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A B S T R A C T

Here we introduce a multivariate framework for characterising longitudinal changes in structural MRI using
dynamical systems. The general approach enables modelling changes of states in multiple imaging biomarkers
typically observed during brain development, plasticity, ageing and degeneration, e.g. regional gray matter
volume of multiple regions of interest (ROIs). Structural brain states follow intrinsic dynamics according to a
linear system with additional inputs accounting for potential driving forces of brain development. In particular,
the inputs to the system are specified to account for known or latent developmental growth/decline factors, e.g.
due to effects of growth hormones, puberty, or sudden behavioural changes etc. Because effects of
developmental factors might be region-specific, the sensitivity of each ROI to contributions of each factor is
explicitly modelled. In addition to the external effects of developmental factors on regional change, the
framework enables modelling and inference about directed (potentially reciprocal) interactions between brain
regions, due to competition for space, or structural connectivity, and suchlike. This approach accounts for
repeated measures in typical MRI studies of development and aging. Model inversion and posterior
distributions are obtained using earlier established variational methods enabling Bayesian evidence-based
comparisons between various models of structural change. Using this approach we demonstrate dynamic
cortical changes during brain maturation between 6 and 22 years of age using a large openly available
longitudinal paediatric dataset with 637 scans from 289 individuals. In particular, we model volumetric changes
in 26 bilateral ROIs, which cover large portions of cortical and subcortical gray matter. We account for (1)
puberty-related effects on gray matter regions; (2) effects of an early transient growth process with additional
time-lag parameter; (3) sexual dimorphism by modelling parameter differences between boys and girls. There is
evidence that the regional pattern of sensitivity to dynamic hidden growth factors in late childhood is similar
across genders and shows a consistent anterior-posterior gradient with strongest impact to prefrontal cortex
(PFC) brain changes. Finally, we demonstrate the potential of the framework to explore the coupling of
structural changes across a priori defined subnetworks using an example of previously established resting state
functional connectivity.

1. Introduction

The human brain undergoes profound structural changes during
development and aging. Magnetic resonance imaging (MRI) has
become an invaluable tool to measure these brain changes in vivo.
There is an increasing number of advanced longitudinal neuroimaging
projects that focus on the specific patterns of change during brain
maturation and development (for review see Mills and Tamnes, 2014).
Several aspects of brain anatomy have been reported to undergo

curvilinear changes with different markers progressing differently
during development (Giedd et al., 1999; Lenroot et al., 2007;
Raznahan et al., 2011; Mills et al., 2016). Recent studies indicate that
cortical gray matter volume exhibits its highest volume during mid-to-
late childhood, and decreases across the second decade (Tamnes et al.,
2013; Aubert-Broche et al., 2013; Wierenga et al., 2014; Mills et al.,
2016). There is also longitudinal evidence for gender differences in the
shapes of developmental trajectories, with peak sizes 1 to 2 years
earlier in females (Lenroot et al., 2007), although these differences are
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reduced when overall cranial volume is taken into account in the
statistical model (Mills et al., 2016). Converging findings from cross-
sectional and longitudinal studies in late childhood and adolescence
also suggest that puberty-related physiological and hormonal changes
induce brain changes in specific networks (Blakemore et al., 2010).

The primary goal of the current study was to develop a novel
modelling framework rather than clarifying phenotype-specific ques-
tions about brain trajectories of regional gray matter volumes. One
limitation of most previous studies on structural development is that
mass-univariate techniques like general linear models (GLM) or linear-
mixed models (LME) (Bernal-Rusiel et al., 2012; Ziegler et al., 2015)
are applied. That often involves whole brain explorative analysis in
order to identify local structural correlates of age or time, which survive
a correction for multiple comparisons. The analysis of region-specific
effects is often followed by a post hoc discussion and integration of
observed results across multiple brain regions, which involves potential
anatomical, physiological and neurological causal factors. In this
context, terms such as ‘states’, ‘processes’ and ‘trajectories’ are used
rather informally in the literature.

Here we introduce the characterisation of structural imaging data
using multivariate differential equation models. This general approach
will allow us to study the structural changes underlying brain devel-
opment, plasticity, ageing and degeneration from a dynamical systems
perspective. In our approach ‘states’ and ‘trajectories’ then take on a
precise meaning endowed by the formal specification of a dynamical
system with input factors. Our framework avoids serious limitations of
univariate models, e.g. multiple testing, by providing a multivariate
model for a whole set of brain regions under Bayesian inference. With
regard to structural dynamics, states, x, would correspond to a vector of
structural indices (e.g. gray matter volumes) in a set of brain regions at
a single time point. The system then responds to inputs, u, a vector of
values at a single time point comprising for example levels of
hormones, growth factors or proteins. The change in state is then
given by

dx
dt

f x u a= ( , , )
(1)

where f x u a( , , ) describes a dynamical process governed by parameters
a. These parameters define, for example, the time constants of
interactions among states. Most generally the states may only be
observable through a noisy observation function y g x w e= ( , ) + . This
overall description corresponds to the multiple-input-multiple-output
(MIMO) system described previously (Friston et al., 2003; Friston,
2002).

In the study of development, hormonal or growth factor variables u
would perturb states leading to periods of maximal growth. Such
models are readily able, for example, to describe the logistic, multiple-
logistic and other patterns of growth observed in biology (Thompson
and Growth, 1945; Murray, 2002). Additionally, interactions among
state variables might account for regional patterns of volumetric
change arising from synaptic growth and pruning. This would add
value to current univariate perspectives on structural changes
(reviewed in Mills and Tamnes 2014), by adding a multivariate and
dynamic perspective. It also relates to the recently proposed notion of
‘maturational coupling’, i.e. exploring similarities of changes across
brain regions (Raznahan et al., 2011), but in principle should addi-
tionally enable quantification of joint underlying processes. Our
proposal shares the ambitions of the Dynamical Bayesian Network
(DBN) approach for studying inter-regional dependencies in structural
brain imaging (Chen et al., 2012). The DBN approach operates in
discrete time and models discrete observations (e.g. stable/atrophy),
whereas the MIMO approach operates in continuous time and models
continuous observations (e.g. gray matter volumes).

The DBN and MIMO frameworks share the benefits of a nonlinear
dynamical systems perspective, thus going beyond linear-mixed effects
models. However, being based on differential equations, the MIMO

approach is closer to standard approaches in systems biology and
neuroscience (Dayan and Abbott, 2001; Deco et al., 2008; Ingalls,
2013). Indeed, the work in this paper uses the same model estimation
and inference algorithm (‘Variational Laplace’ (Friston et al., 2007))
that is incorporated in the Dynamic Causal Modelling (DCM) frame-
work for making inferences about changes in brain connectivity from
fMRI (Friston et al., 2003) or M/EEG data (Daunizeau et al., 2009).

In what follows, we describe sample specifics, details about long-
itudinal MR image processing, and the specification of system inputs.
Then we introduce the specifics of the proposed model, briefly
revisiting the procedures for inference. In the later sections of the
paper we aim to demonstrate the construct validity of a dynamical
systems approach in the context of brain maturation using a large
sample of healthy children and adolescents. We present model
estimates and examples for evidence-based model comparison using
the empirical data. We hypothesise that intrinsic regional dynamics in
development can be described using a multivariate linear dynamical
system. According to previous findings we also expect substantial
contributions of a puberty-related factor and a growth factor to the
regional gray matter dynamics. Finally, using our novel approach we
study an example of inter-regional connectivity and whether structural
changes during development do reflect functional networks previously
observed in resting state fMRI (Smith et al., 2009).

2. Methods

2.1. Sample

For the purpose of validation with real data, we used a subsample of
the NIH Pediatric MRI Data Repository created by the NIH MRI Study
of Normal Brain Development (Evans and Group, 2006). This project
focuses on brain development in healthy typically developing infants,
children and adolescents from a demographically balanced population
based sampling. The data was acquired in multiple pediatric centers
and included a variety of MR-based sequences and protocols (https://
nihpd.crbs.ucsd.edu). A major part of the project aims at exploring the
general course of normal brain development. Notably, the screening
procedures excluded subjects with a family history of inherited
neurological disorders or a lifetime history of Axis I psychiatric
disorders, abnormalities during perinatal development, birth
complications, physical growth problems, neurological or specific
psychiatric disorders. A detailed description of the full sample
acquisition and exclusion criteria can be found in Evans and Group (2006).

Image processing started with a sample from release 5 of the NIH
MRI study objective 1 of the children and adolescents. The sample
downloaded from the NIH repository included 770 scans of 401
subjects scanned at ages 4.8–21.9 years with zero, one or two annual
follow-up scans per subject. A detailed overview of the acquisition
protocols of the NIH MRI Study of Normal Brain Development can be
found here (http://pediatricmri.nih.gov/nihpd/info/protocols.html)
and in Evans and Group (2006). The available sample included data
from both primary protocols and fallback protocols with either 1 mm
or 3 mm slice thickness, respectively. We observed variations in raw
data slice resolution influencing the quality of the image preprocessing
results and discarded further 32 scans due to any serious artifacts in
image segmentation, registration, or nonlinear normalization. After
MR preprocessing we quality checked the image data (for details see
Section 2.3). Indications for lower data quality, higher frequency of
usage of the fallback (rather than the standard) protocols, and much
sparser density of sampling at the lower age range resulted in
discarding children younger than six years. We further focussed on a
longitudinal sample for validation of our dynamical systems model, i.e.
we included only subjects having follow-up measurements. The
analyzed sample consisted of 289 children and adolescents (151
females, 135 males) with ages 6–21.9 years (M=12.47, SD=3.88
years) with in total 637 scans (338 from females and 299 obtained
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from males), 2–3 scans per subject.

2.2. Pubertal status

As a proof of principle we included a puberty-related input factor to
the dynamical model of brain maturation. The NIH Pediatric
Repository provides access to pubertal status questionnaire scores.
This method is similar to the Tanner staging that is widely used for
assessing physical puberty stage of individuals (Taylor et al., 2001).
Here, girls (and boys) were rated with respect to the current expression
of physical pubertal features, in particular, height growth spurt, body
hair growth, skin changes, breast growth (voice deepening), menstrua-
tion start (facial hair) respectively. A score was assigned on the stage
that the participant felt best described themselves using (1=Not
Started; 2=Barely Started; 3=Definitely Under Way; 4=Completed). A
summary score was calculated using the mean expression across all 5
features of expression for each individual. After checking for complete-
ness, the puberty status summary score was available for 411 subjects
(214 females, 197 males) of the NIH pediatric sample at 889 acquisi-
tion timepoints (476 females, 413 males). The final summary scores
were rescaled to a [0, 1] interval with higher values indicating higher
pubertal stage. In order to define a group level quantitative model of
pubertal transition from no signs of puberty to full expression of
external primary and secondary gender characteristics, we fit sigmoid
curve models using nlinfit to the rescaled observations (MATLAB
R2014b, MathWorks, http://uk.mathworks.com/products/matlab/
index.html). In particular, the following sigmoid model was fit to
both gender groups independently

h t p( , ) = 1
1 + 10 p t p( − )1 2 (2)

with age (or time) variable t, age of strongest change p1 and slope p2 as
free parameters. In what follows the temporal derivative of the
obtained sigmoid pubertal transition function h is considered as a
proxy for puberty-related physiological hormones and growth factors.
Therefore we here use h to define the actual forces causing puberty-
related changes in our dynamic brain model by

u t dh
dt

( ) = .1 (3)

To create the puberty inputs for boys and girls for the dynamical
model the parameters p1 and p2 were set to the gender-group specific
estimates described above.

2.3. Longitudinal image processing

All further preprocessing steps were performed in SPM12 r6685
(Wellcome Trust Centre for Neuroimaging, London, UK, http://www.
fil.ion.ucl.ac.uk/spm). Longitudinal MR-based morphometry is
particularly prone to artifacts due to scanner inhomogeneities,
registration inconsistency, and subtle age-related deformations of the
brains. Therefore, we used a specifically designed longitudinal
preprocessing pipeline in order to detect the changes of interest and
achieve unbiased results during the subsequent dynamical systems
modelling.

Firstly, we applied the symmetric diffeomorphic registration of
serial MRI (Ashburner and Ridgway, 2013). The registration model
creates a midpoint T1-image for each subject and the corresponding
deformation fields from this midpoint to each acquired scan at all
timepoints.

Second, we used SPM12's unified segmentation of the individual
midpoint images, classifying the T1 into gray matter (GM), white
matter (WM), and cerebrospinal fluid (CSF), bone, other tissue and air
classes (Ashburner and Friston, 2005).

Third, all segmented tissue maps in midpoint space were multiplied
by the Jacobian determinants from the within-subject deformation

fields in order to account for volume changes over time. This step is
often called Jacobian modulation and is used here to create a set of
aligned segmentations whose volumes reflect those of the original time-
points, but with reduced error variability due to the use of a single
segmentation step on the midpoint average images that have higher
signal-to-noise ratio and greater anatomical precision compared to the
individual time-point images.

Fourth, nonlinear template generation and image registration of the
individual midpoint images was performed using the DARTEL algo-
rithm (Ashburner, 2007).

Fifth, in order to avoid introducing systematic bias due to errors in
any of the above steps we further quality checked the processed data
using covariance-based inhomogeneity measures of the sample as
implemented in the CAT12 r937 SPM toolbox (Structural Brain
Mapping Group, Departments of Psychiatry and Neurology, Jena
University Hospital,http://dbm.neuro.uni-jena.de/cat/).

Sixth, since we intended a dynamical model of large portions of the
regional gray matter tissue, we focussed on an atlas providing a high
quality parcellation of this tissue class including cortical and sub-
cortical regions. Notably, in context of this first approach to multi-
variate dynamical models during development, we restricted the total
number of regions to the order of tens rather than hundreds. A
reasonable compromise between whole brain coverage and number of
regions is provided by the Hammer's probabilistic brain atlas
(Hammers et al., 2003) and restricting the analysis to bilateral ROIs
assuming similar development in homologous brain regions. We
registered this atlas with the generated template and deformed it into
the individual midpoint spaces (obtained from longitudinal registra-
tion). Voxelwise (within-subject modulated) gray matter segments in
the midpoint space were summed up within 26 bilateral ROIs: Insula
(Ins), anterior cingulate gyrus (AntCinG), posterior cingulate gyrus
(PosCinG), frontal gyrus (FroG), inferior frontal gyrus (InfFroG),
middle frontal gyrus (MidFroG), superior frontal gyrus (SupFroG),
precentral gyrus (PrcG), rectal gyrus (RecG), anterior medial temporal
lobe (AntMedTemL), anterior lateral temporal lobe (AntLatTemL),
superior temporal gyrus (SupTemG), inferior middle temporal gyrus
(InfMidTemG), fusiform gyrus (FusG), posterior temporal lobe
(PosTemL), post central gyrus (PoCG), lateral parietal lobe
(LatParL), superior parietal gyrus (SupParG), cuneus (Cun), lateral
occipital lobe (LatOccL), lingual gyrus (LinG), hippocampus (Hip),
amygdala (Amy), putamen (Put), caudate nucleus (CauNuc), and
thalamus (Tha). This steps determines the absolute volumes of each
ROI including variability due to potential volume changes within- and
between subject.

Finally, in a separate step the above whole brain segmentations
were used to approximate total intra-cranial volume (TICV) as a sum of
GM, WM and CSF tissue classes. Since neuroanatomic correlates might
be influenced by confounds e.g. global brain parameters (Taki et al.,
2012; Peelle et al., 2012), TICV was used as a confounding variable
during model inversion accounting for brain size differences across
subjects and age. The regional volumes were further rescaled to [0,100]
to simplify comparisons of effects of time/age across ROIs with
different sizes. All subsequent dynamical modeling steps were per-
formed on 26 bilateral ROI volumes obtained from using the above
steps.

2.4. Dynamical model

In what follows m Λ( , ) denotes a multivariate Gaussian variable x
with mean m and precision Λ. Readers unfamiliar with terminology
from dynamical systems are referred to standard texts (Wilson, 1999).

In general, the evolution (or change) of structural states in region i
is modelled as a linear function of the current states of connected
regions (usually including a self-connection) and external inputs, i.e.
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∑ ∑dx
dt

a x c u= +i

k

D

ik k
j

J

ij j
=1 =1 (4)

where xk is e.g. gray matter volume in region k, aik are self- and
between-region connection parameters, uj is the jth input variable, and
cij the regional sensitivity of region i to the jth input. The connectivity
matrix A with entries aik then allows flexible implementation of models
with uncoupled intrinsic dynamics (diagonal entries only, aii) or more
complex models with interactions among regions. For models of
development we envisage that inputs uj correspond to various neuro-
trophic growth factors and that the regional sensitivity parameters cij
relate to the regional density of receptors of region i for growth factor j,
or otherwise indicate region-specific molecular and biochemical sus-
ceptibility to the factor's effects. See Discussion for further elaboration.
An illustration of the model and the considered inputs can be seen in
Fig. 1A, B and C.

In the following validation in the context of brain maturation, we
chose structural states to be scaled gray matter volumes in 26 bilateral
regions of interest (ROI) covering large portions of the cortex and

subcortical regions. We included up to two input variables as develop-
mental factors driving the changes of the system (the framework can in
general accommodate more than two such variables).

The input u1 was chosen to be an a priori fixed variable (also called
manifest input) derived from puberty scores from boys and girls
obtained from a separate modelling step (see Section 2.2 and Fig. 1B
for details). The second input variable u2 was chosen to be a latent or
hidden growth factor, which is modelled as an “alpha function” (Dayan
and Abbott, 2001). It is equivalent to a second order differential
equation (here expressed as two first order equations) (Grimbert and
Faugeras, 2006)

v u δ

v

= − − +

=

dv
dt τ τ τ

du
dt

2
2

1
2

20

2

2
2

2
(5)

where δ is a delta function at time zero (with u (0) = 12 and v (0) = 02 )
and τ denotes the peak response time of the hidden variable. In the
context of our application to brain maturation, the model aims to
describe the full evolution of gray matter in all ROIs over the full age

Fig. 1. Model overview and growth factors considered to drive the structural changes. A An illustration of the model of structural changes and its two distinct inputs. B Input factor
using puberty-related sigmoidal curves h t p p( , , )1 2 (see Eq. (2)) to rescaled puberty-related summary scores in 214 girls (red) and 197 boys (blue) (top plot in B). The actual pubertal

input factor was assumed to be the temporal derivative of the sigmoidal curves, i.e. u dh dt= /1 (bottom plot in B). Highlighted are the ages of fastest change of pubertal signs, p1, with

12.66 years for girls and 14.34 years for boys. C Top row shows the hidden growth factor implemented using alpha function dynamics with one free delay parameter τ. Brighter functions
indicate delayed and more enduring growth (top left). Obtained posterior of parameter τ using 289 subjects (top middle). Estimated shape of alpha growth factor shown for girls (red)
and boys (blue) (top right). C Bottom row illustrates an alternative parametric implementation of a hidden growth factor using a Gaussian with one free mean for each gender (bottom
left) and one additional free standard deviation parameter (bottom middle). Estimated shape of Gaussian growth factor shown for girls (red) and boys (blue) (bottom right) using 289
subjects. Regional sensitivities ci2 obtained from dynamic and parametric growth factors. D Bayesian model comparison of alpha growth with different age of onset (top) and comparing
alternative inputs to the dynamical model (bottom).
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range of the sample, i.e. from 6 to 22 years. Time zero here therefore
refers to age of 6 years. The latent growth process then affects brain
changes sooner or later during maturation, where the timing is flexibly
modelled by parameter τ (see Fig. 1C top left for an illustration). This
parameter also controls the duration, such that latent growth processes
that peak later are also more enduring. It is important to note that
although the dynamical system (in Eq. (4)) is of first order, the
particular choice of hidden growth process (in Eq. (5)) implicitly
defines a second order system, which includes accelerations, i.e. second
temporal derivatives.

We note that the advantage of this particular choice of latent growth
process is that dynamics are parsimoniously parametrised using a
single additional parameter. However, implementing the growth factor
using alpha dynamics might also be restrictive due to (1) having a fixed
age of onset (at 6 years) and (2) potentially confounding variations of
its delay with the duration of growth. Thus, firstly, we explored model
comparisons of dynamic alpha growth with earlier and later age of
onset. Secondly, we considered a more flexible alternative growth
factor u t e( ) = t m σ

2
−( − )/(2 )g 2

which has the shape of a Gaussian probability
density function where we estimate one free mean parameter mg for
each of the gender groups and one independent free standard deviation
parameter σ. We compare the empirical evidence for alternative model
configurations including and excluding certain inputs using Bayesian
model comparisons.

The differential equations governing the structural dynamics (Eq.
(4)) and latent growth variable (Eq. (5)) are integrated using the
(forward) Euler method with a time step of tΔ = 0.1 years. Initial gray
matter states at time zero xi(0) are estimated during the overall
optimisation of the model (for details see below). This produces a
structural trajectory (i.e. time series) for each region xi. The predicted
gray matter volumes are then given by

g θ x( ) =i i (6)

Therefore, the total set of parameters to be estimated are written as
the vector θ a c τ x= { , , , (0)}ik ij i .

To summarize the structural dynamics parameters in the general
case, for D brain regions we have D initial state values, xi(0), D regional
self-connections aii, and DX(D–1) between-region connection para-
meters aik. For J (manifest or latent) input variables we then have DXJ
regional sensitivity parameters cij and for each latent input variable
one peak time variable τj. Notably, some of the connection parameters
or regional sensitivities might be a priori fixed to zero, rather than
estimated. Thus, there is considerable flexibility in terms of imple-
menting existing hypothesis about dynamics using the priors for all the
parameters. For example, between-region dynamics might be omitted
or restricted to allow only for interactions within specified subnetworks
(as demonstrated in Section 3.4). It is important to note that the
proposed modelling framework enables the investigation of a priori
defined networks rather than inferring an unconstrained graph struc-
ture behind the connectivity matrix A. Moreover inputs can be
constrained to act only upon certain regions of interest, e.g. with a
priori known susceptibility to their effects.

The framework naturally accommodates structural dynamics for
multiple subpopulations, e.g. gender or clinical groups. In order to do
so, we introduced additional parameters describing group differences
of θ and its components across different observed populations.
Inference about group parameter differences, e.g. the question of
whether the regional sensitivity cij is different between boys and girls,
and any model comparisons involving group structures follow accord-
ingly.

Finally, we aimed to compare the linear dynamical system to
established cubic polynomial models which are independent across
regions. In order to do so, the above generative model (Eqs. (4)–(6))
was replaced by a straightforward (state-independent) local cubic
polynomials with the same noise model as used above, i.e.

∑g t b b t( , ) =i
r

ir
r

=0

3

(7)

with age or time t, coefficients bir for region i and polynomial order r.

2.5. Estimation and inference

In this framework we apply Bayesian inference for the inversion of
the proposed dynamic models of structural change (for a general
textbook introduction see (Bishop, 2006)). The prior specifications for
the application to data on brain maturation are outlined in Appendix
Section Appendix A. Generally priors are used to specify assumptions
about the expected range of parameters and the general structure of the
model. In this first proof of concept application of the framework we
apply uninformative or weakly informative priors, which are aimed to
represent data features in the parameters (given a certain model
structure) rather than implementing strong and precise assumptions
about their specific values.

We employ the Variational Laplace (VL) algorithm (Friston et al.,
2007) for Bayesian parameter estimation, inference and model selec-
tion, specifically the implementation spm_nlsi_GN in release 6685 of
SPM12 (Wellcome Trust Centre for Neuroimaging, London, UK,
http://www.fil.ion.ucl.ac.uk/spm). The corresponding theory and
algorithms have been introduced and validated in previous papers
(Friston et al., 2007; Chumbley et al., 2007; Penny, 2012). A general
mathematically detailed introduction to VL and the applied inference
using model evidence is provided in Appendices B, C, and D. Bayesian
model comparison (Penny, 2012) is used to make inferences about
basic modelling assumptions or gross features of the data. For example,
whether to include any of the above considered external input factors in
the dynamical model, whether boys and girls have the same
sensitivities to the various growth factors, whether cubic polynomials
perform comparably, or whether there are intrinsic interactions among
brain regions.

It is important to mention that the dynamic MIMO input-state-
output model presented in this article was fitted accounting
for undesired confounds x0 in the observation model
y g x w x b e= ( , ) + +0 0 . In particular, we included TICV to account for
undesired effects of brain size variations, and site indicator variables to
account for acquisition differences or other systematic differences
between the six MRI scanning sites.

3. Results

3.1. Developmental factors as inputs

The proposed dynamic model incorporates two sources for non-
linear changes of structural states. The first is the intrinsic connections
reflecting inherent dynamics. In principle this means that the current
state is affecting further evolution of the system. The second source is
the effects of external inputs, here thought to be developmental factors
or driving forces of development. Fig. 1B and C summarise the specifics
of particular inputs considered in this study.

There is growing consensus that physiological changes during
puberty affect the brain structure in specific ways. Our first input to
the dynamical system was therefore defined as a fixed puberty factor.
The particular temporal evolution of this factor was based on group-
wise estimation of pubertal change curves using actual physiological
pubertal status assessments provided by this NIH pediatric sample (see
Fig. 1B). Sigmoidal fits (of Eq. (2)) revealed that the age of fastest
changes of physical pubertal expression p1, was found to be 12.66 years
(95%CI [12.49, 12.84]) for girls and 14.34 years (95%CI [14.16, 14.51])
for boys. This confirms expected gender-differences in timing and
progression of puberty, which is later in boys relative to girls. The
sigmoid slope parameters p2 were 0.21 (95%CI [0.19, 0.23]) for girls
and 0.22 (95%CI [0.20, 0.24])for boys.

G. Ziegler et al. NeuroImage 147 (2017) 746–762

750

http://www.fil.ion.ucl.ac.uk/spm


The second developmental factor we considered was intended to
reflect a hidden (or latent) growth process, which causes tissue growth
in early life. Hidden means that the actual driving force cannot be
measured directly, but is rather inferred using the whole pattern of
state progression in all ROIs. In particular, we chose an alpha function
dynamic (see Eq. (5)) to cause gender-specific brain growth in all ROIs
earlier or later during maturation (illustrated in Fig. 1C top left). The
hidden growth factor dynamics are implicitly parametrised by includ-
ing the unknown latency parameter τ, which is estimated from the data.
Having a larger τ corresponds to a later and more enduring growth
process. The estimation accounted for potential gender-group differ-
ences of this latency or delay parameter. In order to avoid potential bias
due to the arbitrary choice of alpha growth dynamic onset being
initially specified at an age of 6 years (the minimum age in the sample),
we conducted a model comparison with varying age of onset, in
particular using 3, 4, 5 or 7, 8, and 9 years instead. The results
suggested highest model evidence for alpha growth dynamics with
onset at age 5 years (Fig. 1D top). Therefore, all further dynamic
modelling results are presented using this specific choice of early alpha
growth with best empirical support in this particular sample. As
suggested by our findings, the hidden growth appears to be later in
boys compared with girls, indicated by the latency parameter τ (Fig. 1C
top middle). The resulting shape of the hidden alpha growth factor
(given the data) is shown in Fig. 1C top right.

In addition to the alpha dynamics, we also explored an alternative
shape of the growth factor using a Gaussian. Compared with the alpha
dynamics the Gaussian was chosen to be more flexible, having
independent mean and standard deviation parameter (Fig. 1C bottom
left and middle). Supporting the consistency of the above findings, the
use of the Gaussian growth factor suggested a similar pattern of gender
progression difference (Fig. 1C bottom right), with girls (with mean at
7.1 years) being affected earlier than boys (with 8.2 years) and a
standard deviation of 2.2 years. Notably, we also observed similar
trajectories and regional sensitivities using alpha and Gaussian growth
dynamics (Fig. 1C right).

Furthermore, Bayesian model comparison was used to determine
the input structure with the highest evidence in light of the data (see
Fig. 1D bottom). In this comparison of inputs, we chose intrinsic
dynamics arising from self-connections only (i.e. no interactions
among regions, cf. Section 3.4). We compared models having: (1) no
driving developmental factors at all; (2) only a puberty factor; (3) only
a Gaussian growth factor; (4) a dynamic alpha growth factor; or (5)
both puberty and alpha growth developmental factors. Notably, all
factors were modelled to account for gender-differences. Although the
single factors already increased the model evidence compared to
considering only intrinsic dynamics, the highest evidence was found
when combining both puberty and the alpha growth input. Thus,
Bayesian model comparison suggested that the model fit improved
even when accounting for increased model complexity including
multiple factors. Finally, directly comparing the two considered
candidates of growth factors in this sample, the dynamic alpha growth
was found to have higher model evidence compared with the Gaussian
parametric growth factor. The maximum evidence multivariate struc-
tural change model including puberty and alpha growth factors is
further explored and specifically extended in the subsequent sections.

3.2. Trajectories, parameters and gender-differences

The complete data and dynamic model predictions in all bilateral
ROIs are shown in Figs. 2 and 3 for girls and boys respectively. The
dynamic model accurately captures non-monotonic progression of the
rescaled regional volumes. The inter-regional differences of progres-
sion e.g. cortical vs. subcortical, faster vs. slower decline appears
flexibly modelled using the proposed method. Notably, as the main
focus at this stage is the introduction of growth factors behind
distributed patterns of change, the presented results so far are obtained

from dynamical models containing only self-connections. However,
this assumption will be relaxed in Section 3.4 below, where we explore
examples of inter-regional connectivity in the intrinsic dynamics.

Since the proposed dynamical model inversion exploits Bayesian
inference, we can further illustrate the model using posteriors from
parameters of interest given the data (see Fig. 4). The obtained regional
initial states and self-connection parameters are shown in Fig. 4A and
B (top and top middle row). The values of the self-connections can be
related to the time to lose L per cent of gray matter volume, via the
formula ti(L)=(1/aii) log(1–L/100). For example, a value of aii= –0.005
(e.g. Hippocampus and Amygdala) indicates a loss of ten percent of
gray matter in 21 years, whereas aii= –0.02 (e.g. Middle Frontal Gyrus,
Lateral Parietal Lobe) indicates the same loss in 5.3 years. The spatial
pattern of self-connection values reveals regional differences of more or
less rapid exponential decay of volumes, which goes beyond the effect
of inputs. By ordering self-connections according to the size of the ROI,
we observe an indication for larger regions showing stronger decay
(Fig. 4C top). This is in line with the expectation that signals from
larger ROIs are likely to have less variance and more noisy time series
will be more influenced by the priors, which may cause them to show
less decay.

The construction of our proposed dynamical system aims at
understanding structural change as an effect of (observed or hidden)
growth factors with potentially region-specific effects, e.g. due to
variation in receptor density. Therefore the regional sensitivity/con-
tribution parameters are of central interest for the validation of the
model.

The sensitivity to the above specified pubertal and hidden growth
factor is depicted in Fig. 4A and B (bottom middle and bottom row).
Inspecting the posterior of sensitivity parameters, a strongest notice-
able effect of the puberty factor to the regional structural progression
was detected in subcortical regions, mainly hippocampus and amygdala
ROIs. Compared to the overall effect of the hidden growth factor, the
pubertal subcortical effects were rather small but spatially localised and
distinctive.

More pronounced and widespread effects of the hidden growth
factor were found. The posterior of the sensitivity to the growth factor
was generally positive for all regions. However, the spatial pattern was
indicative of the strongest contribution of a growth factor to the change
in frontal and middle frontal gyrus. On a lobar level, frontal, temporal,
parietal and occipital lobes exhibited decreasing sensitivity to the
growth factor's effect, suggesting a substantial anterior-posterior
gradient of childhood gray matter tissue growth (Fig. 4C bottom).

By construction, the initial structural state parameters were esti-
mated on a group level capturing variability across genders (Fig. 4B top
row). However, we explored whether there is also evidence for
significant gender-differences of self-connections or sensitivity para-
meters. The results of Bayesian model comparison of four models that
either impose similarity for these parameters across females and males
is presented in Fig. 5A. Given our sample, the highest model evidence
was found for a model with identical regional factor sensitivity but
different self-connection parameters across genders. Notably, both
included input factors were already accounting for gender in terms of
age of strongest changes of pubertal expression and the latency of alpha
growth. Therefore, using dynamical modelling our analysis revealed
evidence for similar spatial patterns of regional sensitivity (to all
considered developmental factors) for both genders.

3.3. Comparison with univariate cubic polynomials

We also aimed to compare dynamical systems-based multivariate
trajectories with more established univariate methods. In particular,
we modelled our data using an alternative univariate cubic polynomial
(Eq. (7)) as a regionally independent generative model of the data
instead of the proposed multivariate dynamical systems model. To
avoid potential biases in this comparison, variance components,
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confounds, parameter estimation and model inference were completely
consistent with the dynamical systems framework presented above. In
order to additionally provide some flexibility for potential gender
differences of the polynomial coefficients, we included four versions
of this model where coefficients (1) b1, b2 and b3 or (2) b2 and b3 (3)
only b3 or (4) no coefficient was supposed to be identical across both
gender groups (with br referring to bir of region i in Eq. (7)). As a
consequence considering models (1)-(4) have a varying number of
parameters and provide some flexibility for fitting the data. It is
important to note that the polynomial model fits local functions of
time without any dependencies of coefficients across brain regions
while the multivariate dynamical systems considered in this section
predicts change based on a common underlying growth factor.

The resulting univariate polynomial trajectories can be seen
together with the multivariate dynamical systems results in Figs. 2
and 3 for girls and boys respectively. Numerical estimates of ages of
peak volume in all regions are provided in Table 1 of the
Supplementary material. From visual inspection, trajectories obtained
using both differing methods were very similar. However, because we
specified the two types of model as generative models for all brain
regions in the same framework, this also allowed us to perform formal
Bayesian model comparison of dynamical versus cubic polynomial
model (see Fig. 5A).

Using our sample, model evidence uniformly favoured dynamical
systems compared to the univariate polynomials accounting for
potential differences between girls and boys. Since there are no widely
established methods for analysis of coupled structural changes in
developmental trajectories, this comparison provides a coarse indica-
tion of the face validity of our novel approach. We further compared the
regional root mean square of errors (RMSE) from the highest evidence

model of each class of models, which is shown for girls and boys in
Fig. 5B. The obtained RMSE also did not indicate systematically better
or worse fit for either of the models across multiple brain regions. This
was supported by a two-sample F test for equal residual variances in
each region, which did not show significant deviations (all p values
>0.4). Taken together, our analysis suggested that the linear dynamical
system trajectories did not show significantly worse fit and entailed
lower model complexity leading to higher model evidence. Notably,
although very flexible, the polynomials do not directly support a
potential mechanistic interpretation of observed structural changes or
enable testing specific ideas about the underlying generative process
across brain regions.

3.4. Including inter-regional dynamics

In the previous sections we presented dynamic models of structural
changes, which contained external inputs and internal self-connec-
tions. Regions were assumed to develop independently and were
’coupled’ only by being affected by the same driving input. However,
there are physical and neuroscientific arguments for including explicit
interactions among regional states in the dynamics. Finally, we aimed
to demonstrate the potential of the framework for comparing more
complex patterns of intrinsically connected structural changes in
development. More specifically, we explored the hypothesis that
inter-regional dynamics during brain development would be stronger
within the same module of co-activation than between different
functional modules as observed in resting state fMRI (rsfMRI).

We here built on a previous study identifying major intrinsic
connectivity networks in the brain, as imaged with rsfMRI in 36
subjects (Smith et al., 2009). The authors provided independent
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Fig. 2. Girls developmental trajectories using uncoupled dynamical system with puberty-related factor and hidden growth factor. Dynamical systems model predictions and data for 151
girls is shown in red. Univariate cubic polynomial trajectory fits are shown in green.

G. Ziegler et al. NeuroImage 147 (2017) 746–762

752



component analysis (ICA) maps in standardized space as supplemen-
tary material, including ten components from rsfMRI that could be well
matched with corresponding components from task fMRI (http://fsl.
fmrib.ox.ac.uk/analysis/brainmap+rsns/PNAS_Smith09_rsn10.nii.
gz). As an example, we here focussed on the posterior and anterior co-
activation networks provided in component 4 (default mode network)
and component 8 (executive control network) of their analysis
respectively (see Fig. 6A). For each of these two component maps, we
identified the set of brain regions containing the highest average ICA
co-activation weights within the available 26 gray matter ROIs
analysed in previous sections. To include the major nodes within
each co-activation network observed in resting state, we further
considered only ROIs showing an average component weight above
40% of the maximal averaged component weight found in all ROIs.
This procedure resulted in (A) an anterior subnetwork including the
ROIs of anterior cingulate, middle and superior frontal gyrus, caudate
and thalamus; and (B) a posterior subnetwork including ROIs of
posterior cingulate cortex, cuneus, lateral parietal lobe and superior
parietal gyrus (illustrated in Fig. 6B).

We implemented the above hypothesis by focussing on Bayesian
model selection among models having (1) no coupling between all
ROIs; (2) coupling only within the two subnetworks; and (3) coupling
only between the subnetworks; and (4) full coupling of all ROIs from
both subnetworks (see an illustration of (2) and (3) in Fig. 6D). In
particular, models (2)-(4) were compared having either only positive or
negative connections strength. Note also, that reciprocal connections
were considered, i.e. the connectivity matrix was assumed to be
symmetric A=AT .

If there is substantial inter-regional dynamics in terms of connec-
tion parameters in the considered (sub-)networks, one would expect a

higher model evidence of a coupled compared with an uncoupled
model. In fact, the results of our model comparison suggested inter-
regional structural dynamics during brain maturation with especially
negatively connected models showing a higher model evidence
(Fig. 6C). A negative connection strength means that higher regional
volume is associated with more shrinkage (or less growth) of the
connected brain region (see estimates in Fig. 6D). Moreover, results
indicated that the model evidence was higher when the (negative)
structural connectivity did reflect the pattern of functional co-activa-
tion. This was evident since we found a higher model evidence for
models including connections within subnetworks rather than when
including structural connections between subnetworks (reflecting co-
activations in rsfMRI in (Smith et al., 2009)).

4. Discussion

In this work we address dynamic and non-linear aspects of
structural brain changes typically observed in longitudinal MRI studies
on development. Unlike more traditional approaches, e.g. using the
general linear model or linear-mixed effects, in which flexible models
are fitted independently to multiple brain regions, we here propose a
framework for modelling concerted change in terms of a multivariate
dynamical model. This goes beyond existing approaches by avoiding
limitations of mass-univariate testing and incorporating a mechanistic
perspective on dynamic phenomena during normal and pathological
brain development. The model not only describes the evolution of
structural states (accounting for potential interactions) but also allows
inputs or driving forces to be specified, which can represent e.g. the
presence of certain growth factors, toxins, proteins etc. In the current
form, the framework enables formulating parsimonious multivariate
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Fig. 3. Boys developmental trajectories using uncoupled dynamical system with puberty-related factor and hidden growth factor. Dynamical systems model predictions and data for 135
boys is shown in blue. Univariate cubic polynomial trajectory fits are shown in green.
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models of brain growth typically seen in studies on development (Mills
and Tamnes, 2014). As demonstrated in a developmental dataset,
Bayesian model comparison affords investigation of specific hypotheses
about effects of developmental factors or inter-regional dynamics.

The approach is motivated by the ambitious longterm goal of
progressing towards mechanistic or process-oriented models that
implement specific neuroscientific hypotheses, rather than using ex-
plorative analysis with post hoc integration of results (Stephan et al.,

Fig. 4. Overview of estimated dynamical system parameters using alpha growth and puberty input factors. A Posterior mean of initial state xi(0) (top), self-connections aii (top middle),
and sensitivity parameters cij (bottom middle and bottom row) are shown using surface ROI projections. B Corresponding diagrams from parameters in A including error bars from
posterior variance. Notably, the order of ROIs is adapted to follow brain lobes. C Relation of self-connection parameters to absolute volume size of the considered ROI (top) relation of
alpha growth factor sensitivity to y coordinate on the anterior-posterior axis in the brains.
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2015; Montague et al., 2012). Explicit specification of growth factors is
also reflective of an ongoing trend towards increased availability of
physiological measurements from blood serum, cerebrospinal fluid,
gene expression atlases, or other imaging modalities in large sample
studies, projects and initiatives (e.g. the Allen Brain Atlas, http://www.
brain-map.org/). The mechanistic perspective might be useful to study
the rapid growth of the human cortex during development, especially
the cortical folding of the brain into a highly convoluted structure in
fetuses and newborns (Lefèvre et al., 2015). Moreover, there is evidence
that, although molecular determinants control tangential expansion of
the cortex, the size, shape, placement and orientation of the folds might
arise through principles of mechanical instability modulated by fetal
brain geometry (Tallinen et al., 2016).

In this work on modelling changes in sMRI datasets, we employ
estimation and inference algorithms introduced earlier (Friston et al.,
2007). These procedures have been validated for dynamical systems in
context of functional and electrophysiological brain data (Daunizeau
et al., 2009). General issues on the identifiability of dynamic models
have been previously studied in context of effective connectivity
(Valdes-Sosa et al., 2011; Arand et al., 2015).

This paper focussed on demonstrating construct validity for struc-
tural dynamical modelling using longitudinal data from brain matura-
tion in 289 subjects from the NIH paediatric repository. For this
purpose, we specified a system having intrinsic linear dynamics
with state vectors representing gray matter volume in a whole brain
network and two types of inputs or driving forces. It is worth
mentioning that including explicit growth factors in the model of
structural development extends most existing work by (a) dynamic
modelling of change and the sources of variability beyond time and (b)
modelling or inferring (hidden) causes to facilitate mechanistic inter-
pretations.

In order to explore the validity of our new modelling approach we
compared different generative models using Bayesian inference and
model selection. Findings consistently suggested higher model evi-
dence and similar model fit when comparing the proposed multivariate
dynamical model with established univariate cubic polynomials often
used in developmental samples. Given the advantage of this novel
framework to implement mechanistic and spatially multivariate hy-
potheses, this suggests that dynamical systems might be a promising
approach to model brain changes in development and aging.

Fig. 6. Comparing structural change models including inter-regional dynamics based on a priori defined rsfMRI subnetworks. A Resting state ICA component weight maps 4 and 8
available from a set of 10 selected maps, provided as supplementary material in Smith et al. (2009). B Data-driven definition of two subnetworks of ROIs analyzed in our study including
regions with highest ICA component weights averaged within ROIs. The euclidian distance of all included nodes (ROIs) in each subnetwork is shown. C Bayesian model selection of
connectivity models comparing log model evidence (in 289 subjects sample) of four models including (1) no inter-regional dynamics; (2) only connections within each of the two
subnetworks; (3) only connections between the two subnetworks; or (4) fully connected subnetworks containing all possible connections (not shown). All models were considered with
weakly informative log-normal priors constraining connection strength to be either only positive or only negative. D Illustration and diagrams of absolute connection strength aik of the
two highest evidence models from model comparison. Only undirected networks were explored, i.e. we set a further constraint to use symmetric matrices a a=ik ki for all considered

networks.
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More specifically, to demonstrate that a priori known inputs can be
integrated into the model, we derived a puberty-related factor based on
available physical assessments in the maturation sample. Model
comparisons suggested a significant contribution of the included
puberty factor. The posterior distribution over model parameters
indicated highest sensitivity within the hippocampus-amygdala com-
plex for the puberty factor's effects. The hippocampus has been
repeatedly implicated in learning, memory and cognition (Zeidman
and Maguire, 2016). More specifically, the same authors proposed that
the involvement of the hippocampus in visual perception, imagination
and episodic recall might be related to the process of learning and
updating models of the world. Thus, we speculate that our findings of
puberty-related changes might mark the beginning of the reduction of
underlying learning rates during updating the individual models (of the
world). Our volumetric findings are also in line with other recent
studies showing effects of pubertal Tanner staging or hormonal data in
the hippocampus (Goddings et al., 2014; Brouwer et al., 2015; Herting
et al., 2014; Giedd et al., 2006). The first factor's effects can be seen as a
sign of validity of our proposed dynamic modelling approach. Notably,
the observed puberty-induced changes were found to be small com-
pared to overall developmental effects during the explored age range.

The proposed framework goes beyond integrating well known (or
assumed) inputs or driving forces and motivating mechanistic inter-
pretations on brain changes. We show that this framework allows
inferring hidden developmental factors that are likely to cause the
observed patterns of state change in multiple brain regions or whole
networks. This inference on hidden causes is a central contribution of
this work. Firstly, since more modalities and physiological parameters
become increasingly available in large neuroimaging projects, quanti-
tative analysis of correlated multivariate change indices might be best
performed by characterising the underlying causal interactions at the
latent/hidden variable level. Secondly, having established latent causes
for growth or atrophy in healthy and diseased aging samples would allow
more powerful predictions for future time points, even in common practical
situations with sparse observations, missingness and very noisy data.

Since the gray matter volume features in the analysed maturation
sample indicated a non-monotonic (inverse U-shaped) development in
some brain regions, we aimed to model the underlying growth process
in a dynamic fashion. Crucially, it has recently been proposed that
childhood cortical thickness growth in developmental studies might be
artifactual due to movement, image quality or brain size variations
(Ducharme et al., 2016). Since our focus is on the modelling approach
rather than phenotype-specific questions of the brain features, we
aimed to rule out the possibility of biased results by applying state of
the art longitudinal morphometry processing techniques, rigorous
quality control and inclusion of brain size and scanning site variations
as between-subjects confounds in the model inversion. We cannot
exclude that unnoticed movement artefact differences might have
contributed to our finding of a childhood gray matter volume growth.
However, this is unlikely because the growth was found to be region-
specific in anterior and prefrontal gray matter regions, rather than a
global effect. In addition, voxel-based segmentations of regional gray
matter volumes also reflect changes in surface area and were found to
show more curvilinear trajectories than surface-based cortical thick-
ness features (Raznahan et al., 2011; Wierenga et al., 2014).

In particular, we explored dynamics of hidden factors driving change
of regional gray matter in females and males. According to recent
evidence showing that gray matter exhibits its highest volume during
mid-to-late childhood (Tamnes et al., 2013; Aubert-Broche et al., 2013;
Wierenga et al., 2014; Mills et al., 2016) the growth factor was initially
modelled as beginning to affect the brain at age six and with a free
delay/dispersion parameter for females and males. This particular
choice for the age of onset of the driving forces was motivated by the
given age range of the dataset rather than biological arguments.
Although clearly restricted to the considered ages, during model
selection, a parametrisation with slightly earlier onset of growth at age

5 years showed higher model evidence. Including an alpha dynamic
growth factor generally improved the model evidence and the posterior
of the latency parameter indicated a delayed tissue change process in
males compared to females. One might also argue that the general shape
of the alpha dynamic growth might be too restrictive, and thus leading to
biased findings. However, exploring an alternative implementation of
growth using a parametric Gaussian ’growth impulse’ with more flexible
shapes also suggested a similar pattern of gender-specific progression
difference. This is supported by recent work using a multivariate brain
development index (BDI) indicating developmental time-lags between
genders in late childhood and early adolescence (Erus et al., 2015). The
consistency of our findings and previous findings is encouraging and
supports the validity of this newly presented framework.

In our analysis, the model with highest evidence contained multiple
combined growth factors, in particular, the static puberty factor and
hidden alpha growth. Moreover, modelling the (hypothesized) driving
forces of development in the state equations directly (e.g. as alpha
dynamics) outperformed feeding parametric curves (e.g. Gaussian with
mean and sd) as inputs to the system. This should be further explored
in future applications and suggests that extending and adapting the set
of (parametric and dynamic) growth factors for various scenarios
would be fruitful.

Interestingly, the estimated regional values of sensitivity/contribu-
tion of both explored hidden growth factors showed a consistent
anterior-posterior gradient with strongest impact on prefrontal cortex
(PFC) brain changes. This is in line with some MR-based studies
showing that the human PFC undergoes protracted macro-structural
changes in the form of inverted U-shaped trajectories with childhood
growth followed by decline throughout adolescence and early adult-
hood (Shaw et al., 2008; Group, 2011). The observed macro-anatomi-
cal model findings might be related to fact that the human PFC also
undergoes a prolonged phase of microstructural reorganization with
involved processes of cortical myelination and synaptic changes (Tau
and Peterson, 2009; Petanjek et al., 2011).

There is evidence, that neurotrophic growth factors might influence
the differentiation and survival of neurons and glia cells, and substan-
tially modulate synaptic changes (Tau and Peterson, 2009). Although
we demonstrated inferring potential causes for tissue growth in terms
of hidden growth factors, our dataset did not include any physiological
or serum parameters, hormones, neurotransmitters or neurotrophins
from the analysed sample. We therefore cannot conclusively infer what
actually caused the observed changes in the participants’ brains.
However, as shown for the puberty scores, the framework allows
inclusion of physiologically informative inputs when available in future
work. For example, it would be possible to include actual observed
hormonal data and/or metabolic parameters in the same sample. Thus,
we can only speculate that neurotrophins, such as the brain derived
neurotrophic factor (BDNF), might be involved in the physiological
processes underlying the hidden growth factor.

We conducted model comparisons of two previously observed
network-modules of functional co-activation using resting state fMRI
(Smith et al., 2009). The results suggest that there are substantial inter-
regional dynamics during brain maturation in terms of significant
negative couplings across regions in the explored space of models.
Focussing on these particular subnetworks and the coarse parcellation
into 26 bilateral gray matter ROIs, our findings suggest that inter-
regional coupling of structural changes (during brain maturation, late
childhood and adolescence) might follow patterns of functional co-
activation or independence respectively. Since parametrising dynamics
in this way has not been reported yet, this finding shows the potential
of the approach to go beyond existing work. We cannot exclude the
possibility that local coupling might be partially influenced by local
optima in the image registration. However, if local registration errors
caused couplings of nearby regions, the direction of coupling would
also vary from negative to positive, which was not observed in our
analysis. Taken together our findings suggest that exploring the nature
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of the structural dynamics, for example by combining morphometry
with diffusion data in future developmental studies, might be a
promising direction of research (see also Stephan et al., 2009).

The above provided signs of validity about (A) introducing and
comparing explicit growth factors into models of brain changes and (B)
capturing inter-regional dynamics might offer a way forward for
studying causes of structural covariance (Mechelli et al., 2005) and
correlated structural changes (Raznahan et al., 2011). Moreover, there
has been substantial progress in modelling disease progression in
multiple imaging and clinical biomarkers using an event-based per-
spective (Fonteijn et al., 2012; Young et al., 2014; Sabuncu et al.,
2014). Event-based approaches share some motivation with our
approach because both aim at generative modelling of complex multi-
variate processes over time. However, while dynamical systems
approaches model progression in the form of forces or interactions
across modalities or brain regions, event-based models often rather
aim at inference about the sequence/order rather than the parameters
of mechanics most likely to cause them.

In the study of degenerative diseases, estimation of dynamical
systems parameters would permit inferences about how quickly neuro-
nal degeneration in one region propagates to another. One might hope
to relate such parameters to the time constants of underlying putative
molecular processes. For example, in Alzheimer's, how quickly pathol-
ogy is spread via trans-synaptic transmission of mutated tau protein
(Ballatore et al., 2007) or how quickly synaptic dysfunction in one
region begets synaptic dysfunction in another (Newman et al., 2012).
There is growing interest in how general proteinopathies damage
complex brain networks (Warren et al., 2013). Notably, there was a
recent attempt to explore dynamical systems for disease progression in
Alzheimer's Disease (AD) (Oxtoby et al., 2014). The study focussed on
ventricle expansion in pathologically aging clinical groups while ac-
counting for potential covariates in the progression. Here we extend this
idea to model structural progression dynamics in multiple regional
biomarkers using an explicitly multivariate generative modelling frame-
work. Moreover, our approach additionally incorporates inter-regional
network connectivity, which might affect the progression within the
nodes. Future work might focus on dynamics in the presence of
detrimental physiological factors in neurodegenerative disease.

We would finally like to mention further limitations and potential
extensions for future work. In this early attempt at dynamic modelling
of sMRI, the observation model was focussed on well established
macro-anatomical morphometric markers. While pure morphometric
results are important and encouraging, they might lack a certain degree
of physiological specificity. It might be also worth applying the
dynamical model to features other than volume, such as cortical
thickness, local gyrification, or surface area growth. In future, we aim
to overcome this by augmenting the current trivial observation model
to accommodate data from multiple imaging sequences in a joint

biophysical forward model, to allow exploration of state changes of in
vivo histological parameters, for example local myelination (Weiskopf
et al., 2015).

Another assumption that warrants revisiting in future work derives
from the fact the self-connections are constrained to be negative. This
means that in the absence of external perturbation (e.g. from hormonal
or latent growth factors) gray matter density will decrease. An
alternative model assumption could have been that the self-connec-
tions are positive i.e. that regional gray matter will increase unless
constrained by external perturbation (e.g. competition for space).
Whilst we did informally explore some models of this nature (not
reported) our experience led us to conclude these models were
inherently unstable. Nevertheless, a more thorough investigation may
be of interest in the future.

It is important to note that, here, we aimed to model longitudinal
dynamics at the level of groups or populations, rather than single
individuals. While the individual differences of change in expression of
puberty and brain structure are neglected in the current formulation of
our dynamic model, they would need to be addressed in context of
highly variable process of healthy and pathological ageing. Future work
may make use of recent methodological advances that have the
potential for additional sources of heterogeneity to be accounted for
within dynamical systems (Penny and Sengupta, 2016; Sengupta et al.,
2016; Friston et al., 2016).
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Appendix A. Applied priors, likelihood and variance components

Here we outline the specifics of the applied model priors for the inversion of dynamical models of structural changes in the brain maturation
sample. The following prior specification considers the special case of models including multiple driving inputs, i.e. puberty and alpha growth, but
without having inter-regional coupling (in Sections 3.1, 3.2 and 3.3 above), where off diagonal connections are assumed to be zero, i.e. a = 0ik , for
i k≠ . The uninformative or weakly informative priors on the free parameters p θ m( | ), were specified in terms of expectation and covariance,

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∏ ∏p θ m p τ p a p x p c

p a a a p a

p x μ

p τ τ τ p τ

p c c c p c

( | ) = ( ) ( ) ( (0)) ( )

( ) = exp( ), with ( ) = (0, 1)

( (0)) = ( , 64)

( ) = exp( ), with ( ) = (0, 1)

( ) = exp( ), with ( ) = (0, 1)∼ ∼

∼ ∼

∼ ∼
i

D

ii i
j

J

ij

ii ii ii

i i

ij ij ij

=1 =1

0

0

0 (8)

G. Ziegler et al. NeuroImage 147 (2017) 746–762

757

http://www.bic.mni.mcgill.ca/nihpd/info/participating_centers.html
http://www.bic.mni.mcgill.ca/nihpd/info/participating_centers.html


where m indexes model assumptions (e.g. tied parameters for boys and girls), a = −0.00660 , τ = 20 and c = 20 . In particular, a0 was chosen so that
the a priori most likely time constant produced a decay to 0.9 of the initial value (the value at time zero) within the time period under study. In this
application the applied time-constant is constrained to be negative since the coarse trend in the data is volumetric reductions and a positive time-
constant would require state equations with additional constrains which prevent growth from becoming instable. Sensitivity parameters c and alpha
dynamic parameter τ were also specified using log-normal priors allowing for substantial or almost no contribution of the considered inputs and for
flexible developmental delays/time-lag of growth during middle and later childhood respectively. Here μi refers to the mean of the first five
observations for the ith state variable. Priors on initial values x (0)i were chosen to have very large variances, to be rather uninformative.

Alternatively, when exploring the latent parametric Gaussian instead of the dynamic alpha function growth input, we applied the following prior
on parameters
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with same fixed a0 and c0 parameters as used above, and prior mean age of the Gaussian growth was set to 8 years for boys and girls and large prior
variance to provide substantial flexibility.

We also analysed inter-regional dynamics during brain maturation presented in Section 3.4 where in addition to the main-diagonal
connectivities aii we allowed off-diagonal connectivity parameters aik (for i k≠ ) of certain networks (specified above) to have non-zero values.
More specifically, the applied priors in the case of a fully connected network with complex intrinsic dynamics follows as
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using the same a0, τ0 and c0 as specified previously. More specifically, we here used log-normal priors on the inter-regional connectivities to
constrain interactions and compare models with certain networks having only positive (b0=0.005) or only negative (b = −0.0050 ) connections
strengths.

Finally, in the model comparison of multivariate dynamical systems with regionally independent cubic polynomials (Eq. (7)) we specified weakly
informative priors as follows
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with coefficients bir of region i, polynomial degree k and μi the mean of the observations in region i.
Furthermore, for all considered generative models above (e.g. dynamic alpha growth, parametric Gaussian growth, and independent cubic

polynomials), the likelihood of the data under model m was
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where the data vector y comprises (vectorised) D dimensional structural measures at all time points from all subjects, g θ( ) are (vectorised) model
predictions, and Ce is an error covariance matrix composed of a sum of weighted covariance functions, Qi, as described below. Here, y and g θ( ) are
vectorised over subjects in a consistent manner (i.e. all from subject 1, all from subject 2. etc). The covariance component weights λ and model
parameters θ are estimated using VL (Friston et al., 2007).

As the model is specified at the group level, as opposed to the level of individuals, the repeated measures design induces correlated residuals
within subject. In order to enable unbiased inference, these correlations need to be accounted for in terms of a covariance structure, Ce, which here
was adapted to the specifics of the given accelerated longitudinal design of the study. We used the following set of covariance basis functions to
model the main diagonal and additionally some specific off-diagonal elements of Ce. We specified Qi for i=1,..., D to have only sparse entries of ones
on the main-diagonal for region i, if the corresponding entry in observation vector y is from a girl. Specifying variance components Qi for i=D
+1,...,2D correspondingly for boys results in hyper-parameter λi capturing the error variance of all observations independently for both genders and
also separately for all brain regions. Additionally, because the imaging sample contained 2–3 annual scans per subject, we specified one further
variance component Qr1 having only specific non-zero off-diagonal entries (of one) if the particular observation was measured 1 year apart of
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another observation for the same subject. As a consequence, hyper-parameter λr1 becomes the pooled estimate (across all subjects in the sample) of
the covariance of observations for a one-year time difference. Similarly, Qr2 and λr2 were used to capture potential two-year time difference
correlations.

Appendix B. Variational laplace

In what follows below x m C( ; , ) denotes a multivariate normal distribution with mean m and covariance C. The Variational Laplace (VL)
algorithm (Friston et al., 2007) can be used for Bayesian estimation of any nonlinear model of the form

y f θ m e= ( , ) + (13)

where f θ( ) is a nonlinear function specified by modelm, and e is zero mean additive Gaussian noise with covariance Cy. This covariance depends on
hyperparameters λ as shown below. The likelihood of the data is therefore

p y θ λ m y f θ m C( | , , ) = ( ; ( , ), )y (14)

The framework allows for Gaussian priors over model parameters

p θ m θ μ C( | ) = ( ; , )θ θ (15)

where the prior mean and covariance are assumed known. The error covariances are assumed to decompose into terms of the form

∑C λ Q= exp( )y
i

i i
−1

(16)

where Qi are known precision basis functions. The ‘noise parameters’ or hyperparameters that govern these variance components are collectively
written as the vector λ. These will be estimated. Additionally, the hyperparameters are constrained by the prior

p λ m λ μ C( | ) = ( ; , )λ λ (17)

The above distributions allow one to write down an expression for the joint probability of the data, parameters and noise parameters

p y θ λ m p y θ λ m p θ m p λ m( , , | ) = ( | , , ) ( | ) ( | ) (18)

The starting point for variational inference is then to assume a factorisation of the posterior density (Beal, 2003). The VL algorithm is based on the
assumption that the approximate posterior density has the following factorised form

q θ λ y m q θ y m q λ y m

q θ y m θ m S

q λ y m λ m S

( , | , ) = ( | , ) ( | , )

( | , ) = ( ; , )

( | , ) = ( ; , )
θ θ

λ λ (19)

Importantly, the factorisation is between parameters and noise parameters only. Dependencies among model parameters are explicitly accounted
for in the posterior covariance matrix Sθ. For a model with p parameters Sθ is a p p[ × ] matrix.

Appendix C. Model parameters

The above distributions allow one to write down an expression for the joint log likelihood of the data, parameters and hyperparameters

L θ λ p y θ λ m p θ m p λ m( , ) = log[ ( | , , ) ( | ) ( | )] (20)

To make a connection with statistical physics we define the ‘energy’ as the negative log joint, –L. Thus high probability parameters correspond to
low energy states. For the Gaussian likelihood and priors defined above we have
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with N data points, p parameters, h noise parameters and error terms given by

e y f θ m

e θ μ

e λ μ

= − ( , )

= −

= −

y

θ θ

λ λ (22)

The negative “variational energies” with respect to parameters and noise parameters are then defined as (see Eq. (4) in Friston et al. (2007) for
generic form, or a tutorial treatment leading up to Eq. (6) in the ‘Variational Bayes’ chapter of Friston et al. (2007))

∫
∫

I θ L θ λ q λ y m dλ

I λ L θ λ q θ y m dθ

( ) = ( , ) ( | , )

( ) = ( , ) ( | , ) (23)

If Dθ and Dλ are matrices of second order derivatives of L with respect to θ and λ (i.e. Hessian matrices) then the variational energies can be
evaluated as
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I θ L θ m Tr S D

I λ L m λ Tr S D
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2
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λ λ θ

θ θ λ (24)

See Eq. (6) in Friston et al. (2007) for generic form. The parameters of the approximate posteriors, m S m S{ , , , }θ θ λ λ , are then iteratively updated so
as to minimise these variational energies. This is mathematically equivalent to minimising the Kullback-Liebler divergence between the true and
approximate posteriors (Beal, 2003; Friston et al., 2007).

This maximisation is effected by first computing the gradient and curvature of the variational energies at the current parameter estimate,
m old( )θ . For example, for the parameters we have

j i dI θ
dθ i

H i j d I θ
dθ i dθ j
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( , ) = ( )
( ) ( )

θ

θ
2

(25)

where i and j index the ith and jth parameters, jθ is the gradient vector and Hθ is the curvature (Hessian) matrix. The estimate for the posterior
mean is then given by

m new m old m( ) = ( ) + Δθ θ θ (26)

where

m vH I H jΔ = [exp( ) − ]θ θ θ θ
−1 (27)

This last expression implements a ‘temporal regularisation’ with regularisation parameter v (Friston et al., 2007) (so-called, because Eq. (27) is the
solution to the differential equation Hθ=dθ

dv
at ‘time’ point v). In the limit v → ∞ the update reduces to

m H jΔ = −θ θ θ
−1 (28)

which is equivalent to a Newton update (Press et al., 1992). This implements a step in the direction of the gradient with a step size given by the
inverse curvature. Big steps are taken in regions where the gradient changes slowly (low curvature).

In regions of parameter space near maxima the curvature is negative definite (hence the sign in Eq. (28)). However, in other regions this is not
necessarily the case and the curvature should not be fully trusted. This is the motivation behind model trust-region approaches (Press et al., 1992)
and temporal regularization falls into this category of algorithm. Additionally, for the parameters, an adaptive regularisation is used. If the update in
Eq. (27) does not result in a decrease in variational free energy (see next section) then v is reduced by 1/2. If it does, then v is increased by 1/2 (the
curvature becomes more trustworthy). In addition v is constrained to lie between -4 and +4. This algorithm was found to provide more robust
optimisation than standard Newton approaches on a variety of optimisation problems (see e.g. Figure 1 in Friston et al., 2007). After updating mθ,
the posterior covariance Sθ is set to the negative inverse curvature of L θ m( , )λ , evaluated at the new point θ m= θ (this is the value of Sθ that
minimises the variational energy (Friston et al., 2007)).

Equivalent expressions and updates are implemented for the hyperparameters, with the difference that the temporal regularisation parameter is
not adaptive but is fixed at v=8. Overall, optimisation proceeds by iteratively updating the approximate posteriors for the parameters and
hyperparameters until the change in free energy is less than 0.01. Again, these parameters have been found to provide robust optimisation over a
wide variety of problem domains, from EEG source reconstruction to DCM parameter estimation.

Appendix D. Model evidence

The Negative Variational Free Energy is defined as
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This quantity provides a lower bound on the log model evidence (Beal, 2003). As shown in Wipf and Nagarajan (2009), Penny (2012) (and Eq. (21)
in (Friston et al., 2007)) the VL approximation to F(m) is given by
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where N is the number of data points and the error terms are
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Generically, factorised variational approximations provide a lower bound on the log model evidence (Beal, 2003). The difference between the true
log model evidence and F(m) is given by the Kullback-Liebler divergence between the true and variational posterior. Thus, as this KL divergence
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increases the bound becomes less tight and F(m) will not provide an accurate approximation. It turns out, however, that FL provides an
approximation to the model evidence rather than a lower bound (Wipf and Nagarajan, 2009, Penny, 2012) (it can be lower or higher than F(m)).
Empirically, however, it has been shown to provide a better model selection measure than does AIC or BIC (Penny, 2012). The quantity FL(m) is the
VL model evidence approximation referred to in the paper.

Appendix E. Supplementary data

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.neuroimage.2016.12.017.
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