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In recent years, mammalian cells have become the primary host cells for the production of
recombinant therapeutic proteins (RTPs). Despite that the expression of RTPs in
mammalian cells can be improved by directly optimizing or engineering the expression
vectors, it is still influenced by the low stability and efficiency of gene integration.
Transposons are mobile genetic elements that can be inserted and cleaved within the
genome and can change their inserting position. The transposon vector system can be
applied to establish a stable pool of cells with high efficiency in RTPs production through
facilitating the integration of gene of interest into transcriptionally active sites under
screening pressure. Here, the structure and optimization of transposon vector system
and its application in expressing RTPs at high level in mammalian cells are reviewed.
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1 INTRODUCTION

Seventy-one new biological drugs have been approved and launched into the market from 2014 to
2018, of which 62 are recombinant therapeutic proteins (RTPs) (Walsh 2018). Recombinant proteins
are produced in heterologous cells using genetic engineering techniques by obtaining the gene of
interest (GOI), constructing the expression vector, and expressing the protein of interest in the host
cell. The trend of using mammalian cell lines in RTPs production has accelerated dramatically in
recent years, 84% of approved RTPs were produced using mammalian cells in 2018 (Walsh 2018;
Tschorn et al., 2020). The protein produced from Chinese hamster ovary (CHO) cells have similar
post-translational modification (PTM) system to those of mammalian cell, therefore approximately
70% of the approved recombinant therapeutic protein (antibody) are produced in CHO cells.
Nowadays, CHO cells have become the most commonly used mammalian cell expression system
(Rajendra et al., 2017; Shin et al., 2021).

To meet the increasing demand in biopharmaceutical market, it is necessary that innovating the
production process with a higher production capacity, high quality product, and reducing
production costs. Vector frequently used for gene delivery are largely divided into viral and
non-viral vectors. Viral vectors can infect a target cell naturally and effectively, with no
additional reagent or equipment required, but it may elicit unwanted cellular consequences and
the maximum vector size of viral vectors is restricted, hampering gene delivery of larger genes. In
contrast, nonviral DNA plasmid-based vectors are largely nonimmunogenic and can carry large
amounts of DNA, but the low transfection and poor integration rates are their major problems
(Hackett et al., 2010; Chen et al., 2018). Although optimization of expression vector and cell line are
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the effective methods to improve transgene expression in CHO
cells (Jazayeri et al., 2018), most of these methods mostly aim to
promote transcription of the GOI and cannot address the
problem of inefficient stable integration, with only about 1–5
copies of GOI randomly integrated into the host cell genome
(Chusainow et al., 2009; Kolacsek et al., 2014). The construction
of cell lines for expressing recombinant proteins by relying on
random integration of the GOI might result in unpredictable and
highly variable expression levels of the GOI (Matasci et al.,
2011a). The transposon vector system could integrate GOI
into transcription active sites more efficiently and promote the
expression of recombinant proteins in stable cell pools and
monoclonal cell lines (Balasubramanian et al., 2016), and has
been applied in the construction of mammalian cell lines for
large-scale production of recombinant proteins (Matasci et al.,
2011b). Mammalian cells and expression vectors.

2 MAMMALIAN CELLS AND EXPRESSION
VECTORS

2.1 Mammalian Cells
The main recombinant protein expression systems contain
prokaryotic, yeast, insect, and mammalian cell expression
systems. For the expression of the complex recombinant
proteins with high molecule weight, proper folding and post-
translational modifications are required to display their biological
activities due to their complex structure. Therefore, mammalian
cells mainly including CHO cells and human embryonic kidney
(HEK293) cells, have become the main expression hosts for RTPs
production due to their PTM system.

Compared with prokaryotic, yeast and insect cells, CHO cells
have the following advantages (Khan 2013): 1) CHO cells can
grow under the adhere and suspension state with high cell
density, which are suitable for large-scale industrial production
(Lai et al., 2013): 2) CHO cells are less sensitive to human virus
infection (O’Flaherty et al., 2020): 3) The expressed proteins have
high similarity with natural proteins in terms of molecular
structure, physicochemical properties and biological functions,
and the glycosylation is also more similar to that of human-
derived cells due to the lack of immunogenic α-galactose epitopes
(Ghaderi et al., 2012): 4) CHO cells are fibroblasts with low
endogenous protein secretion, which is beneficial to the isolation
and purification of recombinant proteins. (Mohan et al., 2008; Li
et al., 2018). In addition, by constructing DNAmethyltransferase-
deficient CHO cells, the stability of expression for the
recombinant protein can be enhanced by inactivating DNA
methylation (Jia et al., 2018; Wang et al., 2019).

Besides, the transformed cell line HEK293 derived from
human embryos have unparalleled advantages in comparison
to other engineered cells in recombinant protein expression, 1)
high efficiency in transfection (Dalton and Barton 2014); 2) no
potential risk of rodent virus infection; 3) high ability in
propeptide hydrolysis and unique γ-carboxylation
modifications; 4) The glycosylation and other PTMs are fully
consistent with human proteins, which can make the RTPs have
the same biological activity as human cells. (Dumont et al., 2016).

In addition to CHO and HEK293, other mammalian cells used
to produce RTPs include human embryonic retina cells, a
suspension-adapted Madin-Daby canine kidney cells, African
green monkey kidney fibroblast cell, murine myeloma cell,
baby hamster kidney cells and others (Butler and Meneses-
Acosta 2012; Zhu 2012). Kuczewski et al. reported that the
expression of monoclonal antibodies with human embryonic
retina cells, cell densities approaching 1 × 108 cells/mL, titers
of secreted protein levels of 8 g/L in fed-batch or 25 g/L in
perfusion cultures (Kuczewski et al., 2011).

2.2 Expression Vectors
In the process of producing recombinant protein in mammalian
cells, expression vector plays an important role in the expression
level and stability of recombinant protein. The constituent
elements of an effective mammalian cell expression vector
mainly include origin of replication, promoters, screening
markers, enhancers, Poly A signals, antibiotic resistance genes,
expression enhancing elements, and GOI (Goetze et al., 2005)
(Figure 1A). Some polycistron vectors also include internal
ribosome entry sites (IRES) or Furin-2A. Efficient expression
vectors depend not only on any separate elements but also on
their crosstalk and interaction. An appropriate combination of
expression vector elements can improve the expression of
recombinant proteins, overcome gene silencing, and increase
the stability of transgene expression. At present, there have
been reports on matrix attachment regions (MARs) (Gao
et al., 2019; Jia et al., 2019; Li et al., 2019), ubiquitous
chromatin opening elements (Saunders et al., 2015), cis-acting
factors (Wang et al., 2018), stabilizing Anti Repressor elements
(Hoeksema et al., 2011), introns (Osabe et al., 2017), internal
ribosome entry sites (IRES) (Chai et al., 2018), exons (Lu et al.,
2017) and promoters (Wang et al., 2017; Yi et al., 2020), and
found that these elements can improve the expression of
recombinant proteins to some extent.

However, expression vectors are usually integrated into the
host cell genome at random and the expression level of
recombinant proteins depends on the integration site on the
chromosome, but most of the genomic loci are transcriptionally
repressive, resulting in some transgenic sequences cannot be
expressed efficiently (Wang and Guo 2020). Thus, it is
impossible to further increase the expression level even with
optimized vectors. Moreover, the bacterial-associated elements,
such as plasmid replication starters and antibiotic resistance
genes, had been recognized as foreign sequences by the host
cell and lead to methylation silencing of neighboring promoters
or enhancers (Riu et al., 2007) which greatly inhibited protein
production.

Studies have demonstrated that transposon vector systems could
integrate GOI into transcriptionally active sites and improve positive
integration efficiency (Wilson et al., 2007; Galvan et al., 2009;
Grabundzija et al., 2010; Meir et al., 2011). In addition, only the
promoter and GOI between the upstream and downstream inverted
terminal repeat (ITR) of the vector can be transposed into the host
cell genome under the action of transposase, effectively avoiding the
integration of other bacterial related elements and allowing normal
expression of GOI (Figure 1B).
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3 TRANSPOSON SYSTEMS

3.1 Transposon Vector Structure
The transposon is a mobile DNA element capable of transposing
within genomes, can even by translocation to transpose between

genomes (Sandoval-Villegas et al., 2021), which is an ideal vehicle
for transporting GOI into and out of the host genome (Meir et al.,
2013). Basically, all DNA transposons consist of a transposase
gene and ITR sequences (Munoz-Lopez and Garcia-Perez 2010).
Transposases recognize specific short target sequences located in

FIGURE 1 | Schematic representation of vectors (A): Basic structure of expression vector; (B): Basic structure of transposon vector, ITR added on both sides of
GOI. GOI: gene of interest; ITR: inverted terminal repeat; ori: origin of replication.

FIGURE 2 | The process of transposition. After co-transfection of the donor plasmid (transposon) and the helper plasmid (transposase), the transposase binds to
the ITRs of the donor plasmid, cuts the transposon vector fragment from the plasmid backbone, and integrates it into the host cell genome through a “cut-and-paste”
mechanism. GOI: gene of interest; ITR: inverted terminal repeat.
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ITRs, called directed repeat sequences (DRS). Upon binding,
transposase shears transposon sequences from the genomic DNA
of the host cell. Transposase cuts the genomic DNA at a new site
and inserts transposon fragments. The ligation of open DNA ends
is accomplished by the cell-critical factor of the non-homologous
end joining pathway in the double-strand break repair system
(Mátés et al., 2007). Thus, this so-called translocation occurs
through a “cut-and-paste” mechanism (Matasci et al., 2011b)
(Figure 2).

3.2 Type of Transposon Vector and
PiggyBac Transposon Vector
A series of individual DNA transposons from different donor
organisms have been identified in detail, including the hAT
gene family element-Tol2 from the medaka fish (Kawakami
et al., 2000), the engineered Tc1/mariner transposon, “Sleep
Beauty” (SB) (Mikkelsen et al., 2003), and the insect-derived
natural element PiggyBac (PB) (Tschorn et al., 2020; Rajendran
et al., 2021). Although PB, Tol2, and SB do not show a
preference against specific host cell chromosomes, they
differ in their phylogenetic origin, biochemical properties,
size of integrated target genes, and DNA sequence
preference for translocation (Ding et al., 2005; Huang et al.,
2010; Li et al., 2011; Meir et al., 2011; Wang et al., 2014). Tol2
and PB favor certain specific genomic regions and both insert
mainly the upstream of the transcription start sites, CpG
islands, and DNase I hypersensitive sites (Huang et al.,
2010). In contrast, SB exhibits an almost stochastic
integration. But it still shows a weak tendency for inserting
in the transcribed regions and upstream regulatory sequences
in mammalian cells (Gogol-Doring et al., 2016).

In terms of the efficiency of recombinant cell generation, the PB
and SB systems were superior to the Tol2 system (Balasubramanian
et al., 2016; Sato et al., 2020). Stable cell lines obtained by PB
transposons are more efficient and have higher yields than those
generated by common methods. Moreover, PB transposition seems
to be largely independent from the host cell, as it can be performed
in vitro with purified PB transposase and DNA elements (Burnight
et al., 2012). Like retroviruses, SB and PB appear to utilize the
barrier-to-autointegration factor to facilitate the insertion of
transposon into the host genome by preventing transposon
reintegration into the original vector (Wang et al., 2014). Thus,
the PiggyBac transposon system has emerged as an attractive tool for
target gene integration in mammalian cells (Balasubramanian et al.,
2015). It is also a valuable and practical alternative to conventional
target gene integration and can effectively generate clonal cell lines
with stable or even enhanced expression (Matasci et al., 2011a).
Aside from the high transposable activity in mammals, the PB
system has been commercialized due to its inherent excellent
properties, attracting researchers from different fields, and has
been used as a genetic tool for genetic screening, likely to be the
most promising genetic tool for clinical applications.

3.3 Optimization of Transposon Vector
Vector systems derived from SB and PB are most commonly used
for biotechnology applications. In a dual-vector transposon

system, transposase and ITR-containing transposons are
constructed into two separate vectors, and the GOI are
transferred into the host cells by co-transfection in different
ratios. The transposase-SB100X in the optimized SB system
showed a 100-fold increase in activity compared to the wild-
type transposase (Mates et al., 2009; Voigt et al., 2016). The
transposase of PB (mPB) showed a 20-fold increasing in
transposition efficiency by codon optimization and was used
in mammalian cells for the first time (Cadinanos and Bradley
2007; Liang et al., 2009). Cui et al. increased the transposition
efficiency fourfold by optimizing the ITR sequence of the SB
transposon vector in humanHeLa cells (Cui et al., 2002). Later, an
attempt was made to improve the transposition efficiency of the
SB vector by introducing additional point mutations in ITR, but
unfortunately no further improvement was achieved
(Scheuermann et al., 2019). Transposition efficiency varies
greatly in different type of cells (Izsvak et al., 2000;
Troyanovsky et al., 2016). And the transposition efficiency and
vector copy number (VCN) can be improved by optimizing the
co-transposition ratio of transposase and transposon
(Grabundzija et al., 2010). A phenomenon known as
overexpression inhibition (OPI) would arise due to the
excessive accumulation of transposase and eventually would
prevent the efficient transposition. It has been proposed that
high concentrations of transposase might saturate DRS in ITRs,
slow down the synapse formation at transposon terminals (Liu
and Chalmers 2014). For SB, the transposase-to-transposon co-
transposition ratio ranges from 1:5 to 1:30, whereas PB
transposase is not affected by OPI (Wilson et al., 2007).

In addition to the ratio of transposase and co-transfer that can
affect transposition efficiency, direct optimization of the
transposon donor can also improve transposition efficiency. In
PB and SB, although PB could transpose linear DNA, its
efficiency was much lower than circular DNA, while SB could
not even transpose linear DNA. Therefore, linear donor DNAwas
not suitable for PB and SB. Several methods were also proposed to
enhance the transposition efficiency, for example, linear DNA
circularization in transfected cells using a recombinase (Yant
et al., 2002; Nakanishi et al., 2011). It was found that two
monocistrons which were applied to express the heavy and
light chains separately were more advantageous than
polycistron containing IRES or Furin-2A elements during the
expression process of monoclonal antibodies with PB. The
possible reason was that 2A elements affected the quality of
expressed monoclonal antibodies through inappropriate
cleavage, whereas conventional IRES lead to insufficient
antibody expression level (Ahmadi et al., 2017). Insertion of
MAR 1-68 into the center of the PB transposon does not
affect transposition efficiency, whereas insertion into the edge
of the transposon near the ITR side might interfere with
transposase function and affect transposition efficiency. This is
possibly due to the function alteration of transposase in targeting
genomic locus and integrating the transposon sequence caused by
MAR 1-68 (Ley et al., 2013). The addition of the 59-HS4 chicken
b-globin (cHS4) insulator sequence in retina pigment epithelium
cells leads to increased transgene expression levels for SB and PB
vectors, respectively, but the cHS4 insulator did not show a long-
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term protective effect against the transgene silencing in retinal
pigment epithelium cells (Sharma et al., 2012).

Different transposon systems show a weak bias towards
certain specific genomic regions through screening transposon
insertion sites, but cannot realize targeted integration. Kettlun
et al. constructed a chimeric ZFP-piggyBac transposase
displaying strong gene transfer activity by fusing a synthetic
site-specific zinc finger protein (ZFP) to the N-terminal end of
PB transposase. This manipulation capacitated the transposon
system in targeted integration by combining the “cut-and-paste”
mechanism of the transposon system with the target recognition
property of ZFP, and successfully realized the targeted integration
of ZFP-PiggyBac compared with the natural PiggyBac (Kettlun
et al., 2011). After ZFP, the next generation of CRISPR gene
targeting technology has become a hot research topic. In 2021,
Bire et al. co-location the transposase and transposon near
transcriptionally active rDNA copies using a nucleolar
localization signal (NoLS). They found that nucleolus targeting
increased transposition efficiency and mean transgene copy
number, while targeting the 18S-coding region in the rDNA
loci using a NoLS-FokI-dCas9 endonuclease, also can produce
the targeted integrations, but this transgene expression level was
lower compared to the PB transposase, indicated that the NoLS-
coupled PB transposase and transposon can achieve more
efficient integration (Bire et al., 2021).

More attentions have been paid to how to further optimize the
transposable subsystem, not the problem of the transposon
system itself. Given the endogenous transposases are also
present in the target cells and there is no lack of transposase
recognition sequences in the genome, we believe that either
endogenous or exogenous transposases might have potential
adverse influence on the cellular genome and GOI. However,
it has been demonstrated that the introduction of exogenous
transposase did not result in genome breakage and reorganization
in the host cell and that the cell’s own transposase also did not
destroy the successfully integrated GOI (Saha et al., 2015).
However, integration of the backbone DNA of transposon and
transposase vectors with the cellular genome still exists, and affect
the normal expression of endogenous genes in the host cell. To
solve this problem, weak promoters could be applied to reduce
the expression level of transposase and shorten the plasmid
backbone DNA size or integrating a suicide gene within the
plasmid backbone to eliminate cells with backbone DNA
integration.

Cell type, co-transfection ratio of transposon and transposase,
transfection efficiency, and expression regulatory elements in the
vector are all factors influencing the transposition efficiency of
different transposon systems (Table 1). Only when all the aspects
are fully considered can the transposition efficiency be
maximized.

TABLE 1 | Optimization of transposon vectors.

Classification Method Results References

Optimization of transposase Optimization of SB transposase SB100X was produced, and the enzyme activity was
increased 100-fold

Mates et al. (2009), Voigt
et al. (2016)

Codon optimization for PB transposase Transposable efficiency increased by 20 times Cadinanos and Bradley
(2007), Liang et al. (2009)

Optimize the co-transfer ratio of
transposase to transposon

- Excess transposase prevents effective transposition.
For SB, the co-transfer ratio is 1:5 to 1:30, while PB
transposase is not affected by OPI.

Wilson et al. (2007)

Optimization of transposon
vector

Comparing the transposition efficiency of linear
and circular DNA

The transposition efficiency of linear DNA is much lower
than that of circular DNA.

Yant et al. (2002),
Nakanishi et al. (2011)

Monoclonal antibodies were expressed using
two monocistrons and polycistron mRNAs,
respectively

Using two monocistrons to express the heavy and light
chains separately is more advantageous than using
polycistron containing IRES or 2A elements for
simultaneous expression

Ahmadi et al. (2017)

Combining MAR elements with transposon
vectors

Insertion of MAR 1-68 into the transposon edge near
the ITR may alter the mechanism of transposase
targeting to genomic loci to integrate transposon
sequences and affect transposition efficiency

Ley et al. (2013)

Incorporation of cHS4 insulator sequence on
transposon vector

Increased expression levels of target genes in SB and
PB vectors

Sharma et al. (2012)

ZFP fused with PB transposase Formation of ZFP-PiggyBac fusion transposase with
gene transfer activity and successfully achieved
targeted integration of ZFP-PiggyBac compared with
natural PiggyBac

Kettlun et al. (2011)

Targeting transposase and transposon to
ribosomal DNA (rDNA)

Increased transposition efficiency and increased the
mean transgene copy number

Bire et al. (2021)

Shortening the plasmid backbone or adding
suicide genes to the plasmid backbone

Prevents integration of transposon plasmid backbone
and host cells, affecting endogenous gene expression in
host cells

Saha et al. (2015)
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4 TRANSPOSON VECTOR SYSTEMS USED
IN MAMMALIAN CELLS

4.1 Improve Establishment Rate
Typically, GOI can only be inserted into the genome of mammalian
cells by classical random integration manner, requiring a complex
antibiotic-resistance screening step to obtain monoclonal cell lines.
Moreover, the expression of GOI is often also influenced by the
genomic DNA elements near the random insertion site, leading to
significant variation in transcription level (Henikoff 1992; Martin
and Whitelaw 1996; Narlikar et al., 2002). In addition, randomly
integrated gene fragments are often inserted as multiple fragment
tandems which results in the fragment duplication causing gene
silencing (Garrick et al., 1998; McBurney et al., 2002). It follows that
obtaining a cell line with a high level of protein expression usually
requires time-consuming and laborious construction steps.

To address the drawbacks of classical integration methods,
researchers have developed dihydrofolate reductase/
methotrexate based gene amplification method (Kaufman
1990), as well as new manner to integrating GOI to the
transcription active sites with the help of site-specific
recombinases Flp, Cre and PhiC31 (Birling et al., 2009).
However, these methods do not eliminate differences in
cell-specific productivity, simplify the cell cloning step, and
remove the limitations on integration efficiency and
recombination sequence.

Transposon vector systems usually require only the
successful screening of a pool of stably expressing cell lines
(Balasubramanian et al., 2016) which are able to reduce the
time required for the protein of interest production from
3–9 months to approximate 6–8 weeks (Rajendra et al., 2017).
Among them, PB transposase has a lower requirement against
recombination sequence, can efficiently insert fragments of
up to 14 kb (Ding et al., 2005). Besides, it has the ability to
insert up to 15 DNA fragments per cell with each fragment
equally distributed across the genome (Wang et al., 2008; Rad
et al., 2010) which greatly reduces the positional effects. In
terms of gene manipulation, highly expressed cell lines
maintaining a stable high expression level for at least
2 months could be constructed using this PB transposon
system through a single transfection/screening step, greatly
simplify the time-consuming cloning step. The 14 tested
proteins were stably expressed in CHO-K1, HEK-293T,
HEK-293F mammalian cell lines and the HEK-293S GnTI-
cell line that is more difficult to stably transfect which were
rapidly constructed with PB transposase (Li et al., 2013). And
the feasibility for the production and purification of an
endoplasmic reticulum-resident fucosyltransferase, a
vascular endothelial growth factor Trap, and an anti-
human epidermal growth factor receptor two single-chain
variable-domain antibody using this system was also
validated. In 2021, in the context of the COVID-19
pandemic, Agostinetto et al. rapidly constructed the high-
titer stable pools in CHO cells using the Leap-in
transposase® system to manufacture an anti-SARS-CoV2
monoclonal antibody in large scale. This greatly

accelerated early clinical drug development and reduced
the production period from 12–14 months using traditional
method to 4–5 months (Agostinetto et al., 2021).

In addition, cell sorting is also a way to quickly obtain high
expression cells. Matabaro et al. expressed
glycosylphosphatidylinositol (GPI) anchoring protein in HEK293
cell line, while PGAP2 gene determines whether GPI can be secreted
or not. First, endogenous PGAP2 was knocked down in HEK293
using CRISPR/Cas9 technology to construct the PGAP2-KO cell
line, and then the exogenous PGAP2 gene was integrated into
PGAP2-KO by establishing the PB transposon system. So, then
the target protein could be expressed in the cell membrane to sort the
highly expressed cells. Finally, the target protein can be secreted into
the culture for subsequent isolation and purification after removing
the PGAP2 gene by adding the transposase again (Matabaro et al.,
2017). The flexible use of the transposon system’s ability to both
integrate and shear genes allows researchers to artificially regulate
whether target proteins are secreted or not. Therefore, the
application of transposons is not only in gene integration, but in
a larger scope of applications.

4.2 Enhance Recombinant Protein
Expression
Matasci et al. first used PB vector to express a tumor necrosis factor
receptor: Fc fusion protein (TNFR-Fc). In CHO cells, transposase
and transposonwere co-transformed at a ratio of 1:9, and then a pool
of stably expressed cells were obtained through screening with
different concentrations of puromycin. The results showed that
the protein yield of the cell pool obtained by screening with high
concentration of puromycin was higher. The increased productivity
correlated with the GOI copy number per cell by RT-qPCR analysis,
suggesting that cell lines showing high efficiency in protein
production can be established using PB vectors and stringent
screening process (Matasci et al., 2011b).

Balasubramanian et al. expressed TNFR-Fc in PB using CHO
DG44 cells as hosts. The yield of TNFR-Fc reached 600mg/L after
14 days of batch culture in a 1 L culture system. And the volumetric
productivity of the cell pool can bemaintained for up to 3 months in
the absence of selecting pressure. This indicates that the production
of recombinant proteins could be successfully improved using PB
transposons (Balasubramanian et al., 2015). To further explore the
role of transposon vector systems in recombinant proteins
expression (Balasubramanian et al., 2016), Balasubramanian et al.
performed a comprehensive comparison of three transposon
systems (PB, Tol2 and SB) expressing TNFR-Fc. First, the effect
of the number of helper vectors (transposase) on the productivity of
the cell pool volume was investigated. For all three transposon
systems, the productivity of TNFR-Fc increased with the number of
helper vectors until reaching a plateau. Considering the efficiency of
transgene integration, the optimal donor/helper vector ratio for the
three transposon systems was determined to be 9:1 (w/w). In
addition, in terms of stability of the volumetric yield of the cell
pool, although it gradually decreases to about 50% of the initial level
within 60 days, it is still 3-4 times of that obtained using the
transposon-free cell pool. Finally, the volumetric yields of TNFR:
Fc reached up to 1.3–1.5 g/L after 14 days of fed-batch culture with
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monoclonal cell lines constructed using the three transposon
systems, indicating the positive effect of antibiotic -resistance
screening in sustaining protein expression at high level.

4.3 Enhance Recombinant Antibody
Expression
Barnard et al. used the PiggyBac transposon vector to express four
antibodies in a CHO (CHO K1SV GS Knockout) cell line
(Rajendra et al., 2016). The titers of four antibodies in the cell
pools ranged from 2.3 to 7.6 g/L after 16 days of fed-batch
cultures, increasing 4 to 12-fold compared with the control.
To further investigate the reasons for the increased antibody
expression levels of the PB transposon system, the mean GOI
copy number of PB cell pools expressing two differentially
expressed antibodies and the mRNA transcript levels of
antibody heavy chain (HC) and light chain (LC) wer
examined by RT-qPCR (Rajendra et al., 2017). The results
demonstrated that the increased yield of antibodies in PB cell
pools resulted from a combination of increased mean GOI copy
number and transcription level. Subsequently, they assessed the
quality of the antibodies obtained using the PB transposon
system. The analyses result of analytical size exclusion
chromatograph (aSEC), capillary electrophoresis—sodium dodecyl
sulfate (CE-SDS) and capillary isoelectric focusing (CE-iCE) showed
that no significant differences were observed compared with the
control and the glycosylation patterns were very similar. And there
was no difference in the density and viability of PB cell pool cells
compared with the control. The titer of monoclonal antibody after
14 days cultivation was 4.8 g/L, which was about 2.5 times higher
than that of the control. This indicates that the transposon system
can improve the yield without affecting the quality of the antibody,
providing a new way for clinical drug development.

5 SUMMARY AND OUTLOOK

In recent years, mammalian cells have played an irreplaceable role in
RTPs expression, and transposon vector systems which could
improve yields without affecting the quality of RTPs deserve to
be studied in greater depth. Compared with conventional expression
vector systems, transposon system enables rapid construction of
protein-expressing cell lines and can increase antibody yield without
compromising quality. It also can shorten the production period for
monoclonal antibodies against the SARS-CoV2 and accelerate the
development of clinical drugs.

Besides, insertion of transposon vectors into matrix attachment
regions could enhance the gene expression and insertion of cHS4
DNA could prevent the gene silencing phenomenon from affecting
the target gene. To provide the transposon system with the ability to
target integration, coupling the specific nucleolar localization signal
NoLS with the transposon and transposase allows GOI to be
localized to the rDNA-containing nucleoli, or fusing of the ZFP
with the transposase enables the transposon system to have the
ability to integrate in specific genomic regions. Other than that, DNA
binding domains such as Gal4 DBD, Rep protein of adeno-
associated virus, and TALE have been associated with the

piggyBac transposase with the goal of targeting various
chromosomal loci, with varying success. Unlike ZFNs and
TALENs, CRISPR/Cas9 system does not rely on the
recognition between the protein and the target DNA. The
ribonucleotide complex is formed between the guide RNA and
the target DNA. The GOI is recognized by ribonucleotide, then
cleaved by Cas enzyme, and the DNA chain is repaired by
homologous repair, combining transposon system with
CRISPR/Cas9 technology, can establish a cell sorting method
that allows proteins to be localized in the membrane to select
highly expressed cells, also can target integrations based on Nols-
FokI-dCas9 endonuclease coupled to NolS, although has lower
integration efficiency compared to PB system coupled to NolS,
CRISPR/Cas9 technology is still worth being investigated for
transferring some specific GOI or specific loci. The
combination of CRISPR/Cas9 and transposon systems can
overcome their respective limitations, which will have high
specificity and efficient integrative capacity double effects. It
remains to be explored whether combining transposon vectors
with CRISPR/Cas9 technology will bring more significant
advantages in protein expression using mammalian cells.

The advantages of using transposon systems in RTPs production
are obvious. It overcomes the limitations of conventional stable
transfection and has practical value for the development of novel
biological drugs and their industrial production in the future. In
addition, it has been shown that transposon system can be used for
gene therapy and cancer gene screening. Nevertheless, the
understanding of transposon vectors is still at the research stage,
there are still some problems to be solved. Although neither
exogenous nor endogenous transposases affect the host cell
genome and the successfully integrated GOI, the transposon
vector backbone might still integrate with the genome of host cell
and affect the normal expression of endogenous genes. The
disadvantage using transposon vector system for recombinant
protein production is the random integration of transgene, if
inserted into the structural gene, it may lead to transcriptional
read-through, insertional mutagenesis, structural changes and
other negative effects. To further enhance RTPs expression and
meet industrial production requirements, even to expand the
application of transposon in gene therapy, transposon vectors are
required to be optimized by investigating their interaction with
multiple genetic elements and other technologies.
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