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Abstract: The interaction of common anticancer drug gemcitabine with human serum albumin
(HSA) has been studied in detail. The effect of an omnipresent nonsteroidal anti-inflammatory drug
ibuprofen was also seen on the binding of HSA and gemcitabine. A slight hyperchromic shift in
the difference UV-visible absorption spectra of HSA on the addition of gemcitabine gave a primary
idea of the possible complex formation between them. The inner filter effect, which happens due to
the significant absorbance of the ligand at the excitation and/or emission wavelengths, played an
important role in the observed fluorescence quenching of HSA by gemcitabine that can be understood
by comparing the observed and corrected fluorescence intensities obtained at λex = 280 nm and
295 nm. Gemcitabine showed weak interaction with HSA, which took place via a dynamic quenching
mechanism with 1:1 cooperative binding between them. Secondary structural analysis, based on
circular dichroism (CD) spectroscopy, showed that low concentrations of gemcitabine did not affect
the native structure of protein; however, higher concentrations affected it slightly with partial
unfolding. For understanding the binding site of gemcitabine within HSA, both experimental (using
site markers, warfarin and ibuprofen) as well as computational methods were employed, which
revealed that the gemcitabine binding site is located between the interface of subdomain IIA and IIB
within the close proximity of the warfarin site (drug site 1). The effect of ibuprofen on the binding was
further elaborated because of the possibility of its coexistence with gemcitabine in the prescription
given to the cancer patients, and it was noticed that, ibuprofen, even present in high amounts, did
not affect the binding efficacy of gemcitabine with HSA. DFT analyses of various conformers of
gemcitabine obtained from its docking with various structures of HSA (free and bounded with
site markers), show that the stability of the gemcitabine molecule increased slightly after binding
with ibuprofen-complexed HSA. Both experimental as well as computational results were in good
agreement with each other.

Keywords: gemcitabine; serum albumin; ibuprofen; molecular docking; competitive binding;
fluorescence quenching

1. Introduction

Gemcitabine is one of the most important and most prescribed medicines used to treat
various types of cancers, for instance, breast cancer, ovarian cancer, non-small cell lung
cancer, pancreatic cancer and bladder cancer. Chemically, it is a nucleoside analogue of
deoxycytidine having two additional fluorine atoms (2′,2′-difluorodeoxycytidine) instead
of hydrogen atoms in the former. Gemcitabine irreversibly inhibits ribonucleotide reductase
and induces S phase arrest that leads to apoptosis [1]. It is very effective in pancreatic
cancer and administrated alone or in combination of several other antineoplastic agents,
such as capecitabine, paclitaxel and tyrosine kinase inhibitors [2–5]. The combination of
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gemcitabine along with cisplatin is very effective as compared to the combination of other
cytotoxic agents with the latter in non-small lung cancer and bladder cancer [6,7]; further,
its combination with other drugs produced better results in the treatment of advanced or
metastatic breast cancer [8].

Apart from promising cytotoxic effects, gemcitabine is also associated with several
side effects including cutaneous toxicities, pulmonary toxicity, fever, edema anemia, neu-
tropenia, and thrombocytopenia, etc. [9]. The mode of administration of gemcitabine is
principally intravenous; although, its hepatic artery infusion has also been reported in the
case of tumors confined to the liver [10], which reduces its plasma toxicity.

The encounters of the drugs, particularly those that have been given intravenously or
intramuscularly to the plasma protein, are obvious. The plasma proteins that commonly
binds to the various endogenous or exogenous substances are serum albumin; lipoprotein;
glycoprotein; and α, β‚ and γ globulins. Serum albumin is among the most abundant
protein constituent of the blood (50–60%) and is an important factor in the regulation
of plasma volume and tissue fluid balance. Serum albumin is also the principal carrier
proteins of the blood that circulates drugs and other substances throughout the body. Due
to a large number of applications, serum albumins are among the most extensively studied
proteins over several past decades [11–20]. The interactions of serum albumin with drugs
play an important role in determining the pharmacokinetic and pharmacodynamic actions
of the latter. Stronger interactions lead to a longer stay of the drug inside the body and
vice versa. The longer stay of a drug may give rise to more side effects, whereas a shorter
stay might restrict the desired therapeutic effects. Moreover, drugs or any other ligand,
when interacting with albumins, show the diverse range of effects on the latter; for instance,
they (i) may lead to denaturation or unfolding, (ii) might trigger some partial impact
on the structure and stability, (iii) did not affect their structure at all or (iv) can increase
the stability of the former, depending on the structural and binding properties of the
former [21–32]. Thus, it is important to know the interaction of a drug with serum albumin.
As we have discussed that gemcitabine is, primarily, given through injection or infusion
into the veins, there are likelihoods of its interaction with plasma proteins. Furthermore,
there are opportunities to use painkiller medicines along, with the chemotherapeutic agent,
to reduce the pain due to the cancer. Thus, it would also be interesting to see the effect of
such drug, which is simultaneously present with another drug in the plasma and which
could influence its binding with serum albumin. Ibuprofen is a common non-steroidal
anti-inflammatory drug and is given for pain, fever, and inflammation. It is effective in
treating painful menstrual periods, migraines and rheumatoid arthritis. It is listed in the
WHO’s list of essential medicines, and, in 2019, it was among top 30 prescribed medicines
in US. The coexistence of ibuprofen with the gemcitabine in cancer treatment is reported in
some studies [33–35]. Hence, understanding the mechanism of the binding of gemcitabine
with human serum albumin (HSA) in the presence of ibuprofen will also be interesting.

Recently, we have studied the interaction of gemcitabine with model protein bovine
serum albumin and lysozyme [36,37], and this work has been designed to see the interaction
of gemcitabine with HSA and also to see the effect of ibuprofen on the binding. Although,
Kandagal and coworkers [38] have studied the interaction of the HSA with gemcitabine
using several spectroscopic techniques, several important considerations were left or
unnoticed in their study, for example, the correction of the inner filter effect, which is
necessary before the analysis of fluorescence data provided that the ligand has considerable
absorption at the excitation and emission wavelengths [21–24,39]. The inner filter effect is a
phenomenon that is usually observed in fluorescence spectroscopy and has a strong effect,
particularly when the sample has the strong absorption at the excitation and/or emission
wavelengths that may attenuate these and consequently affect the actual results. Further, a
difference UV-visible spectrum gives more straightforward information about the ligand-
induced changes in the protein rather than the simple one [21]. In addition, molecular
docking is an important method in computer-aided drug design due to its uncomplicated
operations and commands that allows users to get results instantly as compared to other
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computational methods [40]. Although, in a recent study, the binding of gemcitabine
with HSA was seen using 10 ns molecular dynamics simulation [41], but this study was
designed to see the stability of the drug-HSA complex when the drug was bounded to
site 1 and site 2. In the present study, we have seen the detailed binding of HSA with
gemcitabine along with the effect of ibuprofen on the binding using experimental, as well
as computational, methods.

2. Results and Discussions
2.1. UV-Visible Absorption Studies

The UV absorption spectrum of pure gemcitabine in 20 mM tris buffer of pH 7.4 is
given in Figure 1A, which shows that gemcitabine has prominent absorption between
200 nm to 280 nm, followed by a sharp decline until it becomes negligible at around
300 nm. The effect of gemcitabine on the UV-visible absorption profile of HSA is displayed
in Figure 1B. When a small molecule or ligand interacts with biomolecules, the changes in
the UV-visible absorption profiles of the latter are expected due to its complex formation
with the former [42]. It can be seen from Figure 1B that, with the successive addition of
gemcitabine, a hyperchromic shift is occurring in the difference UV-visible spectra of HSA,
which is attributed to the complex formation between them [32].
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Figure 1. (A) UV-visible spectrum of 100 µM gemcitabine in 20 mM tris buffer of pH 7.4 at 25 ◦C.
(B) Difference UV-visible spectra (in the range of 245 nm to 290 nm) of HSA (3 µM) in the absence
and presence of several concentrations of gemcitabine in 20 mM tris buffer of pH 7.4 at 25 ◦C.
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2.2. Fluorescence Quenching of HSA by Gemcitabine

Fluorescence spectroscopy is an important technique to understand the various types
of proteins interactions due to their intrinsic fluorescence properties, if the fluorescent
amino acids like tryptophan and tyrosine are present in its backbone [43–46]. When both
of these amino acids are present, tryptophan is the main contributor of the fluorescence
emission while tyrosine has small or negligible contribution [47]. The common property
of both tryptophan and tyrosine is that both gives off emissions at 340 nm and 315 nm,
respectively, when excited at 280 nm, whereas tryptophan emission can be separated by
exciting the protein at 295 nm [47]. The fluorescence emission spectra of HSA at 20 ◦C in
the absence and presence of gemcitabine at respective excitation wavelength of 280 nm and
295 nm are given in Figure 2A,B. It can be seen from these figures that when gemcitabine is
gradually added to the protein solution, the fluorescence decrement or quenching happens
due to the interaction between these two. A visual examination of these figures shows
that quenching is very large and even multifold when the excitation wavelength is 280 nm
in comparison to the quenching observed in case of 295 nm excitation. However, it can
be seen from the Figure 1A that gemcitabine has significant absorption at the excitation
wavelengths, particularly at 280 nm; thus, the fluorescence data in presence of gemcitabine
need to be corrected for the inner filter effect. Thus, we have corrected the observed
fluorescence spectra (Figure 3A,B) using Equation (S1) given in Supplementary Material for
both excitation wavelengths. After correction, it is noticeable that the extent of quenching
is almost same in both cases and that there is low affinity between HSA and gemcitabine.
The observed and corrected fluorescence spectra at both excitation wavelengths and at
various temperatures (30 ◦C, 40 ◦C and 50 ◦C) are given in Figures S1–S6 of Supplementary
Material. The studies at various temperatures have been carried out to understand the
quenching mechanism and to evaluate the thermodynamic parameters.
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Figure 2. Observed fluorescence emission spectra of HSA (3 µM) at the excitation wavelengths of
(A) 280 nm and (B) 295 nm in the presence of various concentrations of gemcitabine (0, 20, 40, 60, 80,
100, 120, 140, 160, 180 and 200 µM) at 20 ◦C in 20 mM tris buffer with pH 7.4.
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Figure 3. Corrected fluorescence emission spectra of HSA (3 µM) at the excitation wavelengths of
(A) 280 nm and (B) 295 nm in the presence of various concentrations of gemcitabine (0, 20, 40, 60, 80,
100, 120, 140, 160, 180 and 200 µM) at 20 ◦C in 20 mM tris buffer with pH 7.4.

2.3. Evaluation of Quenching and Thermodynamic Parameters

The Stern–Volmer equation was utilized to calculate the Stern–Volmer quenching
constant (KSV):

F0

F
= 1 + KSV [Q] = 1 + Kqτ0[Q] (1)

Kq =
KSV
τ0

(2)

where F0 and F are the fluorescence intensities of HSA in the absence and presence of gem-
citabine; [Q] is the concentration of gemcitabine, and KSV, Kq and τ0 are the Stern–Volmer
quenching constant, the bimolecular quenching constant and the life-time of the fluorophore
in the absence of the quencher (in this case 5.7 × 10–9 s–1 according to [26]), respectively.

For the sake of comparison of the observed and corrected results, we have calculated
the KSV for both excitation wavelengths using the plots given in Figure 4A,B for observed
and corrected data, respectively. The corresponding values of KSV at 280 nm excitation for
observed and corrected data are found to be 152.7 × 102 M–1 and 4.7 × 102 M–1, whereas
at 295 nm excitation the respective values are 7.9 × 102 M–1 and 4.3 × 102 M–1. There
is a large diminution in the values of KSV after inner filter effect correction, mainly, at
280 nm excitation; although an around two-fold decrease is also observed in the case of
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295 nm excitation. This could be explained on the basis of the values of the absorbance
of gemcitabine at these two wavelengths, because, at 280 nm, the absorbance is much
higher, which resulted in the larger inner filter effect, whereas small absorbance at 295 nm
causes only small change. These observations support the fact that higher the absorbance
of the ligand at the excitation and/or emission wavelengths higher will be the inner filter
effect which may affect the actual results. Since there is not much difference between
the quenching constants obtained from the corrected data at two excitation wavelengths
(280 nm and 295 nm), we have selected 295 nm excitation for further studies.
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Figure 4. Plots of F0/F vs. [gemcitabine] for observed (A) and corrected data (B) for HSA–gemcitabine
interaction at 20 ◦C in 20 mM tris buffer with pH 7.4. [HSA] = 3 µM.

The fluorescence quenching of a fluorophore by a quencher might be the result of sev-
eral interactions, such as dark non-fluorescent complex formations called static quenching
or collisional encounters between the former and latter, termed dynamic quenching [43,48].
A temperature change can differentiate between these two types of quenchings because
static quenching increases with decreasing temperature while the reverse phenomenon
happens in case of dynamic quenching [43]. The values of Kq also play an important role
in understanding the type of quenching involved in the binding. If the value of Kq is near
1 × 1010 M–1 s–1 (the diffusion-controlled limit), the quenching is expected to be dynamic,
whereas static quenching is generally associated with very high values of Kq [47]. The
Stern–Volmer plots (F0/F vs. [gemcitabine]) at various temperatures are given in Figure 5A,
and the values of the KSV and Kq are given in Table 1. The values of KSV increased slightly
with increases in the temperature, and Kq values, although somewhat higher than the
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diffusion-controlled limit, are of the same order of magnitude, as expected in cases of
dynamic quenching, and are very low as previously discovered in the case of interactions
taking place via static quenching. Thus, it can be said that HSA–gemcitabine binding takes
place through dynamic quenching mechanism [36,49].
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Figure 5. (A) Plots of F0/F vs. [gemcitabine] at and (B) plots of log (F0 − F)/F vs. log [gemcitabine] for
HSA–gemcitabine interaction in 20 mM tris buffer with pH 7.4 at various temperatures. [HSA] = 3 µM.

Table 1. Quenching parameters for the interaction of HSA with gemcitabine obtained from the
corrected data at various temperatures.

Temperature
(◦C)

102 Ksv
(mol−1)

1010 kq
(mol−1·s−1) R2

λex = 280 nm

20 4.7 8.0 0.9945

λex = 295 nm

20 4.3 7.2 0.9768
30 4.5 7.6 0.9955
40 5.8 9.8 0.9827
50 5.9 9.9 0.9819
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The binding constant (Kb) and number of binding sites (n) can be calculated using the
following equation [50]:

log
F0 − F

F
= logKb + nlog[Q] (3)

The plots of log (F0 − F)/F versus log [Q], which have been used to calculate the Kb
and n, are given in Figure 5B, and the values of these parameters are given in Table 2. The
magnitude of binding constants shows that there is a 1:1 binding with low affinity between
HSA and gemcitabine. However, the values of n suggested that the binding is cooperative
in nature [51,52].

Table 2. Binding and thermodynamic parameters for the interaction of HSA with gemcitabine at
various temperatures.

Temperature
Binding Parameters Thermodynamic Parameters

n 102Kb
(mol−1) R2 ∆G

(kJ mol−1)
∆H

(kJ mol−1)
∆S

(J mol–1 K−1)

20 1.1 8.2 0.963 −16.4 7.8 82.6
30 1.1 9.6 0.9924 −17.2
40 1.1 10.1 0.9784 −18.1
50 1.1 11.2 0.9952 −18.9

In a process of interaction between a biomolecule and small ligand, various bind-
ing forces, such as hydrogen bonds and electrostatic, hydrophobic and van der Waals
forces are involved. Thermodynamic parameters like free energy change (∆G), enthalpy
change (∆H) and entropy change (∆S) can suggest the spontaneity of the binding as well
as give an idea about the major forces involved in the binding. Van’t Hoff equations
(Equations (S2) and (S3) given in supplementary material) can be utilized to calculate the
thermodynamic parameters (Table 2) using the plot of ln Kb vs. 1/T, which is given in
Figure 6A. The dominance of hydrophobic interaction is associated with positive values of
both ∆H and entropy change ∆S, while their negative values correspond to the hydrogen
bonding and van der Waals forces; electrostatic interactions, on the other hand, play an
important role when the values of ∆H is very low or zero. The negative values of ∆G
(Table 1) suggest that the binding is spontaneous, which is favored by the temperature
change. The calculated values of ∆H and ∆S show that the major binding forces associated
with HSA–gemcitabine binding are hydrophobic forces [53].

2.4. Secondary Structural Analysis Using Far-UV CD Spectroscopy

The secondary structural changes in a protein can be estimated by CD spectropho-
tometry. Proteins have several secondary structural components for example, α-helix,
anti-parallel β-sheet, β-turn, random coil, etc., and information on these types of structures
can be obtained by the use of far-UV CD typically in the wavelength range of 200 nm to
250 nm [54,55]. HSA is an α-helical protein with about 67% of α-helical contents, which
can be characterized by two negative peaks at 222 nm and 208 nm [56,57]. The far-UV CD
spectra of native HSA and HSA–gemcitabine complex are given in Figure 6B. Low concen-
trations (up to 10 µM) of gemcitabine did not significantly affect the secondary structure
of HSA; however, a small decrease in the α-helicity happens when the concentration of
gemcitabine is increased up to 200 µM, and a further drop in the helicity can be observed
in presence of 500 µM of the drug. Thus, it can be deduced here that, in the presence
of lower concentrations (up to 100 µM) of gemcitabine, the secondary structure of HSA
remained intact, while higher concentrations of the former give rise to the partial unfolding
of the latter.
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Figure 6. (A) van’t Hoff plot of HSA–gemcitabine interaction (B) Far-UV CD spectra of HSA in
the absence and presence of gemcitabine in 20 mM tris buffer with pH 7.4 at various temperatures.
[HSA] = 3 µM.

2.5. Competitive Binding Site Experiments and Effect of Ibuprofen on the Binding

HSA is a globular protein with around 585 amino acids with molecular mass of
66.5 kDa. Structurally, it is divided into three domains (I, II and III), each of which are
further subdivided into two subdomains (A and B) as shown in Figure 7 [58]. According to
Sudlow et al., there are two principal binding sites in HSA for the drugs that are located in
subdomain IIA and IIIA and are characterized as drug site 1 and drug site 2. It was reported
by Ghuman et al. that warfarin binds specifically at drug site 1, whereas ibuprofen binds at
drug site 2, although the latter can also bind at another site, which is termed its secondary
site [59]. Keeping in mind the established drug-binding sites, competitive binding site
experiments were carried out using warfarin as a marker for drug site 1 and ibuprofen
as a marker for drug site 2. Moreover, since ibuprofen does not influence the binding
significantly at a lower concentration range (vide infra) and considering the possibility of
its coexistance with gemcitabine in the prescription (as described in introduction section),
we have seen the effect of additional higher concentrations of ibuprofen on the binding
of gemcitabine with HSA. The fluorescence quenching of HSA with gemcitabine was
studied in the presence of these site markers and the respective spectra are given in
Figures 8 and 9. In these figures, we have only displayed the observed spectra, though
the data were corrected for the inner filter effect before the analysis of the KSV and Kb
(insets of Figures 8 and 9). We have used several concentrations of both site markers
to understand the effect of their concentrations on the interactions between HSA and
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gemcitabine. The quenching and binding constants greatly decrease in the presence of
small concentrations of warfarin (Table 3), which is due to the competition and/or the
steric hindrence that happened between gemcitabine and the former for the same site,
which resulted in decreasing the binding affinity of latter. There is almost no effect of small,
as well as higher, concentrations of ibuprofen on the binding of HSA and gemcitabine
(Table 4).

Table 3. Stern–Volmer quenching constants and the binding constants of HSA–gemcitabine interac-
tion in the presence of various amounts of warfarin.

[warfarin] (µM) Ksv (M−1) Kb (M−1)

3.0 1.6 × 102 1.0 × 102

10.0 1.4 × 102 0.9 × 102

20.0 1.1 × 102 0.5 × 102

Table 4. Stern–Volmer quenching constants and the binding constants of HSA–gemcitabine interac-
tion in the presence of various amounts of ibuprofen.

[ibuprofen] (µM) Ksv (M−1) Kb (M−1)

3.0 4.3 × 102 7.5 × 102

10.0 4.4 × 102 7.3 × 102

20.0 4.4 × 102 7.2 × 102

100.0 4.3 × 102 7.0 × 102

200.0 4.2 × 102 7.1 × 102

From these outcomes, it can be understood that the binding site of gemcitabine inside
HSA is near the binding site of warfarin, i.e., drug site 1. Interestingly we observe that
ibuprofen does not influence HSA–gemcitabine binding.
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Figure 8. Observed fluorescence emission spectra of HSA complexed with warfarin at the excitation
wavelength of 295 nm in the presence of various concentrations of gemcitabine (0, 20, 40, 60, 80,
100, 120, 140, 160, 180 and 200 µM) at 20 ◦C in 20 mM tris buffer with pH 7.4. [HSA] = 3 µM,
[warfarin] = 3 µM (A), 10 µM (B) and 20 µM (C). The upper insets in each figure show the plots of
F0/F vs. [gemcitabine], and lower insets show the plots of log (F0 − F)/F vs. log [gemcitabine]
obtained from the data after the inner filter effect correction of the respective figure.
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Figure 9. Observed fluorescence emission spectra of HSA complexed with ibuprofen at the excitation
wavelength of 295 nm in the presence of various concentrations of gemcitabine (0, 20, 40, 60, 80,
100, 120, 140, 160, 180 and 200 µM) at 20 ◦C in 20 mM tris buffer with pH 7.4. [HSA] = 3 µM,
[ibuprofen] = 3 µM (A), 10 µM (B), 20 µM (C,D) 100 µM and (E) 200 µM. The upper insets in each
figure show the plots of F0/F vs. [gemcitabine], and lower insets show the plots of log (F0 − F)/F vs.
log [gemcitabine] obtained from the data after the inner filter effect correction of the respective figure.

2.6. Detailed Molecular Docking Studies of HSA Interaction with Gemcitabine in the Absence and
Presence of Site Markers

For a better understanding of the HSA–gemcitabine interaction, molecular docking
was also carried out to locate the binding site of gemcitabine inside free HSA, HSA com-
plexed with warfarin and ibuprofen (both primary and secondary sites). The docked
structures of gemcitabine with free HSA and HSA pre-complexed with warfarin and
ibuprofen, obtained using Autodock vina, are given in Figure 10. In the unliganded HSA,
gemcitabine preferred to bind at the interface of subdomain IIA and IIB (Figure 9A), which
is in close proximity to the warfarin binding site and also near to the secondary site for
ibuprofen [59]. In warfarin-bounded HSA (at site 1), the preferred binding site of gemc-
itabine is near the cleft at the interfacial region of domain IB and domain IIIA (Figure 10B)
due to the possible steric hindrance and/or competition with the warfarin complexed in
the near proximity. As ibuprofen is known to have two binding sites inside HSA, we have
also seen the preferred binding site of gemcitabine when only primary as well as when
both sites are occupied by ibuprofen. When one molecule of ibuprofen is complexed with
HSA inside subdomain IIIA, the docking results of gemcitabine show two conformers with
the same docking score (Figure 10C). The location of gemcitabine in the first conformer is
the same as that observed in free HSA, while in the second conformer, the binding site is
located at the cleft (the same site observed in the case of warfarin-complexed HSA). In the
case of occupancy of both primary as well as secondary sites by ibuprofen, the gemcitabine
binding site is also the same, as observed with warfarin-HSA (Figure 10D). The interesting
thing to note here is the docking score of Autodock vina, which is −7.0 kcal/mol and
−6.6 kcal/mol for the free HSA and warfarin complexed HSA. In the case of the docking
of gemcitabine with HSA complexed with ibuprofen at only the primary site, the docking
score remains the same as in free HSA for both conformers described above, whereas it
increases to −7.2 kcal/mol for the binding of gemcitabine with the HSA bonded with two
molecules of ibuprofen. These results are in good agreement with the results obtained
experimentally, which shows that ibuprofen did not affect the binding of gemcitabine with
HSA. The binding pockets of gemcitabine with HSA (free as well as complexed with site
markers) are given in Figure 11, and the amino acids involved in the binding, as well as the
type of interaction, are displayed in Table 5.
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Table 5. Non-covalent interactions of gemcitabine with free and bounded HSA obtained through
molecular docking.

Amino Acid Type of Interaction

free HSA

ARG209 hydrogen bonding
GLY328
ALA213 hydrophobic interaction
LYS212
VAL216
GLU354 halogen acceptor

HSA bounded with warfarin

SER193 hydrogen bonding
ASN109
ASP108
ALA194
GLN459
HIS146 halogen acceptor

ARG197 hydrophobic interaction
SER193

HSA bounded with ibuprofen at
primary site

Conformer 1
ARG209 hydrogen bonding
ASP324
ALA213 hydrophobic interaction

Conformer 2
VAL455 hydrogen bonding
HIS146
SER193
GLN459
ASP108 halogen acceptor
ARG145
ALA194 hydrophobic interaction
ARG197

HSA bounded with ibuprofen at
primary and secondary sites

VAL455 hydrogen bonding
ASP108
HIS146
SER193
GLN459
ARG145 halogen acceptor
ALA194 hydrophobic interaction
ARG197
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2.7. Density Functional Theory (DFT) Studies

Though the DFT studies of gemcitabine alone using Gaussian package have been
reported earlier [60], we have investigated the DFT studies of various conformers described
in the molecular docking section using the ORCA package. The frontier molecular orbitals
(FMOs) (highest occupied molecular orbital (HOMO) and lowest unoccupied molecular
orbital (LUMO)) of free and complexed gemcitabine are displayed in Table 6. The energy
gap (∆E) between the HOMOs and LUMOs gives an idea about the stability of a molecule.
It can be seen from the values of ∆E given in Table 6 that there is not much difference in the
values corresponding to various forms of gemcitabine, although the spatial arrangements
of bonds as well as atoms within the molecule is different in each form, which is due to
the flexibility of gemcitabine, due to which it fits inside the binding pocket of HSA [26].
Generally, a molecule with a small frontier orbital gap is more polarizable and has high
chemical reactivity and low kinetic stability [61], whereas a larger gap leads to a greater
molecular stability for further reactions [62–64]. The slight difference in ∆E observed in the
present case might be due to the weaker interaction between HSA and gemcitabine because,
in stronger interactions, a considerable increase in the ∆E was reported [21]. However,
an in-depth comparison of the ∆E of gemcitabine under various conditions of binding
shows that gemcitabine was least stable when bonded with the HSA–warfarin complex; in
intermediate stability range in free form, it bonded with HSA that was free from any other
ligand and bonded with the HSA–ibuprofen complex at the primary site; nevertheless, the
stability of gemcitabine slightly increased further when it bonded with HSA containing
ibuprofen at the primary as well as secondary sites of HSA.

Table 6. FMO diagrams and their energy gap for free and complexed gemcitabine obtained through
geometry optimization using DFT.

HOMO LUMO ∆E

Free gemcitabine
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Table 6. Cont.
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3. Materials and Methods 
HSA and gemcitabine were the products of Sigma USA and were used as received. 

The studies were carried out in 20 mM tris buffer with pH 7.4 at 20 °C unless stated oth-
erwise. A protein concentration of 3.0 µM was used in most of the experiments. UV-visible 
spectra were collected using a Perkin-Volmer Lambda-45 Spectrophotometer. Fluores-
cence measurements were performed using a Hitachi F-7000 spectrofluorometer, which 
was connected with a programmer temperature controller unit. The fluorescence emission 
spectra were collected by exciting the protein solution at 280 nm and 295 nm using the 
excitation and emission slit width of 5 nm and with PMT voltage of 500 V. CD spectra of 
HSA was screened using a Jasco J-815 spectropolarimeter in the far-UV range (200 to 250 
nm). Molecular docking simulations were performed using the Autodock vina program 
[65]. The structural coordinates of HSA and gemcitabine (PubChem CID 60750) were ob-
tained from Pubmed and PubChem databases, respectively, and prepared using discov-
ery studio visualizer program. In the case of molecular docking of free HSA and gemcita-
bine, ligand-free HSA structure (4K2C) was selected, and, for other dockings, i.e., warfa-
rin-bounded (2BXD) and ibuprofen-bounded (2BXG), structures were chosen. The rest of 
the details of the experimental methodology are given in the supplementary material. The 
geometry of gemcitabine was optimized at DFT/B3LYP/6-31 using the ORCA program 
[66], and the analysis and visualization were performed using the Avogadro software [67]. 

4. Conclusions 
Gemcitabine is a popular anticancer drug that is prescribed to patients for the treat-

ment of various types of cancers. The interaction of gemcitabine with plasma proteins is 
prospective during its administration; therefore, its interaction with the most-abundant 
plasma protein was studied in this paper. The possibility of the copresence of the well-
known painkiller, ibuprofen, along with gemcitabine, was also considered, and the effect 
of the former was also seen on the binding. The binding of gemcitabine with HSA was 
found to be weak, which increased with increases in the temperature due to the dynamic 
nature of the quenching process. The secondary structure of HSA did not change in the 
presence of a low concentration of gemcitabine; although, partial unfolding was observed 
when the drug was present in larger amounts. The preferred binding site of gemcitabine 
was near drug binding site 1, located at the interface of subdomain IIA and IIB. There was 
apparently no effect of ibuprofen on the binding of gemcitabine with HSA, even in the 
presence of higher concentrations of the former. Thus, it could be concluded here that 
ibuprofen does not influence the binding of gemcitabine. 

Supplementary Materials: The following are available online, Figures S1–S3: Observed fluores-
cence spectra at various temperatures and Figures S4–S6: Corrected fluorescence spectra at various 
temperatures. 

Author Contributions: Conceptualization, M.S.A.; methodology, M.S.A.; software, M.S.A.; valida-
tion, M.S.A. and H.A.A.-L.; formal analysis, M.S.A.; investigation, M.S.A.; resources, H.A.A.-L.; 
writing—review and editing, M.S.A.; funding acquisition, H.A.A.-L. All authors have read and 
agreed to the published version of the manuscript. 
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3. Materials and Methods

HSA and gemcitabine were the products of Sigma USA and were used as received. The
studies were carried out in 20 mM tris buffer with pH 7.4 at 20 ◦C unless stated otherwise.
A protein concentration of 3.0 µM was used in most of the experiments. UV-visible
spectra were collected using a Perkin-Volmer Lambda-45 Spectrophotometer. Fluorescence
measurements were performed using a Hitachi F-7000 spectrofluorometer, which was
connected with a programmer temperature controller unit. The fluorescence emission
spectra were collected by exciting the protein solution at 280 nm and 295 nm using the
excitation and emission slit width of 5 nm and with PMT voltage of 500 V. CD spectra of HSA
was screened using a Jasco J-815 spectropolarimeter in the far-UV range (200 to 250 nm).
Molecular docking simulations were performed using the Autodock vina program [65].
The structural coordinates of HSA and gemcitabine (PubChem CID 60750) were obtained
from Pubmed and PubChem databases, respectively, and prepared using discovery studio
visualizer program. In the case of molecular docking of free HSA and gemcitabine, ligand-
free HSA structure (4K2C) was selected, and, for other dockings, i.e., warfarin-bounded
(2BXD) and ibuprofen-bounded (2BXG), structures were chosen. The rest of the details of
the experimental methodology are given in the supplementary material. The geometry of
gemcitabine was optimized at DFT/B3LYP/6-31 using the ORCA program [66], and the
analysis and visualization were performed using the Avogadro software [67].

4. Conclusions

Gemcitabine is a popular anticancer drug that is prescribed to patients for the treat-
ment of various types of cancers. The interaction of gemcitabine with plasma proteins is
prospective during its administration; therefore, its interaction with the most-abundant
plasma protein was studied in this paper. The possibility of the copresence of the well-
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known painkiller, ibuprofen, along with gemcitabine, was also considered, and the effect of
the former was also seen on the binding. The binding of gemcitabine with HSA was found
to be weak, which increased with increases in the temperature due to the dynamic nature
of the quenching process. The secondary structure of HSA did not change in the presence
of a low concentration of gemcitabine; although, partial unfolding was observed when the
drug was present in larger amounts. The preferred binding site of gemcitabine was near
drug binding site 1, located at the interface of subdomain IIA and IIB. There was apparently
no effect of ibuprofen on the binding of gemcitabine with HSA, even in the presence of
higher concentrations of the former. Thus, it could be concluded here that ibuprofen does
not influence the binding of gemcitabine.

Supplementary Materials: The following are available online, Figures S1–S3: Observed fluores-
cence spectra at various temperatures and Figures S4–S6: Corrected fluorescence spectra at various
temperatures. References [47,65,68] are cited in the supplementary materials.
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