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A Rich-Club Organization in Brain 
Ischemia Protein Interaction 
Network
Ali Alawieh1,2, Zahraa Sabra1,2, Mohammed Sabra2, Stephen Tomlinson3 & Fadi A. Zaraket2

Ischemic stroke involves multiple pathophysiological mechanisms with complex interactions. 
Efforts to decipher those mechanisms and understand the evolution of cerebral injury is key for 
developing successful interventions. In an innovative approach, we use literature mining, natural 
language processing and systems biology tools to construct, annotate and curate a brain ischemia 
interactome. The curated interactome includes proteins that are deregulated after cerebral 
ischemia in human and experimental stroke. Network analysis of the interactome revealed a rich-
club organization indicating the presence of a densely interconnected hub structure of prominent 
contributors to disease pathogenesis. Functional annotation of the interactome uncovered prominent 
pathways and highlighted the critical role of the complement and coagulation cascade in the 
initiation and amplification of injury starting by activation of the rich-club. We performed an in-
silico screen for putative interventions that have pleiotropic effects on rich-club components and 
we identified estrogen as a prominent candidate. Our findings show that complex network analysis 
of disease related interactomes may lead to a better understanding of pathogenic mechanisms and 
provide cost-effective and mechanism-based discovery of candidate therapeutics.

Ischemic stroke still has the highest burden among all neurological diseases despite tremendous efforts 
devoted to prevention, management, treatment and rehabilitation of stroke patients1,2. Brain ischemia 
is characterized by reduction in blood flow to the brain resulting in unmet metabolic demands, tissue 
infarction and cell death. Ischemia is commonly followed by restoration of blood supply, i.e. reperfu-
sion, either spontaneously or pharmacologically leading to activation of blood-derived pro-inflammatory 
components and secondary injury3. The short time in which events develop, as well as the multitude of 
consequent pathogenic mechanisms that arise after ischemia and reperfusion, make the treatment of this 
disease a challenge4,5. Preclinical and clinical studies have predicted that a single-action-single-target 
paradigms are not the optimal approach to treat stroke and that multi-action-multi-target paradigms will 
be required6. Such an approach requires the compilation of efforts in order to understand the evolution 
of different mechanisms after ischemic stroke and the relationship of various mechanisms to disease 
outcome and potential interventions. Thus, further progress in enhancing ischemic stroke management 
necessitates an understanding of the multiple interacting mechanisms that occur after stroke onset.

Network analysis tools were previously used to analyze biological networks including protein-protein 
interaction networks and neuronal connectivity networks7–9. For instance, topological analyses provided 
a more profound understanding of brain connectivity network through the discovery of a rich-club 
organization in the cat brain connectome10 that preceded the discovery of a similar rich-club in the 
human connectome8. This rich-club serves as a high capacity backbone system critical for physiological 
neuronal connectivity. Therefore, we hypothesize that the use of network analysis tools in the context of 
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stroke protein interactome will provide a deeper understanding of the sequel of pathological events that 
happen after ischemia, and point out potential avenues for therapeutic interventions.

In this work, we describe a novel strategy using a semi-automatic annotation and text-mining 
approach coupled to systems biology and network analysis to analyze the complex protein interaction 
network that occurs after stroke. We curated and annotated a brain-ischemia interactome (BII) referring 
to set of interactions among proteins reported to exhibit changes in levels or regulation after human or 
experimental stroke. Network analysis uncovered a rich-club organization in the BII and provided insight 
into the predominating mechanisms in the early and subsequent phases of ischemic stroke. In addition, 
drug-protein interaction networks were used as an in-silico screening tool for putative therapeutic inter-
ventions that target the stroke rich-club.

Results
Curation and Annotation of First Brain Ischemia Interactome. A total of 82,181 articles were 
screened for including data on changes in the levels or regulation of gene products after brain ischemia 
using our semi-automatic annotation approach (Supplementary Figures 1 and 2). A total of 8,740 papers 
were selected through the initial screening and gene products reported in these studies are included in 
the Brain Ischemia Interactome (BII). Included gene products are those reported to have increased lev-
els, decreased levels, or changes in localization or regulation (post-transcriptional or post-translational) 
after brain ischemia. Supplementary Table 1 summarizes proteins with highest frequency of occurrence 
in stroke literature. Tissue-plasminogen activator (t-PA) was the most frequently reported protein in the 
interactome, and its recombinant form is currently the only approved pharmaceutical intervention for 
acute stroke.

The BII was built using data on protein-protein interactions from STRING (Search Tool for the 
Retrieval of Interacting Genes/Proteins) database including all connections with a STRING combined 
score higher than 0.4 as previously described11,12. The resulting curated interactome consisted of 886 
proteins connected by 17,425 binding interactions. Functional annotation and clustering of proteins in 
the BII were performed using DAVID (Database for Annotation, Visualization and Integrated Discovery) 
for enriched GO (Gene Ontology) biological processes, cellular components and tissue expressions13. 
Enrichment analysis was performed to identify processes, pathways and gene categories that are 
over-represented in the BII compared to the full human genome. As summarized in Fig. 1, BII proteins 
are predominantly expressed by brain tissue (1A), and are preferentially present at the plasma membrane 
and extra-cellular space (1B). Clustering for GO enriched biological processes reveals that inflammatory 
responses are the most enriched processes (Fig. 1C).

KEGG (Kyoto Encyclopedia of Genes and Genomes)14 pathway annotation revealed that comple-
ment and coagulation cascade (CCC) was the most enriched pathway followed by calcium signaling and 
mitogen-activated-kinase (MAPK) pathways. Notably, there was minimum overlap between components of 
the CCC pathway and other major enriched pathways in the network (Fig.  2A). Supplementary Figure 3 
shows the identity of proteins in the BII that belong to the enriched pathways in Fig. 2.

To assess whether components of the CCC pathway were isolated within the network compared to 
components of other pathways, protein-protein interactions (PPI) between CCC pathway proteins and 
proteins of other prominent pathways discovered by KEGG annotation were analyzed. Results showed 
that components of the CCC pathway were heavily interconnected with proteins in other pathways 
(Fig. 2B), a finding that is specifically significant given the early role of this pathway in the recognition 
and response to ischemic and reperfusion injury3,15.

Rich-Club Organization in Brain Ischemia Interactome. Network analysis of the BII revealed that 
it exhibits a power-law degree distribution consistent with being a scale-free network, a property of most 
biological networks. Figure  3A shows that the frequency of nodes with certain degree (k) is inversely 
correlated with the degree (k) indicating that a few number of nodes have the majority of the interactions 
in the network and are thus hub nodes (illustrated in Fig. 3B). Further analysis of the network clustering 
coefficient and path length showed that the BII had significantly higher clustering coefficient than com-
parable random networks (Fig. 3C) while having a comparable path length (2.34 compared to 2.14 for 
random networks). This finding is consistent with a small-world organization within the network that is 
verified by a high small-world coefficient (Fig. 3D). A small-world organization indicates the presence of 
a highway system of interactions that the majority of nodes use to interact with one another.

We then assessed the presence of a rich-club organization within the BII. A rich-club organization in 
a complex network is characterized by nodes with high degrees that are heavily interconnected among 
each other compared to non-rich-club nodes. The presence of a rich-club within a network indicates that 
the rich-club nodes form a core sub-network that is most influential in the overall network. As shown in 
Fig. 3D, the BII network exhibits a rich-club organization characterized by increased rich-club coefficient 
(ϕ (k)) with increasing degree. The strongest component of the rich-club was identified where the ϕ (k) 
plateaus around 1. To investigate the significance of the discovered rich-club, we assessed whether this 
rich-club could be explained by the degree distribution of the network using a normalized rich-club coef-
ficient (ρ (k)) comparing ϕ (k) to that of 1,000 randomly generated networks with similar degree distribu-
tion. The normalized rich-club coefficient (ρ (k)) reveals the presence of a significant rich-club between 
degrees 40 and 180 and peaking with a peak at degree 132. Interestingly, only one node, C-reactive 
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protein (CRP) had the degree 132. The subnetwork of nodes with degrees corresponding to the highest 
normalized rich-club coefficient (above 1.3) are highlighted in Fig. 4A and defined as the rich-club core. 
Comparison of rich-club core nodes to that of the strongest rich-club component of the network revealed 
the presence of six overlapping nodes shown in Fig. 4B.

Comparison of rich-club components to non-rich-club components for frequency of encounter in 
the curated literature showed that the frequency of rich-club nodes was four-fold higher (Fig.  3C). In 
addition, members of the rich-club were found to span multiple pathophysiological pathways that pre-
dominantly included inflammatory and immunological response mechanisms summarized in Table 1.

Functional and Topological Modules in Brain Ischemia Interactome. A full visualization of 
the curated BII involves massive interaction data that is not amenable to humane analysis (shown in 
Fig. 4A). Clustering the interactome to show interactions among clusters of proteins allows for simpler 
visualization and analysis of the interactions among prominent topological modules within the BII. The 
use of Markov Clustering Algorithm (MCL) identified 16 distinct modules with size five or more nodes 
within the BII. Figure 5A shows a reduced form of the interactome abstracted as interactions between 
major MCL modules. Functional annotation of enriched GO biological processes in each cluster is sum-
marized in Fig. 5B and shows that these topological modules are also functionally distinct, each enriched 
for a specific pathophysiological pathway. Analysis of the degree of each module showed that modules 
5, 14 and 16 are the most central modules. These modules are enriched for inflammatory response, 
regulation of cell death and glutamate receptor signaling and serve as a core highway that interconnects 
multiple pathological and homeostatic cell responses that occur after cerebral ischemia.

Estrogen: a Pleiotropic Effect in Stroke Treatment. In the last step, we used the findings of 
the network analysis as a screening effect for potential therapeutics. Analysis of protein-drug interac-
tions, performed through STITCH (Search Tool for Interactions of Chemicals)16 and GeneCodis (Gene 

Figure 1. Functional annotation of brain ischemia interactome proteins. (A) Functional annotation of 
BII proteins by tissue expression reveals a predominant expression in brain tissue followed by liver tissue. 
This finding is anticipated given the fact that stroke is a disease of brain tissue that also involves systemic 
response mechanisms. Blue bars indicate the number of genes per annotation category enriched in BII 
with less than 1% FDR. (B) Functional annotation of BII proteins by cellular components reveals that the 
majority of the proteins are present in the extracellular space and plasma membrane compared to cytosol 
and cellular fractions indicating that the majority of pathophysiological events after stroke occur on and 
around the cell surface. Blue bars indicate the number of genes per annotation category enriched in BII with 
less than 1% FDR. (C) Clustering of enriched GO biological processes shows that inflammatory processes 
were the most enriched biological processes followed by homeostatic mechanisms, and then response to 
estradiol and regulation of cell death. Red bars show the enrichment score calculated through functional 
annotation clustering in DAVID. Blue bars show the number of genes for each functional annotation.



www.nature.com/scientificreports/

4Scientific RepoRts | 5:13513 | DOi: 10.1038/srep13513

Figure 2. Venn Diagram of the distribution of BII proteins on different significantly enriched KEGG 
pathways. (A) Pathways with p-value less than 10^–12 are included. Complement and coagulation cascade 
(CCC) is the most enriched pathway and together with calcium signaling and MAPK signaling pathways 
form the three most significant pathways in our BII. Notably, Complement and Coagulation Pathway has 
little overlap in terms of components (4.4%) with other pathways compared to the latter two major pathways 
(22% and 48%). (B) Protein -protein interactions among the three most prominent pathways in the network. 
White dots indicate a node (protein) and edges indicate interactions. Red edges denote interactions that 
involve the CCC. Other edges are colored green. Despite the minimal intersection in terms of components 
between the CCC and other pathways, this cascade is still heavily interconnected with other prominent 
pathways in the network.
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Figure 3. Properties of the BII Network. (A) Power-law distribution curve of the BII network shows a 
negative correlation between node frequency (vertical axis) and node-specific degree (horizontal axis). 
This indicates that there are low frequency of nodes with higher degree in the network (hubs) and high 
frequency of low degree nodes (non-hubs). (B) Example of a power-law network compared to random 
network. Circles denote nodes in the network, red circles denote hub nodes, and blue circles denote non-
hub nodes. (C) Identification of small-world organization within the BII. Clustering coefficient of BII 
network was significantly higher than that of randomly generated comparable networks (n= 100). The 
small-world coefficient was 8.5 indicating the presence of a small world organization. One-sample t-test; 
***p-value <  0.0001. (D) Raw rich-club coefficient of our network (blue) and random network (red) plotted 
against the left vertical axis. Normalized rich-club coefficient for the network (green) plotted against the 
right vertical axis. The shaded region indicates the range of degrees over which a rich-club organization is 
present (degree 40–180; peak at degree 132). The region of strongest rich-club component is also highlighted 
in red. Horizontal dashed lines correspond to unity values of 1 for both ϕ  and ρ . (E) Nodes constituting 
the rich-club were significantly more studied (higher frequency of occurrence) in the curated literature than 
nods outside the rich club. Bars =  mean + /−  SEM. ***p <  0.0001.
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Figure 4. The core of BII network rich-club. (A) Network of brain ischemic interactome (BII) revealing 
the core of the rich-club (red box) and CRP as the center of the rich club. Only the core of the rich-
club (subnetwork of nodes with degrees corresponding to the peak of normalized rich-club coefficient) 
is highlighted for illustrative purposes. Circles denote the protein nodes. Red edges label interactions are 
among rich-club proteins while grey edges label other interactions. Width of the edge maps the combined 
score of evidence for each interaction as per STRING database. The core of the rich-club shown in the 
square shows the dense interactions among the rich-club proteins. (B) Distribution of the BII nodes among 
the rich-club core and the strongest rich-club component.
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Annotation Co-occurrence Discovery)17, revealed estrogen as the most enriched chemical therapeutic 
within our BII (Fig. 6A). Targets of estrogen within our BII are shown in Fig. 6D and include up to 15% 
of the nodes in the network. Estrogen was also found to preferentially target nodes within the rich-club 
(53% of total rich-club components) which was reflected by a significant enrichment on Fischer Exact 
t-test (Fig.  6C). Eventually, estrogen targets were found to have significantly higher degrees compared 
to estrogen non-targets (Fig. 5B). In addition estrogen was found to selectively target the three central 
pathological modules in the network (96% of estrogen targets) that include apoptosis, inflammatory 
response and glutamate excitotoxicity. Besides estrogen, other chemical compounds that have similar 
pleiotropic effect (beneficial or harmful) on targeting components of the BII are shown in Fig. 6A and 
include nitric oxide (and its donor l-arginine), ATP, tacrolimus, glucocorticoids and others.

Discussion
The main findings of this study are the detection of a rich-club organization within the brain ischemia 
protein interaction network and the use of network analysis to identify prominent interacting pathways 
in disease pathophysiology. As a topological measure, rich-club organization of a network occurs when 
nodes with high degrees are heavily interconnected compared to nodes with lower degrees. A rich-club 
organization in the context of a disease-related protein interaction network indicates the presence of 
a pathological powerhouse that includes the most influential components on the structure of the sys-
tem. Those rich-club components would serve as the primary targets for therapeutic intervention or 

KEGG Pathway Gene Count P-Value

Chemokine signaling pathway 42 3.2E-19

Cytokine-cytokine receptor interaction 46 1.1E-16

Toll-like receptor signaling pathway 29 3.7E-16

Apoptosis 26 6.8E-15

Focal adhesion 37 6.1E-14

ErbB signaling pathway 24 6.3E-13

Neurotrophin signaling pathway 28 9.0E-13

GnRH signaling pathway 25 1.2E-12

T cell receptor signaling pathway 26 1.5E-12

Fc epsilon RI signaling pathway 22 4.6E-12

NOD-like receptor signaling pathway 19 4.1E-11

VEGF signaling pathway 20 1.6E-10

Jak-STAT signaling pathway 28 2.2E-10

Calcium signaling pathway 29 8.9E-10

Leukocyte transendothelial migration 23 3.1E-09

MAPK signaling pathway 35 5.3E-09

Adipocytokine signaling pathway 17 1.2E-08

Gap junction 19 2.4E-08

Phosphatidylinositol signaling system 17 5.5E-08

Aldosterone-regulated sodium reabsorption 13 7.5E-08

Progesterone-mediated oocyte maturation 18 8.6E-08

Complement and coagulation cascades 16 1.4E-07

Melanogenesis 19 1.4E-07

mTOR signaling pathway 14 1.7E-07

Natural killer cell mediated cytotoxicity 21 6.9E-07

Long-term depression 14 5.3E-06

Fc gamma R-mediated phagocytosis 16 9.8E-06

Long-term potentiation 13 2.5E-05

RIG-I-like receptor signaling pathway 13 3.9E-05

Insulin signaling pathway 17 1.8E-04

Table 1.  KEGG pathways significantly enriched in the rich-club sub-network. Modified Fisher Exact 
P-Value used here was calculated through DAVID annotation tool. Pathways with a p-value less than 0.001 
are displayed.
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as putative prognostic biomarkers. C-reactive protein (CRP), cytokines and chemokines (CCR5, IL10, 
IL1B, IL2), growth factors (BDNF, FGF2) cell signaling molecules and transcription factors (e.g. STAT1, 
MAPK3/8/14, PPARG, PIK3CG) were among the central hubs in the network that formed the rich-club 
(Fig. 4). Our findings that the rich-club covers multiple pathogenic pathways confirm previous literature 
that a multitude of pathophysiological mechanisms come into play after ischemic stroke and determine 
the functional outcome4,5,18,19. We further demonstrate using network analysis of the BII that those dif-
ferent pathogenic mechanisms communicate using a core of hub proteins to shape the overall outcome 
in ischemic stroke (Table 1). Although the identified rich-club is a novel finding of this paper, the fact 
that rich-club proteins were also more frequently reported in the literature indicates that research was 
independently centered on this rich-club prior to our discovery. Our findings are independent from 
literature since the frequency of occurrence for each protein was not included in network analysis to 
avoid literature bias in our study.

Few reports had previously investigated the presence of rich-club organization in protein interaction 
networks9,20–23. For instance, McAuley et al. studied the protein interaction network of Saccharomyces 
cerevisiae and found that there is no rich-club organization. Their finding indicates that proteins in the 
system of the studied yeast have modular function not centered on a high-capacity hub center. However, 
previously studied protein interaction networks still exhibit a similar power-law degree distribution and 
small-world organization as seen in the BII network24,25. In a different setting, a rich-club organization 
was recently discovered in the network of the brain connectome by the work of Sporns and colleagues 

Figure 5. Identification of modules within the BII using Markov Clustering Algorithm. (A) Visualization 
of the network of interactions among the 16 MCL modules reveals that modules 5, 14 and 16 are the most 
central modules. Node color reflects the degree centrality measure and edge width denotes the number of 
connections among members of respective modules. (B) Functional annotation of GO biological processes 
predominantly enriched in each pathway showing multiple pathways interacting together in the context 
of brain ischemia/reperfusion injury (n: number of nodes in each cluster, p-value for the significance of 
enrichment of respective GO biological process. Clustering shown in (3A&3B) provides a faithful abstraction 
of the large network of protein interactions and emphasizes minor contributors that are otherwise masked in 
the full network analysis.
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and is thought to provide a better understanding of complex neuronal connectivity in the brain using 
data from multiple imaging techniques. The discovered rich-club organization in the brain connectome 
was then studied for variability during development and disease8,26.

Among the multiple interacting pathways after cerebral ischemia, the complement and coagulation 
cascade (CCC) was the most enriched pathway in the BII. Complement and coagulation proteins are two 
proteolytic cascades of the innate immune system and can cross-activate one another27,28. Both pathways 
are central to both ischemia (endothelial activation and formation of clot) and reperfusion (dissolution 
of clot and binding of complement components) and have been previously shown to be amongst the 
first players after ischemic stroke3,15,18. In addition, CRP, a component of the CCC pathways was among 
the most significant core of the rich-club. The fact that the center of the rich-club, CRP, as well as other 
components are recognition molecules and acute-phase reactants indicates that the rich-club is activated 
first and then it stimulates a diverse network of other interacting partners leading to the overall stroke 
pathogenic network. This finding supports the previously reported early role of the CCC pathway in 
initiating and exacerbating injury after stroke onset, and is in line with the current evidence on the role 
of CRP and the CCC pathway in stroke pathogenesis3,15,18. Previous reports have shown that CRP binds 
exposed phosphocline on damaged or stressed cells and mediate activation of C1q, the initiator com-
ponent of the classical complement pathway29. Similarly, other components of the complement pathway 
serve at the recognition front for cell stress and injury secondary to activation by newly expressed surface 
antigens on ischemic cells and binding or by binding of natural IgM antibodies15. Prior to this study, 

Figure 6. Estrogen targets within the BII showing that estrogen preferentially targets components of the 
rich-club. (A) Enrichment scores for the different drugs and chemicals that target the network and the rich-
club. Black bars show enrichment scores for targets in the network. Grey bars show enrichment scores for 
targets in the rich-club. (B) Mean degree of estrogen targets is significantly higher than estrogen non-targets 
(Bars =  mean + /−  SEM. *p <  0.0001). (C) Distribution of estrogen targets and non-targets within the entire 
BII network and the rich-club revealing a preference of estrogen to target rich-club components. Enrichment 
of estrogen targets in the rich-club was assessed by Fischer exact t-test *p <  0.0001. Bars =  mean + /−  SEM. 
(D) Different targets of estrogen among the BII. Nodes other than estrogen are encoded by color (denoting 
frequency of occurrence in literature) and size (denoting degree in the BII network).
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the complement system was hypothesized to serve a hub-like position in inflammatory and homeostatic 
mechanisms30. Eventually, our findings have quantitatively confirmed the role of the CCC pathway in 
early recognition of injury and activation of consequent pathways. In addition, the central and early role 
of CRP in ischemic stroke pathogenesis may explain why CRP serves as an early independent prognostic 
marker of recovery and mortality after ischemic stroke31–36, and why CRP injection increases cerebral 
infarct in experimental stroke37. Moreover, the coagulation pathway, the other branch of the CCC, is also 
a major contributor to early response to infract through proteolytic activation of the complement system 
and other pathways as well as through thrombolysis and micro-emboli formation.

Our analysis of the modular organization of the entire BII revealed that despite the central role of 
the CCC pathway, other prominent pathophysiological pathways are the major integrative core of the 
pathophysiological processes including apoptosis, inflammation, glutamate excitotoxicity. These three 
pathways were enriched in the three most central modules in the network and were heavily intercon-
nected amongst one another and with other modules in the network. This finding provides supporting 
evidence for the current stroke pathogenesis model that includes inflammation, cell death and excitotox-
icity as the three hallmarks of brain ischemia18. In addition to the core modules in the BII, the presence 
of diverse pathophysiological processes indicates that regardless of how secondary injury after stroke is 
initiated, the spectrum of pathophysiological processes involved are more complex and diverse requiring 
a multi-target intervention that can reduce the pathogenic activity of the rich-club powerhouse. However, 
such multi-target intervention would specifically benefit from the analysis of modules within the net-
work through preferentially targeting modules that contribute to pathological effects (such as Glutamate 
excitotoxicity, apoptosis, and inflammation) versus homeostatic and reparatory modules (such as axon 
guidance, cellular respiration and cellular homeostasis) (Fig. 5B).

Through the integration of data from drug-protein interaction databases, estrogen was detected as 
intervention with most enriched targets within the network compared to other drugs screened in this 
study. Estrogen targets were also preferentially enriched within the rich-club and specifically targets the 
central pathological modules of BII, a finding that comes in accordance with accumulating preclini-
cal evidence on the neuro-protective role of estrogen38–41. Through both its genomic and non-genomic 
effects, estrogen is believed to be the reason behind the sex differences in vulnerability and outcome of 
stroke as women are more protected prior to menopause40,42,43.

Despite that, estrogen has failed to provide any therapeutic benefit in trials on post-menopausal 
(PMN) women44. However, this effect should not challenge the predicted neuroprotective effects of 
estrogen by preclinical work and trials on perimenopausal women45. In fact, trials on PMN estrogen 
replacement in the context of stroke suffers from mistranslation38,41. Given the data presented in this 
report, we recommend that estrogen treatment should be better exploited in the field of stroke and sug-
gest that the exploitation of the curated network will help better explain the molecular effects of estrogen 
and the potential strategies that enhance its efficacy. Adverse outcomes after estrogen treatment relate 
to the inappropriate time, dose and target population of treatment. In fact, the impact of estrogen on 
stroke recovery should be assessed in the correct system-level window of estrogen efficacy, i.e. prior to 
the aging of estrogen response factors. The loss of estrogen efficacy in PMN women is a phenomenon 
possibly secondary to the aging and changes of estrogen responsive signaling molecules that occurs 
after menopause. One example of such elements is Growth Hormone/Somatomedin C (IGF-1) axis that 
exhibits significant age-related changes in PMN women often referred to as “somatopause”41. Not sur-
prisingly, our analysis showed that IGF-1 is a prominent component of the rich-club and a high degree 
target for estrogen in BII. A potential future comparison of PMN-changes related interactome with the 
current BII may reveal significant pathophysiological mechanisms behind estrogen’s deleterious effects 
in the post-menopausal period.

Although we have focused our discussion on estrogen, the most enriched drug in the network, other 
drugs were found to exhibit pleotropic influence on the rich-club of BII, yet such pleiotropic effect may 
not necessarily mean a perfect therapeutic intervention since influencing the rich-club may affect both 
reparatory and pathogenic mechanisms. Interestingly, drugs with targets enriched in our rich-club are 
currently tested for efficacy in stroke trials which emphasizes the utility of our tool to extract valid infor-
mation from mass literature. One other example from our analysis is nitric oxide (NO) and its donor 
l-arginine whose targets were significantly enriched within the rich-club; however, till now there is no 
clear evidence on the therapeutic effect of NO donors on stroke. A possible answer to this may come 
from the recently completed Efficacy of Nitric Oxide in Stroke (ENOS) Trial46.

Grouped with the previous literature on stroke pathophysiology3,15,18, the findings suggest that acute 
stroke therapy may benefit from CCC pathway interruption through thrombolysis and inhibition of 
damage-associated signaling molecules of the immune system. This finding is in line with the current 
standard of care for acute stroke patients involving a rapid infusion of thrombolytic t-PA; yet, further 
investigation of efficacy and safety of immune-modulatory interventions in preventing exacerbation of 
early injury is still required. The properties of the rich-club in the BII have also revealed that diverse 
pathological pathways might come into play after the onset of ischemia and that drugs with pleiotropic 
effects are recommended to be considered. Here, we report several pleiotropic compounds that act on 
the rich-club and are candidates for potential consideration in stroke therapy while focusing on estrogen, 
the drug with most enriched targets in the network.
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This study only included therapeutic candidates provided in the GeneCodis and STITCH databases. 
Future work will utilize the data provided in this network to assess the effect of other therapeutics as 
well as that of combination of interventions on the overall network properties. An ultimate aim will be 
to provide a tool for investigators to provide in-silico to probe the effects of potential and novel thera-
peutics on the overall disease pathophysiology as well as on specific pathways in disease pathogenesis. 
Another limitation of this study is the absence of data on the direction and type of change in protein 
levels and regulation as well as the timing of this change. Curation of this data is part of an ongoing effort 
to help perform more detailed predictions of the effects of different interventions and allow for in-silico 
replication of experimental scenarios relevant to stroke pathogenesis and therapy. In addition, curation 
of other disease interactomes will also allow cross-disease comparative analysis to provide candidate 
disease-specific biomarkers and understand common mechanisms of pathogenesis.

In conclusion, the approach used in this paper to curate preclinical and clinical data to better under-
stand complex diseases and form an in-silico screening tool for therapeutics is a novel introduction to 
bioinformatics research and may have future applications in a variety of other diseases.

Methods
Extraction of Target Dataset. Literature on brain ischemia was extracted from PubMed using the 
MeSH term (Brain Ischemia) and the search key (Stroke OR brain infarct* OR cerebral infarct* OR 
brain ischem* OR cerebral ischem* OR ischemic brain injury) as well as from references of reviews and 
extracted papers. Abstracts were first screened for relevance by two investigators using the title. Selected 
abstracts were then processed into an annotator tool (designed by authors) for extraction of protein and 
gene terms reported in association with ischemic stroke. Supplementary Figure 1 illustrates the selection 
process in details.

Text Annotation and Accession Mapping Tools. To extract protein and gene names and identifiers 
from the text, we adopted a semi-automatic annotation protocol using an in-house annotator to ensure 
specificity and sensitivity of capture. The tool (1) extracts different versions of gene and protein names 
from UniProt (Universal Protein Resource) and HGNC (HUGO Gene Nomenclature Committee) data-
bases, (2) checks the text of the extracted abstracts with the gene and protein terms extracted from the 
databases to annotate exact matches, and (3) detects and annotates close matches based on variations of 
the extracted terms defined by the authors in the form of computational rules (Supplementary Figure 2). 
The detected and annotated terms were extracted into separate datasets, each identified by the ID of the 
source paper. A human annotator with experience in both stroke and proteomics verified the captured 
terms and inspected the abstracts using the same annotator tool for additional terms. The original data-
base was updated with new terms introduced by the human annotator. Then, an in-house C# program 
communicated with the UniProt and HGNC to retrieve human orthologs of captured terms and their 
corresponding accessions. The frequency of each accession was calculated as the number of distinct 
reports mentioning the accession in question. Supplementary Figure 2 illustrates the details of the text 
annotation process leading to the captured set of accessions.

Functional Annotation and Interactome Data. The list of accessions retrieved from literature was 
functionally annotated using DAVID13 for GO cellular component, GO biological processes, KEGG path-
ways, tissue expression and the Genetic Association of Diseases database. DAVID is a tool that allows 
for identification of over-represented terms and categories in a subset of genes or proteins and identi-
fies enrichment scores for annotations. Protein-protein interactions (PPI) were obtained from STRING 
database that includes data on interacting proteins or genes within each species. Interactions among the 
list of curated accessions were retrieved using a threshold score of 0.411. The resulting network included 
17,425 binding interactions among 886 proteins.

PPI data obtained from STRING was then mapped into the full Brain Ischemia interactome using 
Cytoscape 3.1.111,47, a graph and network analysis and visualization tool. In addition, data on protein-drug 
interaction was retrieved from GeneCodis and STITCH. GeneCodis provides enrichment analysis of 
gene-drug interactions within a network using PharmGKB database17 while STITCH allows for analysis 
of chemical-gene interactions within a network using a dataset of 3 million chemical agents16. Drug or 
chemical targets were defined in our study as those proteins and genes with which the drug or chemical 
interacts and affects regulation. Supplementary Table 2 describes the different tools and resources used 
in the functional annotation process.

Interactome Graph Analysis. Graph Measures. Examination of the topology of the BII network 
using graph theory was performed through the Systems Biology and Evolution MATLAB Toolbox 
(SBEToolbox) and Cytoscape47,48. Characteristic measures of network organization were computed 
including node-specific degree k, clustering coefficient, path length, betweenness centrality, and modu-
larity. The power-law degree distributions and adjacency matrices of the networks were generated using 
MATLAB (Mathworks, R2013a).

Rich-Club Analysis. The emphasis of this work is the detection of a rich-club organization among the 
nodes within the network of the BII. A rich club is a set of high-degree nodes that are more densely 
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interconnected than predicted by the node degrees alone20. A rich-club coefficient ϕ (k) is computed over 
the range of degrees in the network as previously described by Colizza et al.20. For a given degree distri-
bution {k1, k2, …, kn}, rich-club coefficient for each degree k is calculated as the number of edges among 
nodes with degrees higher than k divided by the maximum possible number of edges among those nodes:
ϕ (k) =  2*E>k/((N>k)*(N>k −  1)), where N>k is the number of nodes with a degree higher than k, and 

E>k is the number of edges among those nodes.
To calculate normalized rich-club coefficient, we generated 10,000 random networks with the same 

degree distribution as the network of interest as described by Viger and Latapy49. The average of rich-club 
coefficients of the random networks ϕ random(k) is calculated, and the normalized rich club is computed as:

k k krandomρ ( ) = ϕ( )/ϕ ( ).

The normalized rich-club coefficient was calculated from the lowest degree to the second highest 
degree encountered in the BII. When the normalized rich-club coefficient ρ (k) is greater than 1, it indi-
cates the rich-club organization in the network is significant and cannot be explained by the degree 
distribution of the network alone20,50.

Clustering. Markov Clustering of BII network was performed through MATLAB SBEToolbox48 follow-
ing the previously described Markov clustering (MCL) algorithm51. Prominent modules were visualized 
through Cytoscape. Functional annotation of enriched GO biological processes within each module was 
performed in DAVID.

Statistics. Statistical analyses were performed through GraphPad Prism 6 (GraphPad Software, Inc.). 
Numerical data and histograms were expressed as the mean ±  S.D. Two-tailed Student’s t-test was used 
to compare the difference in frequency of rich-club vs. non-rich –club nodes as well as to compare the 
rich-club coefficients of estrogen targets vs. non targets. Fischer exact t-test was used to calculate p-value 
for enrichment of annotation terms and drug targets between the network and the rich-club.
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