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Multileaf collimator (MLC) positions should be precisely and independently mea-
sured as a function of gantry angle as part of a comprehensive quality assurance 
(QA) program for volumetric-modulated arc therapy (VMAT). It is also ideal that 
such a QA program has the ability to relate MLC positional accuracy to patient-
specific dosimetry in order to determine the clinical significance of any detected 
MLC errors. In this work we propose a method to verify individual MLC trajectories 
during VMAT deliveries for use as a routine linear accelerator QA tool. We also 
extend this method to reconstruct the 3D patient dose in the treatment planning sys-
tem based on the measured MLC trajectories and the original DICOM plan file. The 
method relies on extracting MLC positions from EPID images acquired at 8.41 fps 
during clinical VMAT deliveries. A gantry angle is automatically tagged to each 
image in order to obtain the MLC trajectories as a function of gantry angle. This 
analysis was performed for six clinical VMAT plans acquired at monthly intervals 
for three months. The measured trajectories for each delivery were compared to 
the MLC positions from the DICOM plan file. The maximum mean error detected 
was 0.07 mm and a maximum root-mean-square error was 0.8 mm for any leaf 
of any delivery. The sensitivity of this system was characterized by introducing 
random and systematic MLC errors into the test plans. It was demonstrated that 
the system is capable of detecting random and systematic errors on the range of 
1–2 mm and single leaf calibration errors of 0.5 mm. The methodology developed 
in the work has potential to be used for efficient routine linear accelerator MLC QA 
and pretreatment patient-specific QA and has the ability to relate measured MLC 
positional errors to 3D dosimetric errors within a patient volume.
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I. INTRODUCTION

Volumetric-modulated arc therapy (VMAT) is a modern delivery technique in radiotherapy, in 
which a precise three-dimensional dose distribution is achieved by delivering a spatially modu-
lated photon beam as the gantry is rotated through one or more arcs.(1-3) Spatial modulation is 
achieved by means of dynamic multileaf collimator (MLC) trajectories which are synchronized 
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to the gantry angle and dose rate (machine output). These three dynamic components (i.e., MLC, 
gantry angle, and dose rate) must remain synchronized throughout the treatment in order to 
deliver the intended dose to the planning target volume (PTV) and organs at risk (OAR). Due 
to this high level of complexity, there is a need for comprehensive and informative quality 
assurance (QA) techniques.(4,5)

Positional MLC errors can result in substantial dose differences during VMAT delivery, and 
this becomes more apparent for highly modulated fields, where the distance between opposing 
MLC leaves is often small. A number of groups have investigated the dosimetric impact of 
different types of MLC errors in IMRT and VMAT deliveries.(6-12) Rangel and Dunscombe(12) 
estimated that every 1 mm of systematic shift in MLC positions results in a difference of 2.7% 
and 5.6% to the reference equivalent uniform dose for prostate and head and neck IMRT fields, 
respectively. Oliver et al.(10) reported the sensitivity of VMAT deliveries to both random and 
systematic MLC errors. For systematic errors, dose differences as large as 2.8 Gy per mm of 
positional error were observed over the course of a treatment.(10)

A comprehensive VMAT MLC positioning test should:

• provide an accurate and quantitative determination of MLC positioning versus gantry angle
• be an independent measure of the linear accelerator MLC positioning (i.e., not be based on 

the linacs readout systems)
• be efficient enough to perform on a regular basis
• use clinically meaningful MLC deliveries
• be able to relate the measured positioning errors to clinical significance (i.e., dose delivered 

to the patient)

Despite the demonstrated dosimetric significance of VMAT MLC errors, MLC positioning 
QA for VMAT is still generally performed in a qualitative manner. The common tests employed 
for VMAT linac QA are the tests proposed by Ling et al.(4) as these are straightforward to 
deliver and analyze qualitatively. However, the tests proposed by Ling and colleagues were 
never intended as a comprehensive test system for VMAT deliveries and do not fulfill the above 
criteria. The Ling MLC positioning test for VMAT is a modification of the well-known Picket 
Fence pattern developed for IMRT. In this test, the leaves move in a single direction, a uniform 
leaf speed is used, and the leaf positions are not determined quantitatively. A set of different 
tests were proposed by van Esch et al.;(5) however, these are very time-consuming, involve film 
dosimetry, and have not gained widespread use. More recently, the Netherlands Commission 
on Radiation Dosimetry has proposed a more comprehensive quality assurance program for 
VMAT.(13) It emphasizes that the MLC position as a function of gantry angle should be assessed 
during dynamic gantry rotation and with dynamic MLC leaf trajectories.

An attractive option for efficient QA is to use the dynamic log files (DynaLog files). These 
files record the position of each MLC leaf throughout the delivery as measured by the MLC 
motor encoders and have been used extensively for MLC position testing.(4,14-20) Other studies 
have extended this further and used DynaLog log files to relate the actual MLC position to the 
dose delivered to patient for IMRT and VMAT patient-specific QA and delivery verification.(21-24)  
Schreibmann et al.(23) used DynaLog-recorded MLC positions to create a DICOM-compliant 
plan which could be imported into the treatment planning system to perform a 3D dose recon-
struction. The use of DynaLog files for MLC QA offers a number of advantages, such as the 
ability to streamline and automate QA processes; however, due the fact that measured MLC 
positions are sourced from the MLC controller itself, these measurements are not independent. 
As a result many types of MLC errors, such as miscalibration errors or mechanical backlash, 
cannot be detected by analyzing these files, as demonstrated by Agnew et al.(14) This kind of 
approach should therefore not be used for VMAT linac QA. 

To perform VMAT MLC positioning quality assurance, therefore, requires a detector with 
sufficient resolution both temporally and spatially. Groups have also investigated the use of 2D 
detector array devices such as MapCHECK, MatriXX, and PTW-729(25,26) to assess dynamic 
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MLC performance; however, the applicability of these devices for MLC QA is fundamentally 
limited by their low spatial resolution. Equipment setup and analysis time can also be significant.

Electronic portal imaging devices (EPIDs) represent a nearly ideal detector for this purpose. 
They have high spatial resolution (~ 0.3 mm) and temporal resolution (~ 10 Hz) with large sur-
face area and minimal setup time. EPIDs have also been employed to assess MLC performance 
using dynamic MLC test patterns,(8,14,27-31) as well as for clinical IMRT fields.(8,32-38) Some 
authors have investigated using the EPID to detect MLC positions during VMAT deliveries, 
and compared these to planned MLC positions for patient-specific quality assurance(36,37,39,40) 
purposes. However the precision of these tests were not adequate for routine MLC positioning 
quality assurance. For MLC quality assurance Rowshanfarzad et al.(27) investigated the behavior 
of the MLC during the delivery of dynamic sliding gap fields under a variety of conditions, 
including both static gantry and arc-type deliveries, but not absolute MLC position. There is 
therefore a need to develop a high-precision method to measure MLC position versus gantry 
angle in an efficient manner which will form an important component of a comprehensive 
VMAT quality assurance program.

In this work, a method is presented where EPID image frames are used to measure MLC leaf 
positions as a function of gantry angle during clinical VMAT deliveries. The method is a very 
high precision and efficient QA technique that fulfills the criteria listed above for VMAT MLC 
positioning quality assurance and the testing outlined in the recent Netherlands Report 24.(13) 
The method requires no knowledge of the planned delivery and uses no information from the 
treatment delivery system and, therefore, can be used as a completely independent verification 
tool. The measured MLC positions are compared geometrically to the planned MLC positions 
and are also written into a new DICOM plan file which can be used to recalculate the 3D dose 
using a conventional treatment planning system. The sensitivity of the QA tool to detect clini-
cally meaningful MLC positioning errors is demonstrated.

 
II. MATERIALS AND METHODS

A.  Delivery system and EPID image acquisition
All measurements in this study were performed using a Varian Trilogy linear accelerator with a 
6 MV photon beam. EPID images were collected using a Varian aS1000 EPID (Varian Medical 
Systems, Palo Alto, CA) which was operated in integrated acquisition mode. Images were 
performed with a source to detector distance (SDD) of 150 cm, which improves the spatial 
resolution of the images. Individual image frames were collected at a rate of 8.41 frames per 
second (fps) using a frame grabber system and in-house acquisition software written in MATLAB 
programming language (MathWorks, Natick, MA). Each EPID image frame was automatically 
flood field and dark field corrected and image acquisition and analysis was performed on an 
ancillary computer so as not to interfere with the clinical system. All EPID measurements were 
acquired “in-air” (i.e., without the presence of a patient or phantom).

B.  Gantry angle measurements
During VMAT deliveries, the gantry angle was determined by accessing information from the 
gantry angle encoder in the OBI system. Raw encoder-generated signal was calibrated to gantry 
angle by varying the gantry angle on the linac console in steps of 45° and recording the encoder 
signal at each point. Note that, prior to performing these measurements, the machine gantry 
angle readout from the linac console was independently verified at each cardinal angle using a 
spirit level. These measurements were repeated for clockwise and counterclockwise rotations 
and a linear fit was used to model the relationship, as in Woodruff et al.(41) 

The encoder signal was extracted during delivery from the header of the kilovoltage (kV) 
image frames, which were acquired simultaneously to the EPID frames, using the dual-channel 
functionality of the frame grabber system. The kV image frames were acquired at a frame rate 
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of 15 fps and with the kV source off ensuring no additional dose is delivered to the patient (if 
present). Both the source and the image panel were retracted during the delivery, so as not to 
interfere with standard clinical workflow. The encoder-generated gantry angle was then linearly 
interpolated as a function of time to tag a gantry angle to each measured EPID image frame. 
Note that this is necessary due to the different frame rates of the MV and kV imaging systems.

For the Varian Trilogy linac design, the OBI gantry angle encoder operates independently 
of the delivery system, hence providing a more independent gantry angle measurement than 
using the imager header gantry angle. Furthermore, the gantry angle tagged to the OBI frame 
header is highly accurate (± 0.05°) as it is also required for cone-beam CT reconstructions.(41)

C.  MLC position extraction
Each EPID image frame was postprocessed after delivery in order to accurately extract the 
positions of the in-field MLC leaves. There are four key steps in this process: mechanical sag 
correction, collimator rotation measurement, leaf edge detection, and EPID radiation field 
offset (ERFO) correction.

C.1 Mechanical sag correction
As the multiton gantry rotates through a treatment arc, the EPID imaging panel, gantry head, and 
MLC leaves all experience mechanical sagging effects due to gravity. The magnitude and direction 
of this sag varies as a function of gantry angle.(42) As a result the isocenter of the EPID imaging 
panel is not coincident with that of the MLC leaves. In terms of extracting MLC positions, this 
effect must be compensated for or it will introduce a gantry angle-dependent accuracy into the 
QA method, thus producing a measurement bias that can be misleading when interpreting results. 

In this work, a method has been developed to directly measure the difference between the 
imager isocenter and MLC isocenter as a function of gantry angle (for the in-plane and cross-
plane directions). This isocenter correction can then be applied as a 2D shift to acquired images 
of clinical fields to correct for mechanical sag effects. To determine this correction, a static 
MLC defined 5 × 5 cm2 radiation field was delivered whilst the gantry was rotated through a 
full 360° arc and EPID image frames were acquired as a function of gantry angle. This mea-
surement was repeated for 0° and 90° collimator rotation. Using these frame sets, the isocenter 
shift was determined in the in-plane and cross-plane directions, respectively, by detecting the 
radiation field edge perpendicular to the direction of leaf motion, as indicated in Fig. 1. By 
using both the 0° and 90° collimator deliveries (rather than a single delivery at 0° collimator 

Fig. 1. MLC defined fields used to determine the sag characteristics as a function of gantry angle for in the (a) in-plane 
direction and (b) cross-plane direction. These fields were delivered whilst the gantry was rotated from -180° to +180°. The 
vertical profile for field (a) was used to determine the central axis of the field for the in-plane direction. The horizontal 
profile for field (b) was used to determine the central axis of the field in the cross-plane direction.
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rotation), the sag correction can be determined without relying on the actual MLC positions. 
The mechanical sag was measured as a function of gantry angle using this technique. Figure 2 
displays the sag properties for a counterclockwise rotation for two measurements performed on 
the same linac six months apart. The fitted Fourier curves in Fig. 2 were used to subsequently 
correct the acquired EPID images.

C.2 Collimator rotation measurement
The collimator angle was extracted from each EPID image frame, and subsequently used to rotate 
the image to represent a field with 0° collimator rotation. This step was performed purely for 
image processing purpose, so that profile through the central axis of each leaf could be identi-
fied. The angle was measured by analyzing the periodic interleaf leakage signal, which forms 
a sharp peak in the Fourier Transform image. The angle that this peak makes with the origin, 
in the frequency domain, corresponds to the measured collimator angle. Using this method, 
the collimator angle can be found to within±1° of the planned angle. This method is outlined 
in greater detail by Fuangrod et al.,(38) who also characterized the accuracy of the technique. 

By performing steps as outlined above (mechanical sag correction and collimator rotation 
measurement), it was ensured that each EPID image is in the same translational and rotational 
coordinate system as the MLC. This results in a higher geometric accuracy in the MLC position 
extraction process and allows quality assurance of the  X direction leaf motion independent of 
other components (such as sag and collimator angle accuracy).

Fig. 2. Two measurements of the gantry angle-dependent sag correction factors for EPID images in the (a) in-plane and 
(b) cross-plane direction. These measurements correspond to static MLC defined fields (see Fig. 1) for gantry rotation in 
the counterclockwise direction. The two datasets displayed here were measured on the same linac six months apart. The 
solid line corresponds to a fitted general Fourier curve of degree 1 and degree 8, respectively, for the in-plane (a) and 
cross-plane (b) directions.
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C.3 MLC leaf edge detection
In order to determine the positions of the MLC leaves in each image, the horizontal profiles 
through the central axis of each leaf pair were first extracted. Each leaf pair was then classified 
as either open, closed, or out-of-field by comparing the maximum of each profile to the global 
maximum of the image. For each in-field leaf pair, two regions of interest were first identified 
by locating the maximum and minimum gradients of the corresponding profile. Cubic-spline 
interpolation was then applied to each identified region of interest in order to determine the 
coordinates of the 50% radiation field edge to subpixel accuracy. This analysis was repeated for 
the three central profiles of each leaf, and the mean of these three detected leaf positions was 
recorded as the final detected field edge. Unless otherwise stated, all measured MLC position 
in this work refer to the projected positions at the machine isocenter plane.

C.4  EPID radiation field offset (ERFO) correction
In order to compare the EPID-measured MLC field edges with the MLC positions specified in 
the DICOM plan file an additional correction factor was required. The reason for this is that 
the EPID-MLC positions correspond to the 50% intensity field edge; however, MLC positions 
recorded in the DICOM file correspond to the light field edge (see Fig. 3) as reported by Vial 
et al.(43) The difference between the light field edge and the 50% radiation field edge is referred 
to as the Radiation Field Offset (RFO) and is a result of radiation transmission through the 
rounded leaf tip of the Varian Millennium MLC. The optimal value of the RFO is dependent on 
a number of factors, most notably the amount of buildup, with larger RFO values corresponding 
to greater depths. Vial and colleagues characterized this in terms of dose to water for dynamic 
and static MLC deliveries.

In this work, we present a method for converting measured EPID field edge positions to the 
light field positions specified by the DICOM plan file using an empirically determined RFO-like 
correction factor. Note that the magnitude of the RFO correction for dose measured in water 
will differ compared the RFO required for EPID measured fields; however, the two correc-
tions are conceptually the same. The EPID-RFO (ERFO) factor was found by acquiring EPID 
images of a set of static MLC defined rectangular fields. Each field consisted of a rectangular 
field centered at a different off-axis position (ranging from -9 cm up to +9 cm in steps of 2 cm). 
Each field was acquired three times, and the MLC was fully retracted between each measured 
field to avoid any dependence on initial leaf positions. The measurements were performed at 
0° gantry and collimator angle and at an SDD of 150 cm. 

Fig. 3. Conceptual diagram outlining the differences between the light field edge (recorded in the DICOM MLC file), 
50% radiation field edge (measured by the EPID), and leaf tip position (recorded by the DynaLog file) when projected 
to the machine isocenter for the rounded leaf tip MLC design. These fundamental differences give rise to a leaf position 
offset (LPO) and EPID radiation field offset (ERFO).
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Using these data, the planned and measured MLC positions were compared as a function of 
off-axis distance for static fields. The ERFO correction factor was defined as the value which 
minimized the difference between the measured and planned MLC positions for all off-axis 
distances. Using these measurements, the optimal ERFO was found to be 0.44 mm (see Fig. 4), 
which was subsequently used to convert all measured EPID 50% field edges to light field posi-
tions prior to comparison with the planned MLC positions from the DICOM plan file. Note 
that this process was repeated for two separate linear accelerators with identical MLC models 
and imagers, yielding similar results. Prior to performing these measurements, the position-
ing accuracy of the MLC was verified on each linac by means of a Picket Fence test using the 
methodology developed by Rowshanfarzad et al.(27)

During acquisition of the static MLC-defined fields, MLC positions from acquired DynaLog 
files (Varian Medical Systems) were also recorded and compared to the planned positions 
from the DICOM file. The DynaLog file positions correspond to the leaf tip positions, which 
represent the physical edge of the leaves in the central plane of the MLC, as shown in Fig. 4. 
The difference between the DynaLog measured positions and the DICOM plan file positions 
is referred to as the leaf position offset(43) (LPO) and varies nonlinearly with off-axis distance. 
The MLC control system corrects for this using a table of LPOs which are determined geo-
metrically from the curvature of the MLC leaf tips. Figure 4 shows a comparison between the 
DynaLog-measured MLC positions and the planned MLC positions with and without an applied 
LPO correction for the static test fields.

D.  Dose reconstruction in treatment planning system
The measured MLC trajectories and associated gantry angles were then used to reconstruct the 
dose in the patient planning CT using an Eclipse TPS (Varian Medical Systems) for clinical 
VMAT plans. This was done by overwriting the planned MLC positions with the measured 
positions at each control point in the DICOM RT file. The new “EPID-altered” DICOM file 
could then be imported back into an Eclipse TPS which was used to compute the dose in 3D. 
The planned dose distributions were then compared to the reconstructed dose from the measured 
MLC positions using a DVH analysis for the planning target volume (PTV) and organs at risk 
(OAR). The creation of the EPID-altered DICOM was automated as part of the patient-specific 
QA process.

Fig. 4. Measured differences between the planned, EPID-measured, and DynaLog-measured MLC positions as a function 
of off-axis distance. These measurements were used to determine the ERFO correction factor to compare EPID-measured 
MLC positions to MLC positions from the DICOM plan file.
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E.  VMAT test fields
The MLC trajectory extraction algorithm was applied to six clinical VMAT test fields con-
sisting of three prostate and three head and neck deliveries. For each case the MLC positions 
were extracted as a function of gantry angle and were compared to the planned MLC positions 
from the DICOM RT file. Here, the planned MLC positions were linearly interpolated between 
control points to obtain the planned MLC positions at the gantry angles corresponding to the 
measured EPID image frames. The measurement and analysis of each field was repeated three 
times at monthly intervals to quantify the accuracy and reproducibility of the method. These 
measurements were performed without the presence of a patient or phantom.

F.  Simulation and detection of MLC positional errors
In order to demonstrate the ability of this system to detect and classify MLC errors, a number 
of leaf error types were deliberately introduced into a clinical prostate test delivery. This was 
achieved by altering the MLC positions of the DICOM RT file which could then be delivered 
in the clinical treatment system. For the purposes of this study, four types of MLC errors were 
introduced: individual MLC calibration errors, leaf-pair malfunction errors, random leaf cali-
bration errors, and systematic leaf gap errors. 

For individual MLC calibration errors, a single leaf was displaced by a set amount during the 
entire VMAT delivery. This simulates the occurrence of an isolated leaf miscalibration during a 
VMAT treatment. The error was introduced into leaf 30 for this particular delivery as this leaf 
was highly modulated and close to the center of the field and target volume. The detection of 
this type of error was tested for miscalibrations of 0.25, 0.5, 1, and 2 mm.

Random leaf calibration errors can be described as a miscalibration of every infield MLC 
leaf by a random amount during the delivery. This imitates the effect of leaf-calibration walk-
off which can occur if the MLCs are not reinitialized on a regular basis. To simulate this, each 
leaf was displaced by an amount randomly selected from 0 mm, ±1 mm, and ±2 mm. 

For systematic leaf gap errors, the MLC leaves in each bank were shifted in opposite direc-
tions to either create a smaller or a larger leaf gap between each leaf pair. This type of error 
would be typical of a RFO error as discussed Materials and Methods section C.4 (also referred 
to as a dosimetric leaf gap error in the Varian Eclipse TPS). Leaf gap errors were simulated 
at magnitudes of ±1 mm and ±2 mm, where positive and negative values correspond to larger 
and smaller gaps, respectively.

For each delivery error test, the dose was then recalculated based on the measured MLC 
trajectories (Materials and Methods section D). The reconstructed dose was compared to the 
planned dose in order to indicate the clinical significance of the different error types to each 
specific patient. The differences between the planned and reconstructed 3D dose distributions 
were quantified using a DVH analysis of the PTV and relevant OARs.

These error types were chosen as they simulate realistic MLC errors which could potentially 
be undetectable by other Dynamic MLC QA methods. Note that all of these errors were tested 
under the same setup conditions and were all introduced into the same VMAT plan, which was 
previously used as the first prostate test plan (Prostate 1).
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III. RESULTS 

A.  Clinical VMAT test plans
The MLC QA method was tested using three prostate and three head and neck clinical VMAT 
fields plans, which were used as a sample set to demonstrate the accuracy and functionality of 
the method. Figure 5 gives an example of the analysis for one of these test fields. It displays 
the software output for a single aperture ((a) to (c)) of the VMAT delivery, as well as for a 
single leaf trajectory (d) throughout the VMAT delivery. The software developed in this work 
has the ability to visualize and verify the MLC aperture at every measured EPID image frame 
(approximately every 120 ms), as well as verify the trajectory of each individual MLC leaf.

For each of the six test fields, the MLC positions were extracted from the EPID image 
frames and compared to the planned positions defined by the VMAT control points. The dif-
ference between the planned and measured positions are summarized in Table 1, which gives 
the root-mean-square (RMS) error, the mean difference (μ) and the standard deviation (SD) of 
all in-field MLC leaves in each delivery.

Fig. 5. A measured beam aperture (a) from an EPID image frame. The planned MLC positions at the corresponding gan-
try angle have been superimposed on the grey-scale EPID image. (b) The difference between the planned and measured 
MLC positions at this measured EPID image for the left bank and (c) the right bank. (d) A measured single leaf trajectory 
compared to the planned leaf trajectory. The solid line represents the EPID measured trajectory and the points show the 
MLC position specified at each control point.

Table 1. Summary of the differences between the planned and measured MLC positions for test deliveries. The dif-
ference is averaged for all infield leaves at all measured EPID image frames during the delivery and is given in the 
form of an RMS error and mean difference, μ±1 SD. Each field was measured and analyzed three times, measured at 
monthly intervals. All measurements are stated in mm.

 Test 1 Test 2  Test 3
 VMAT Plan RMS μ±1SD RMS μ±1SD RMS μ±1SD

 Prostate 1 0.38 0.06±0.38 0.39 0.07±0.38 0.38 0.05±0.37
 Prostate 2 0.39 0.06±0.39 0.38 0.05±0.38 0.40 0.06±0.39
 Prostate 3 0.37 0.05±0.37 0.37 0.06±0.37 0.37 0.06±0.38
 Head Neck 1 0.44 0.07±0.44 0.45 0.06±0.44 0.45 0.08±0.45
 Head Neck 2 0.48 0.03±0.47 0.47 0.04±0.47 0.45 0.04±0.44
 Head Neck 3 0.55 0.06±0.54 0.58 0.06±0.58 0.51 0.06±0.50
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The MLC leaf accuracy during a delivery can also be summarized visually using a histo-
gram of the difference between the measured and planned MLC positions. Examples of such 
histograms are given below for the Prostate 1 and Head Neck 1 test plans in Figs. 6(a) and (b), 
respectively. A histogram is plotted for each of the three test deliveries. 

MLC performance was also analyzed on a leaf-by-leaf basis, by computing the RMS position 
difference (from planned) for each leaf averaged over the entire delivery. Figure 7 details this 
for the three deliveries of the Prostate 1 test plan and Head Neck 1 test plan.

Additional QA was performed on the Prostate 1 and Head Neck 1 VMAT test plans, where 
the 3D patient dose was reconstructed in the TPS using the measured MLC positions. The 
delivered and planned 3D dose distributions were then compared using volumetrically using a 
DVH analysis of the PTV and relevant OARs, as shown in Table 2.

Fig. 6. Histogram plot showing the number of detected errors on the vertical axis and the magnitude (and direction) of 
MLC positional differences on the horizontal axis. Results are displayed for all three test deliveries of the Prostate 1 plan 
in (a) and Head and Neck 1 plan in (b). The bin width for the histogram plots was 0.05 mm.
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B.  Detection of MLC errors in VMAT deliveries
MLC errors were deliberately introduced into a clinical VMAT delivery by varying the MLC 
positions in the DCM plan file prior to measurement. These errors were introduced into the 
Prostate 1 test plan (see Table 1) as a case study/example. The measured MLC positions from the 
altered delivery were then compared to the original planned MLC positions in order to realisti-
cally simulate how an error would be detected. The measured MLC trajectories were then used 
to recalculate the 3D dose distribution, using the method outlined in Materials and Methods D.

Fig. 7. The measured RMS error for each in-field MLC leaf for the three test deliveries of the Prostate 1 and Head Neck 1 
clinical test plans. Results are displayed for the left and right MLC banks for the two test plans.

Table 2. DVH comparison between the planned dose distribution and the reconstructed dose distribution, using 
measured MLC positions, for the Prostate 1 and Head Neck 1 test plans.

  Plan Test 1 Test 2 Test 3 Mean Diff.
 Plan/Volume (Gy) (Gy) (Gy) (Gy) (%)

Prostate 1
 PTV (Dmean) 79.6 79.7 79.7 79.7 0.1
 PTV (Dmax) 83.5 83.9 83.9 83.9 0.5
 PTV (D95%) 77 77.1 77.1 77 0.1
 Bladder (Dmean) 12.9 12.8 12.9 12.8 -0.5
 Bladder (D max) 82.8 82.9 83 83 0.2
 Rectum (Dmean) 40.5 40.7 40.7 40.7 0.5
 Rectum (Dmax) 81.4 81.2 81.2 81.2 -0.2

Head Neck 1
 PTV (Dmean) 70.8 71.1 71.1 71.1 0.4
 PTV (Dmax) 75.3 75.7 75.8 75.8 0.6
 PTV (D95%) 67.3 67.6 67.7 67.6 0.5
 Spinal Cord (D max) 34 34.5 34.5 34.5 1.5
 Left Parotid (Dmean) 23.3 23.4 23.5 23.4 0.6
 Left Parotid (Dmax) 61.1 61.3 61.4 61.2 0.3
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B.1 Individual leaf calibration errors
Figure 8(a) shows the RMS error of each leaf in the right MLC bank during the delivery for leaf 
miscalibrations of 0.25, 0.5, 1, and 2 mm. The RMS leaf error with no introduced error is also 
plotted on the same axis for reference. Figure 8(b) displays a DVH analysis for the 2 mm leaf 
error for the PTV. The DVH for the planned PTV dose is also plotted for reference, yielding a 
1% increase in D5% as a result of the error.

Fig. 8. The RMS error (a) for each leaf in the right MLC bank during the delivery for leaf miscalibrations of 0.25, 0.5, 1, 
and 2 mm. (b) The DVH for the planned PTV and for a 2 mm leaf calibration error.
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B.2  Random leaf calibration errors
Random MLC calibration errors were introduced into the test prostate VMAT plan. Figure 9 
shows an error histogram of the measured MLC errors for (a) the delivery with no introduced 
errors and (b) the delivery with random MLC errors. Figure 9(c) plots the DVH for the recon-
structed dose with and without errors, indicating the effect of the random MLC errors on the 
patient dose distribution.

Fig. 9. Histogram (a) of leaf position errors for a delivery containing no errors and random MLC calibration errors. The 
recalculated DVH is also given (b) for the delivery with the random MLC errors, as well as the DVH for the planned 
delivery. Note that the recalculated DVH for the no errors delivery is not given here as it is visually identical to the original 
treatment plan.
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B.3 Systematic leaf gap errors
Leaf gap errors of ±1 mm and ±2 mm were tested. To identify this type of MLC error the 
planned leaf gap was compared to the measured leaf gap for all MLC leaves, which enabled 
the computation of the mean and standard deviation of the leaf gap error for the entire delivery. 
The mean leaf gap errors are plotted in Fig. 10(a) as a function of the actual introduced leaf gap 
error. The error bars in this plot correspond to one standard deviation (1 SD) of the measured 
gap errors. Figure 10(b) displays the DVH analysis for each of the ±2 mm gap errors as well 
as no error as a reference.

 

IV. DISCUSSION

The complexity of VMAT deliveries necessitates more informative and independent verification 
of MLC trajectories. It is also ideal to relate MLC positioning accuracy to the dose delivery 
errors in the patient, so that decisions on MLC performance can be based off metrics that are 
clinically relevant for the patient. This is not currently possibly using the widely accepted test 
MLC patterns for arc therapy MLC QA.(4,5) In this paper the method presented has the ability 
to directly measure MLC positions during clinical VMAT deliveries. We have also extended 
this method to reconstruct the 3D dose in the patient using the measured MLC trajectories.

Bakhtiari et al.(40) developed a technique which relied on cine EPID images to assess the 
MLC positional accuracy during clinical VMAT deliveries. This work successfully demon-
strated the feasibility of using gantry angle resolved EPID images for MLC QA. For each leaf 
of each image a 38% isodose line was used to represent the measured leaf positions and was 
subsequently compared to the planned positions using a DTA analysis. In this paper we have 
improved on the method developed by Bakhtiari et al. in a number of ways. Firstly, rather 
than use the gantry angle from the header of each cine EPID image, which has been shown 

Fig. 10. A plot (a) of the measured mean leaf gap error for each leaf gap error that was introduced (0 mm, ±1 mm, ±2 mm). 
The dose was reconstructed for each case and the DVH is plotted in (b) for the planned dose and±2 mm leaf gap error 
deliveries.
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to have large inaccuracies,(44,45) we have assigned a gantry angle to each image from encoder 
of the OBI system which has  higher accuracy. We have also implemented a mechanical sag 
correction to improve the accuracy of the MLC position extraction (Figs. 1 and 2). Another 
addition is the development of the ERFO correction to compensate for transmission through 
the leaf tip (Figs. 4 and 5). Using this correction, the planned and measured leaf positions can 
be directly compared. This enables a further extension of Bakhtiari’s geometric QA to use the 
measured MLC positions to reconstruct the dose delivered to the patient, thus bridging the 
gap between measured MLC performance and the accuracy of dose delivery. Also note that 
the ERFO correction was empirically optimized using a 50% dose edge, whilst Bakhtiari and 
colleagues used a 38% isodose. The difference between these two values is likely compensated 
for in the ERFO correction.

The method developed in this paper has been shown to be extremely reproducible. The three 
test deliveries of each of the six VMAT plans were acquired at monthly intervals, and the results 
given in Table 1 and Figs. 6 and 7 indicate that there was no change in MLC performance over 
a three-month time period. The consistency of each individual leaf performance is also demon-
strated in Fig. 7, which shows the RMS error of each leaf of each bank for a prostate and head 
and neck plan. The greatest difference in leaf RMS error over this period was less than 0.1 mm. 

It can be observed in Table 1 and Fig. 7 that the deviation between the planned and measured 
MLC positions was higher for the head and neck test plans than for the prostate test plans. This 
is expected due to the higher level of modulation of head and neck plans which results in a 
higher average leaf acceleration and leaf speed. Figure 7 also indicates that some leaves perform 
better than others during the delivery. This is a result of varying levels of complexity in each 
individual leaf trajectory plan. For this reason, site-specific tolerances have been established 
using statistical process control; however, the details of this are not specified in this publication.

Table 2 gives a comparison between the planned dose and the dose reconstructed using 
EPID-measured MLC positions. This comparison was performed using a DVH analysis of 
the PTV and OARs. Only small differences can be seen in the DVH between the planned and 
reconstructed dose indicating that for these plans the MLC positions are accurate enough to 
deliver the correct dose distribution to the patient. This demonstrates that, by using this QA 
tool, decisions regarding MLC positioning accuracy can be made using clinically meaningful 
volumetric parameters such as DVH statistics.

MLC error detection was demonstrated by introducing different types of errors into VMAT 
deliveries. The leaf errors introduced included a single leaf calibration errors, leaf pair malfunc-
tion error, random leaf calibration errors, and systematic leaf gap errors. As well as geometrically 
detecting each error, the 3D patient dose was also reconstructed based on the measured MLC 
positions and compared to the planned dose distribution. 

Single-leaf calibration errors were detected as low as 0.5 mm, as shown in Fig. 8(a). The 
reconstructed dose for this type of error resulted on only small dose errors in only a small part of 
the PTV, as shown in Fig. 8(b). This type of error would occur if a single leaf requires recalibra-
tion and, even for these small magnitudes, could become significant for small field stereotactic 
treatments. Single-leaf miscalibration errors on a small scale may not be detected by other QA 
methods, such as those which rely on DynaLog files(14) or low-resolution devices.(25,26)

Random leaf calibration errors may occur when a MLC has not been initialized frequently 
enough. These types of errors can easily be visualized in Figs. 9(a) and (b) which shows an error 
histogram for delivery without and with errors respectively. The five peaks in (b) correspond to 
the magnitude of the discrete random calibration errors that were introduced (i.e., at 0, ± 1, and 
± 2 mm). This type of error does not result in any significant dose errors in the patient as seen 
in Fig. 9(c) and this agrees with previous results regarding random MLC errors in VMAT.(10)

Errors in the gap between opposing MLC leaves can result in systematic dose errors in the 
patient, as demonstrated by Oliver et al.(10) Here the detection of these types of error has been 
demonstrated for ± 1 mm and ± 2 mm gap errors by computing the mean gap error over the 
entire delivery. Figure 10(a) shows a plot of the measured mean gap error as a function of the 
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actual introduced gap error. The measured MLC positions for the ± 2 mm cases result in large 
errors in the PTV and OAR doses as seen in Fig. 10(b). 

These results indicate that different types of errors, even with the same magnitude, can have 
very different levels of significance in terms of the dose errors in the patient. For this reason, 
rather than analyzing MLC errors simply in terms of positional accuracy, the type of error 
should also be considered. Furthermore, a particular error will impact each patient differently, 
depending on which MLCs are involved and the location of the PTV and OARs relative to the 
time, location, and type of error. This should also be considered when assessing the clinical 
significance of MLC performance for VMAT deliveries.

Machine log files (DynaLog files) have been used to assess MLC performance during clinical 
VMAT deliveries. A number of publications have shown that log files can be extremely useful 
for MLC QA and also for patient-specific 3D dose reconstruction. However, recent studies have 
voiced concern for using log files as a primary method for MLC QA. Agnew et al.(14) showed 
that machine log files were unable to detect systematic errors caused by recalibration require-
ments, wear and tear of the t-nut or suboptimal leaf motor performance. The reason for this is 
that MLC positions from MLC log files are not a measurement of the actual leaf position but 
are, instead, sourced from the positional encoder of each leaf motor. This means that any type 
of mismatch between the encoder recorded position and the actual MLC position will not be 
detected using machine log files. EPID imaging provides a direct measurement of the radiation 
field edge. This means EPID images can be used as a ground truth for the actual MLC posi-
tion and are capable of detecting all types of MLC positional errors. The EPID-based method 
presented here also has the ability to detect changes in mechanical sag and other gravity-related 
effects which would not be reflected in the machine log files but should still be monitored.(27,42) 
Future work will be to perform a long-term comparison between DynaLog files and EPID-based 
MLC positions for VMAT deliveries, in order to investigate the advantages and/or disadvantages 
of using machine log files for routine QA.

While this method is suitable for arc-resolved MLC QA, collimator angle QA, and gantry 
motion QA, it does not measure or check that the dose rate throughout the delivery is correct. 
The 3D dose reconstruction is based on the measured MLC positions but simply assumes 
that dose fraction as a function of gantry angle is delivered per the delivery plan. This has the 
advantage of isolating the effect of the MLC performance on the delivered dose but, as a result, 
it is not an end-to-end test of the VMAT delivery and, hence, should not be used as a stand-
alone patient-specific QA tool. Future work will be to combine this method with a technique 
for extracting the dose rate from each EPID image frame to independently measure and verify 
all components of the VMAT delivery from a single measurement.

This system may also be applied in real-time for in vivo MLC trajectory verification. This 
has been tested using an anthropomorphic pelvic phantom to simulate the patient scatter com-
ponent of the EPID images. Although this has not yet been demonstrated clinically, processing 
time for each image frame can currently be achieved within one frame time period (≤ 120 ms) 
which lends the possibility of real-time delivery verification using this technique. 

 
V. CONCLUSIONS

An EPID-based method was developed and tested to quality assure the positional accuracy of the 
MLC during VMAT deliveries. MLC trajectories were measured as a function of gantry angle 
using EPID image frames and were then compared to the planned trajectory of the delivery plan. 
Using a set of six VMAT plans and three test deliveries of each plan, the MLC extraction method 
was shown to be reproducible and accurate, yielding a maximum mean error of 0.07 mm and a 
maximum RMS error of 0.8 mm for any MLC of any delivery. The method was also extended 
to include a 3D dose reconstruction in the patient using the measured MLC trajectories in order 
to assess the clinical significance of MLC positional errors. The sensitivity of the system was 
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demonstrated for various types of MLC errors. The software was used to detect each type of 
error and perform a subsequent dose reconstruction in the TPS to determine the impact of the 
error on the dose delivery. The method was shown to successfully detect each type of error, 
including single leaf calibration errors as small as 0.5 mm. This system has the potential to be 
used for both a routine linac QA and VMAT patient-specific plan QA for the MLC, and has the 
ability to relate measured MLC positional errors to 3D dosimetric errors in the patient.
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