The number of five types of features for recognition

Types of 
features

Topo-
graphical 
maps 
param-
eters

Brain 
network 
param-
eters

Energy Power 
spectrum 
of the AR 
model

Wavelet 
packet 
coefficients

Number 
of fea-
tures

3 × 4 2 × 3 3 × 9 3 × 9 × 125 4 × 9
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where ec is the average energy of the reference idling period, 
and en is the average energy of executed/imagined force/
speed of hand clenching.

In this study, ec was the average energy of 1 s before 0 
instant (the cued picture disappeared), and en was calculated 
every second during the executed/imagined force/speed of a 
hand clenching period lasting 3 s. Because of nine electrodes, 
the number of energy features for recognition was 3 × 9, as 
presented in Table 1.

Power Spectrum of Auto‑regressive (AR) Model  Power spec-
trum is also one of the common features of EEG. Compared 
with the traditional power spectrum analysis method, the 
power spectrum estimation of the AR model only need short-
range data to obtain spectral estimation with a higher resolu-
tion, and it could be easily transformed into feature vectors 
(Zhou and Luo 2013).

The formula of power spectrum estimation of the AR model 
is obtained:

where p is the order of the AR model, cpi is the undeter-
mined weight parameter, and �2 is the variance of the white 
noise residual.

To avoid the inconsistent intensity of EEG signals causing 
unstable eigenvalues, which the subjects produced when they 
performed the same kind of hand clenching tasks at different 
times, the normalized power spectrums of the AR model cor-
responding to the Mu rhythm (8–13 Hz) and the Beta rhythm 
(13–30 Hz) were used (Zhou and Luo 2012):

Because the power spectrums of the AR model were cal-
culated in the frequency domain, with the resampled rate of 
125 Hz, the length of signal for every second after FFT trans-
formation was 125 points. On account of nine electrodes and 
the executed/imagined force/speed of hand clenching period 
lasting 3 s, the number of power spectrums of the AR model 
for recognition was 3 × 9 × 125, illustrated in Table 1.

Wavelet Packet Coefficients  Wavelet packet is suitable for the 
analysis of non-stationary EEG signals, which could continue 
to decompose the W space and improve the accuracy of signal 
analysis. The wavelet packet decomposition algorithm for dis-
crete signals is as follows (Morlet et al. 1982):

(9)P(�) = �
2∕

(|||||
1 +

p∑

i=1

cpie
−j�

|||||

)

(10)P =

�∑13

�=8
P(�) +

∑30

�=13
P(�)

�

∑
P(�)

(11)
�

dl(j, 2n) =
∑

k ak−2ldk(j + 1, n)

dl(j, 2n + 1) =
∑

k bk−2ldk(j + 1, n)

where ak, bk are the conjugate filter coefficients of wavelet 
packet decomposition.

In the current study, the EEG signals were carried on a 
three-layer wavelet packet decomposition process, in which 
the frequency band of the node d (3, 1) was near the Alpha 
spectrum (8–13 Hz) and the frequency band of the nodes d 
(3, 2), d (3, 3) as well as d (3, 4) were near the Beta spectrum 
(13–30 Hz) (Xu et al. 2011), while the ERD/ERS phenom-
enon of motor imagery EEG mainly appears in these two 
bands (Pfurtscheller and Lopes 1999). Therefore, the wave-
let packet coefficients of these four nodes were extracted 
as features for recognition. Because of nine electrodes, the 
number of wavelet packet coefficients was 4 × 9, as presented 
in Table 1.

Classifier

In the current study, for the hand clenching force task, actual 
and imagined tasks were classified into three classes (exe-
cuted/imagined forces of 4 kg, 10 kg, and 16 kg); similarly, 
for the hand clenching speed task, actual/imagined hand 
clenching speed tasks were also classified into three classes 
(executed/imagined speeds of 0.5 Hz, 1 Hz, and 2 Hz), and 
LDA, SVM as well as ELMs (Huang et al. 2012) were used 
as classifiers.

Results

Topographical Maps Parameters of Actual 
and Imagined Forces and Speeds of Hand Clenching

The GFPs of EEG signals were calculated according to for-
mula (1), which represented the strength of the electric field 
over the brain at each instant. The GFP curves of actual and 
imagined hand clenching forces (each lasting 3 s) of 4 kg, 
10 kg, and 16 kg for one subject are provided in Fig. 3. The 
local maximum values of GFP curve were obtained to gen-
erate topographic maps of the electrode array. These maps 
were submitted to the k-means clustering algorithm, which 
grouped these maps into a small set of clusters based on 
topographic similarity. The optimal number of clusters was 
determined by means of a cross-validation criterion (Koenig 
et al. 2014). For actual and imagined hand clenching force, 
the optimal number of clusters was all three, thus three rep-
resentative topographical maps were obtained, labeled by 
A, B and C (i.e., Aaf1, Baf1, Caf1 for actual force of 4 kg; Aif1, 
Bif1, Cif1 for imagined force of 4 kg), illustrated in Fig. 3. 
Finally, the original maps at maximum values of the GFP 
curves were assigned a label based on the map to which they 
best correlated. In Fig. 3, the GFP curves are segmented into 
three parts based on the topographic maps, expressed in red, 
yellow and blue. The transformation of topographical maps 
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is A → B → C during the process of executed and imagined 
hand clenching forces. During the transition process, the 
left hemisphere is blue, but it gradually deepens; the right 
hemisphere is yellow, but it gradually deepens.

In Fig. 3a, the duration of maps C increases with the 
increase of the levels of the actual hand clenching forces, 
while the duration of map A of 10 kg is shortest and the 
duration of map B of 10 kg is longest. The amplitudes of 
map C also increase with the increase of the levels of the 
actual hand clenching forces. For each force, the amplitude 
of map A is smallest, that of map B is middle, and that of 
map C is biggest. For the imagined hand clenching forces in 
Fig. 3b, the variation of duration and amplitudes of maps A, 
B and C are different from that of actual forces, except the 
amplitudes of maps A, B and C for each force are increas-
ing. Therefore, four parameters of maps A, B and C of the 
actual and imagined hand clenching forces were calculated 
for recognition, including duration, occurrence, time cover-
age and amplitude. The four parameters for recognition were 
calculated in a single trial, not in average epochs.

The procedures of extracting topographic maps for actual 
and imagined hand clenching speeds (lasting 3 s) of 0.5 Hz, 
1 Hz, and 2 Hz were similar to that of forces. The GFP 
curves in actual and imagined hand clenching speed epochs 
are shown in Fig. 4, and the optimal number of clusters is 

also three, thus three different dominant topographical maps 
are obtained, labeled by A, B and C (i.e., Aas1, Bas1, Cas1 for 
actual speed of 0.5 Hz; Ais1, Bis1, Cis1 for imagined speed of 
0.5 Hz). The GFP curves are also expressed in red, yellow 
and blue. However, the yellow of the three colors for speeds 
are scattered in the red in Fig. 4, are different from that of 
forces, in which the three colors appear sequentially and 
continuously in Fig. 3. For three topographic maps of actual 
speeds of 1 Hz and 2 Hz, the energy of left hemisphere of 
brain is gradually increased, while the energy of right hemi-
sphere of brain is gradually decreased, which is opposite 
to that of forces. For three topographic maps of imagined 
speeds, the energy of left or right hemisphere doesn’t always 
increase or decrease. In Fig. 4a, the duration of maps A 
increases with the increase of the levels of the actual hand 
clenching speeds, while the duration of maps C decreases 
with the increase of the levels of the actual hand clenching 
speeds. Of the three maps for each speed, the duration of 
map B is shortest. The duration of maps A of 2 Hz is long-
est, and the amplitude of map A of 2 Hz is smallest. For the 
imagined hand clenching speeds in Fig. 4b, the variation of 
duration and amplitude of maps A, B and C are also differ-
ent from that of actual speeds. Similarly, four parameters 
of maps A, B and C of actual and imagined hand clenching 
speeds in single trial were calculated for recognition.

Fig. 3   GFP curves and topographical maps of actual (a) and imag-
ined (b) hand clenching forces of 4 kg, 10 kg and 16 kg. Three dif-
ferent dominant topographical maps represent the process of executed 
and imagined hand clenching force, labeled by A, B and C (Aaf1–Caf1, 
Aaf2–Caf2, Aaf3–Caf3 for actual forces of 4 kg,10 kg, 16 kg in (a); Aif1–

Cif1, Aif2–Cif2, Aif3–Cif3 for imagined forces of 4 kg,10 kg, 16 kg in 
(b)), and the GFP curves are segmented into three parts based on the 
topographic maps, expressed in red, yellow and blue. For topographic 
maps, the color map is the same for all plots. The yellow represents 
positive potential, and the blue represents negative potential
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Brain Network Parameters of Actual and Imagined 
Forces and the Speeds of Hand Clenching

In the current study, the EEG networks of the Theta, Alpha 
and Beta bands were analyzed, and the clustering coefficient 
C and the shortest path length L of network attributes were 
calculated by BrainNetwork software (supported by Key 
Laboratory for Neuro Information of the Ministry of Edu-
cation, School of Life Science and Technology, University 
of Electronic Science and Technology of China).

The network topologies of three bands of Theta, Alpha 
and Beta of actual and imagined hand clenching forces 
and speeds are illustrated in Figs. 5 and 6, which show the 
strengths of connections of nine electrodes: the deeper the 
color is, the greater the strength is. For the force task, the 
connections of the Beta band increase with the increase 
of the levels of the actual hand clenching force in Fig. 5a, 
and the connections of the Beta band of the imagined hand 
clenching force have similar results in Fig. 5b. For the speed 
task, the connections of the Alpha and Beta bands decrease 
with the increase of the levels of the actual hand clench-
ing speed in Fig. 6a, and the decrease of connections of the 
Alpha and Beta bands of the imagined hand clenching speed 
are not obvious, but the decrease of connections strength is 
obvious in Fig. 6b.

The clustering coefficient and the shortest path length of 
the actual and imagined hand clenching force are illustrated 
in Fig. 7. For force task, the clustering coefficients of the 
Beta band (dark red bars) increase with the increase of the 
levels of the actual hand clenching force, whereas the short-
est path length of the Beta band decreases with the increase 
of the levels of the actual hand clenching force, and the clus-
tering coefficient as well as the shortest path length of the 
Beta band of the imagined hand clenching force have similar 
results. However, the clustering coefficient and the shortest 
path length of the Theta and Alpha bands are irregular.

The clustering coefficient and the shortest path length 
of the actual and imagined hand clenching speeds are illus-
trated in Fig. 8. For the speed task, the clustering coefficients 
of the Beta band decrease with the increase of the levels 
of the actual hand clenching speed, while the shortest path 
length of the Beta band increases with the increase of the 
levels of the actual hand clenching speed, and the cluster-
ing coefficient and the shortest path length of the Beta band 
of the imagined hand clenching speed have similar results.

When the force and the speed tasks are compared, the 
clustering coefficient of forces (0.25–0.34) is smaller than 
that of speeds (0.26–0.52), and the shortest path length of 
forces (2.5–3.8) is larger than that of speeds (2.3–3.5) in 
Figs. 7 and 8.

Fig. 4   GFP curves and topographical maps of actual (a) and imag-
ined (b) hand clenching speeds of 0.5  Hz, 1  Hz, and 2  Hz. Three 
different dominant topographical maps also represent the process of 
executed and imagined hand clenching speeds, labeled by A, B and 

C (Aas1–Cas1, Aas2 – Cas2, Aas3 – Cas3 for actual speeds of 0.5 Hz, 1 Hz, 
and 2 Hz in (a); Ais1 – Cis1, Ais2 – Cis2, Ais3 – Cis3 for imagined speeds 
of 0.5 Hz, 1 Hz, and 2 Hz in (b))
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Classification

Based on the materials and methods proposed in this paper, 
after the investigation of actual and imagined hand clenching 

forces and speeds, five types of features were classified in 
three categories using LDA, SVM and ELMs. As mentioned 
previously, the number of five types of features was differ-
ent, as presented in Table 1. The recognition results were 

Fig. 5   The network topologies of three bands of Theta, Alpha and Beta of the actual (a) and imagined (b) hand clenching forces

Fig. 6   The network topologies of three bands of Theta, Alpha and Beta of the actual (a) and imagined (b) hand clenching speeds
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obtained using leave-one-out cross-validation for three clas-
sification: 19 subjects for training (1710 trials concatenated) 
and 1 subject for testing (90 trials), repeated 20 times; every 
subject was used for testing for one time and the other 19 
subjects for training, the final recognition rates were the 
average of those of 20 tests, presented in Tables 2 and 3.

Because of the difference of the EEG signals between 
subjects, it is necessary to train specific classifiers for the 
specific subjects to manipulate BCIs. We also built a clas-
sifier for each subject, two sessions for training and one 

session for testing. The recognition results were shown in 
Supplementary Tables 4–7, which were attached as addi-
tional materials.

Not only the EEG signals between the different sub-
jects are different, but also the EEG signals of the same 
subject at different times are also different. Therefore, for 
topographical maps features employed for recognition, it 
needs a method to match the topographical maps under the 
different conditions. We calculated the correlation coeffi-
cients between the maps of each trial of each subject and 

Fig. 7   The clustering coefficients (a) and the shortest path lengths (b) of the actual and imagined hand clenching forces

Fig. 8   The clustering coefficients (a) and the shortest path length (b) of the actual and imagined hand clenching speeds

Table 2   Recognition results of three levels of the actual and imagined hand clenching forces by single trial

Bold values indicate that the recognition rates are better than the others

Actual hand clenching forces Imagined hand clenching forces

LDA ELM SVM LDA ELM SVM

Energy 0.48 ± 0.11 0.95 ± 0.11 0.87 ± 0.14 0.40 ± 0.11 0.94 ± 0.12 0.94 ± 0.19
Power spectrum of AR model 0.45 ± 0.11 0.86 ± 0.17 0.96 ± 0.10 0.46 ± 0.15 0.89 ± 0.17 0.95 ± 0.12
Wavelet packet coefficients 0.42 ± 0.11 0.86 ± 0.20 0.83 ± 0.13 0.36 ± 0.10 0.91 ± 0.16 0.80 ± 0.16
Topographical maps parameters 0.39 ± 0.13 0.80 ± 0.10 0.48 ± 0.15 0.42 ± 0.09 0.77 ± 0.11 0.46 ± 0.16
Brain network parameters 0.38 ± 0.08 0.52 ± 0.22 0.57 ± 0.19 0.37 ± 0.08 0.52 ± 0.17 0.56 ± 0.20
Combined features (three traditional features) 0.50 ± 0.13 0.94 ± 0.10 0.95 ± 0.13 0.57 ± 0.11 0.93 ± 0.12 0.92 ± 0.14
Combined features (all five features) 0.49 ± 0.11 0.96 ± 0.07 0.97 ± 0.08 0.58 ± 0.15 0.96 ± 0.05 0.95 ± 0.07
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the typical topographical maps previously extracted under 
different conditions (i.e., Aaf1, Baf1, Caf1, Aaf2, Baf2, Caf2, Aaf3, 
Baf3, Caf3 for the typical topographical maps A, B and C of 
actual hand clenching at 4 kg, 10 kg, and 16 kg in Fig. 3). If 
the correlation coefficient of the maps was greater than that 
of a certain value (0.55 for forces and 0.45 for speeds), it was 
considered that the two maps were corresponding in time 
and matched. Then, the matching maps parameters were 
calculated for classification. The average correlation coef-
ficients between the maps of all trials of all subjects and the 
typical topographical maps were calculated, shown in Sup-
plementary Tables 8–11, and the permutation test for all five 
types features were used to determine chance levels of the 
LDA, ELM and SVM, shown in Supplementary Table 12, 
which were all attached as additional materials.

In Table 2, the classification results of LDA were poor, 
with a recognition rate of 37%–57%, but that of ELMs and 
SVM were good, with the recognition rate of 46%–97%. In 
Table 2, the recognition rates of energy, power spectrum of 
the AR model and wavelet packet coefficients were higher, 
above 80% using ELMs and SVM, slightly worse for top-
ographical maps parameters, and worst for brain network 
parameters. For topographical maps parameters, the recogni-
tion rates of the actual and imagined hand clenching forces 
were 80% and 77% using ELMs, 48% and 46% using SVM. 
For brain network parameters, the recognition rates of the 
actual and imagined hand clenching forces were 52% and 
52% using ELMs, 57% and 56% using SVM, which were far 
lower than the other four types of features. The recognition 
results of combination of three traditional types of features 
were not remarkably improved, but the recognition rates of 
five types of combined features were higher than that of 
each type of feature: 96% and 96% using ELMs, 97% and 
95% using SVM.

It could also be seen from Table 3 that the classification 
results of LDA were poor, and ELMs and SVM were bet-
ter. Among the five types of features, the recognition rates 
of energy, power spectrum of the AR model and wavelet 
packet coefficients and topographical maps parameters were 

low, only 40%–66%. By contrast, the classification results of 
brain network parameters were very good, with recognition 
rates of 83% and 72% for LDA, 97% and 100% for ELMs, 
as well as 97% and 100% for SVM. The recognition results 
of combination of three traditional types of features were 
also not remarkably improved, similarly to those for energy, 
the power spectrum of AR, wavelet packet coefficient and 
topographical maps parameters. While the recognition rates 
of the five combined features were higher than that of each 
type of feature: 84% and 79% using LDA, 98% and 100% 
using ELM, as well as 98% and 100% using SVM.

Discussion

Topographical Maps Parameters for Identifying 
Hand Clenching Forces and Speeds

In the current study, the EEG signals of the actual/imagined 
hand clenching forces/speeds, analyzed by microstates, were 
expressed as the time series of different brain topologies. As 
illustrated in Figs. 3 and 4, the EEG signals of the actual/
imagined hand clenching forces/speeds were composed of 
topographical maps A, B and C. Four parameters of maps A, 
B and C of the actual/imagined hand clenching forces/speeds 
were calculated for recognition. And the recognition results 
showed that topographical maps parameters were better for 
identifying the actual/imagined hand clenching forces than 
for speeds in Tables 2 and 3.

In fact, the parameters of microstate and sequence are not 
random, but follow certain rules. The arrangement of the 
microstate order is called syntax. For example, for schizo-
phrenic patients, it was found that the duration of the two 
typical microstates became shorter, and the sequence of the 
four microstates (syntax) became chaotic (Kikuchi et al. 
2011). For healthy subjects, the duration of the microstates 
depended on the changes in the arousal sleep cycle, which 
became shorter in deep sleep and grew longer in medita-
tion. In addition to duration in the current study, occurrence, 

Table 3   Recognition results of three levels of actual and imagined hand clenching speeds by single trial

Bold values indicate that the recognition rates are better than the others

Actual hand clenching speeds Imagined hand clenching speeds

LDA ELM SVM LDA ELM SVM

Energy 0.40 ± 0.08 0.66 ± 0.04 0.65 ± 0.03 0.42 ± 0.05 0.66 ± 0.03 0.65 ± 0.05
Power spectrum of AR model 0.63 ± 0.04 0.64 ± 0.04 0.63 ± 0.03 0.66 ± 0.03 0.66 ± 0.03 0.65 ± 0.05
Wavelet packet coefficients 0.59 ± 0.09 0.67 ± 0.05 0.66 ± 0.10 0.58 ± 0.11 0.65 ± 0.03 0.66 ± 0.09
Topographical maps parameters 0.42 ± 0.07 0.63 ± 0.07 0.64 ± 0.08 0.47 ± 0.06 0.64 ± 0.12 0.65 ± 0.05
Brain network parameters 0.83 ± 0.12 0.97 ± 0.12 0.97 ± 0.15 0.72 ± 0.02 1.00 ± 0.00 1.00 ± 0.00
Combined features (three traditional features) 0.56 ± 0.09 0.65 ± 0.05 0.66 ± 0.03 0.55 ± 0.12 0.66 ± 0.03 0.66 ± 0.06
Combined features (all five features) 0.84 ± 0.05 0.98 ± 0.03 0.98 ± 0.06 0.79 ± 0.09 1.00 ± 0.00 1.00 ± 0.00
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time coverage and amplitude of topographical maps A, B, C 
of actual/imagined hand clenching forces/speeds were also 
adopted, which reflected the characteristics of neural activity 
under different tasks from different aspects. Thus, with the 
different levels of actual/imagined hand clenching forces/
speeds, the characteristics of neural activity were different, 
and the parameters of the microstates were also different, 
which was the fundamental reason why the topographical 
maps parameters could be used to identify the hand clench-
ing force/speed.

However, the recognition results of the topographical 
maps parameters for hand clenching forces and speeds were 
different, good for forces, poor for speeds. In Fig. 3, for 
actual and imagined hand clenching forces, the energy of 
left hemispheres of topographic maps A, B, C are gradually 
decreased (blue) and the energy of right hemispheres are 
gradually increased (yellow). While for actual and imagined 
hand clenching speeds in Fig. 4, the energy of left hemi-
sphere of three topographic maps of actual speeds of 1 Hz 
and 2 Hz is gradually increased, and the energy of right 
hemisphere is gradually decreased, which is opposite to 
that of forces. And the energy of left or right hemisphere of 
imagined speeds doesn’t always increase or decrease. This 
indicated that the change of neural activity under force tasks 
showed certain regularity, but the change of neural activity 
under speed tasks was not. In addition, as can be seen from 
Supplementary Tables 8–11 in additional materials, the aver-
age correlation coefficients between the maps of each trial 
and the typical topographic maps of forces were greater than 
that of speeds. This might mean that the variations of force 
maps of each trial were smaller than that of speed, and were 
closer to the typical topographic maps. These might be one 
of the reasons why the topographical maps parameters were 
better for identifying the actual/imagined hand clenching 
forces than for identifying speeds.

Brain Network Parameters for Identifying the Hand 
Clenching Forces and Speeds

The network topology plays crucial role in the function of 
the brain network and the dynamics of the whole system, 
which influences the propagation of neural signals. Aver-
age path length and the clustering coefficient are often 
employed to characterize the topological and dynamic 
properties of networks. The clustering coefficient measures 
the degree of collectivization of a network. The higher the 
clustering coefficient is, the higher the degree of collec-
tivization on behalf of the whole brain network is, and the 
higher the efficiency of the corresponding network is. The 
shortest path length reflects the dispersion and connectiv-
ity of the network structure, the shorter the shortest path 
is, the more compact the network structure is, and the bet-
ter the connectivity of the network is. Zhou demonstrated 

that a shorter reaction time was correlated with a shorter 
path length in the gamma band using resting-sate EEG 
(Zhou et al. 2012). Douw found that an increased cluster-
ing coefficient in delta, theta and gamma bands was cor-
related to better cognition using resting-state MEG (Douw 
et al. 2011).

In the current study, for brain network analysis of the 
actual/imagined hand clenching force/speed, the clustering 
coefficient and the shortest path length of the Theta, Alpha 
and Beta bands were calculated, as illustrated in Figs. 7 and 
8. For the force task, the clustering coefficient of the Beta 
band increase with the increase of the levels of actual hand 
clenching force, whereas the shortest path length of the Beta 
band decrease with the increase of the levels of the actual 
hand clenching force. This indicated that the higher the 
actual force of hand clenching in Beta band was, the higher 
the efficiency of the corresponding brain network was, and 
the better the connectivity of the brain network was. The 
imagined forces of hand clenching were similar to executed 
forces on physiological basis, which had similar results. 
These results were well expressed in Fig. 5. This indicated 
that the levels of actual/imagined hand clenching forces were 
positively correlated to the connection of Beta band.

For the speed task, the clustering coefficient of the Beta 
band decrease with the increase of the levels of the actual 
hand clenching speed, while the shortest path length of the 
Beta band increase with the increase of the levels of the 
actual hand clenching speed, which was the opposite of that 
of the force task. This indicated that the higher the actual 
speed of hand clenching was, in Beta band, the lower the 
efficiency of the corresponding brain network was, and the 
worse the connectivity of the brain network was. These 
results were also consistent with those in Fig. 6. This dem-
onstrated that the levels of actual/imagined hand clenching 
speeds were negatively correlated to the connection of Beta 
band.

When the force task was compared to the speed task, the 
clustering coefficient of the force was smaller than that of 
the speed, and the shortest path length of the force was larger 
than that of the speed. This meant that the brain network of 
force was less efficient and had less connectivity than that 
of speed. It could be demonstrated that the communication 
between any two nodes of brain network at speed tasks could 
be completed quickly, especially for the FC3 and Cz nodes, 
of which the line was most red in Fig. 6.

For recognition of the actual/imagined hand clenching 
forces in Table 2, the best recognition rate was 57%, and 
the brain network parameters of the five types of features 
were the worst. By contrast, the recognition results of three 
levels of actual/imagined hand clenching speeds were very 
good, with a recognition rate of 83%–100% in Table 3. The 
difference of recognition rates for force and speed task sug-
gested that a more efficient brain network may facilitate 
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the recognition of force/speed of hand clenching, whether 
executed or imagined.

Combined Features for Identifying the Hand 
Clenching Forces and Speeds

In Tables 2 and 3, the recognition ability of energy, the 
power spectrum of the AR model, wavelet packet coeffi-
cients and topographical maps parameters for identifying the 
hand clenching forces were better, worse for speeds. On the 
contrary, the recognition ability of brain network parameters 
for forces were worse, but better for speeds; therefore, the 
recognition rate might be further improved by combining 
these five types of features. As we know that increasing the 
number of features might increase accuracy asymptotically, 
we compared the recognition results of the combination of 
three traditional types of features and all five types of fea-
tures. The results illustrated that the recognition results of 
the combination of three traditional types of features were 
not remarkably improved; these results were similar to those 
of energy and the power spectrum of the AR model but bet-
ter than those of wavelet packet coefficients. By contrast, the 
recognition results of the combination of all five types of 
features were remarkably improved, especially for LDA. The 
recognition rate of ELM and SVM were as high as 95%–97% 
for forces, 98%–100% for speeds. This suggested that the 
characteristics of the topography and brain network informa-
tion were beneficial to the improvement of the recognition 
results.

Conclusion

In the practical brain control robot system, it is necessary 
to provide the robot with additional force and speed control 
instructions, and it is also necessary to find new features 
to improve the classification accuracy. In the current study, 
topographical maps parameters and brain network param-
eters as the new classification features were calculated and 
combined with the traditional features (energy, power spec-
trum of the AR model and wavelet packet coefficients) to 
further improve the classification accuracy of a single trial.

The results of single-trial recognition of the actual/imag-
ined forces/speeds of hand clenching based on LDA, ELMs 
and SVM as classifiers indicated that topographical maps 
parameters were better for identifying the hand clenching 
force, and the recognition results of brain network param-
eters were better for identifying hand clenching speed. The 
combination of five types of features further improved the 
recognition rates, with a recognition rate of 97% for the hand 
clenching force and 100% for hand clenching speed. This 
indicated that topographical maps and brain network param-
eters could be used as new characteristics for decoding the 

actual/imagined forces and speeds of hand clenching. Com-
bined with traditional characteristics, the combination of 
five types of characteristics could significantly improve the 
recognition rate of actual/ force and speed of hand clenching. 
Future research work needs to validate online classification 
performance of these parameters.
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