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Integrated proteomics and network analysis
identifies protein hubs and network
alterations in Alzheimer’s disease
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Abstract

Although the genetic causes for several rare, familial forms of Alzheimer’s disease (AD) have been identified, the
etiology of the sporadic form of AD remains unclear. Here, we report a systems-level study of disease-associated
proteome changes in human frontal cortex of sporadic AD patients using an integrated approach that combines
mass spectrometry-based quantitative proteomics, differential expression analysis, and co-expression network
analysis. Our analyses of 16 human brain tissues from AD patients and age-matched controls showed organization
of the cortical proteome into a network of 24 biologically meaningful modules of co-expressed proteins. Of these, 5
modules are positively correlated to AD phenotypes with hub proteins that are up-regulated in AD, and 6 modules
are negatively correlated to AD phenotypes with hub proteins that are down-regulated in AD. Our study generated
a molecular blueprint of altered protein networks in AD brain and uncovered the dysregulation of multiple
pathways and processes in AD brain, including altered proteostasis, RNA homeostasis, immune response,
neuroinflammation, synaptic transmission, vesicular transport, cell signaling, cellular metabolism, lipid homeostasis,
mitochondrial dynamics and function, cytoskeleton organization, and myelin-axon interactions. Our findings provide
new insights into AD pathogenesis and suggest novel candidates for future diagnostic and therapeutic
development.
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Introduction
Alzheimer’s disease (AD) is the most common neurode-
generative disorder and the leading cause of dementia in
the elderly [53, 70]. Neuropathologically, AD is charac-
terized by the presence of amyloid plaques and neurofib-
rillary tangles in the brain. The vast majority (95%) of
AD cases are sporadic, and the remaining 5% are familial
AD [70]. The causative genetic defects for several famil-
ial forms of AD have been identified, however, the eti-
ology of sporadic AD remains unknown. The lack of
effective means to prevent or treat AD and the failure of
recent clinical trials [23, 36, 74] emphasize the need for
better understanding AD pathogenic mechanisms to find
novel targets for AD therapeutic intervention.

Human postmortem AD brain tissues provide a
unique and valuable resource for discovery research to
identify specific molecular abnormalities and disease
processes associated with sporadic AD. We and others
have previously used two-dimensional gel electrophor-
esis (2-DE)-based proteomics to study differential pro-
tein expression in AD versus control brains [17–19, 41].
Although these studies have found some proteins with
altered expression in AD [17–19, 41], a limitation of 2-
DE proteomics is its relatively low resolution, which
limits the number of proteins that can be identified
using this approach [6, 30, 79]. Recent advances in high-
resolution, high-mass-accuracy mass spectrometry-based
proteomics technologies provide powerful, new tools for
in-depth profiling and quantitative analysis of protein
expression in complex biological samples such as human
brain tissues [21, 69].
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With the advanced proteomics technologies enabling
simultaneous, quantitative measurement of expression
profiles for thousands of proteins, how to analyze such
large proteomic data sets at the systems level becomes a
major challenge. Weighted gene co-expression network
analysis (WGCNA) is a systems biology approach origin-
ally developed for analysis of high-throughput transcrip-
tomic data to provide an unbiased systems-level
organization of the transcriptome into a network of
biologically meaningful modules of co-expressed genes
[45, 62, 92]. The use of WGCNA in studying tran-
scriptome changes in a number of human diseases
has led to the identification of disease-associated network
modules and hub genes, which are the most highly con-
nected genes that are key determinants of module function
and represent important molecular targets for understand-
ing and treating diseases [12, 27, 33, 46, 54, 82, 88]. Recent
studies have begun to show that WGCNA can also be
used in analyzing large proteomic data sets to gain
systems-level insights into disease-associated prote-
ome changes [37, 71, 80, 93].
In the present study, we performed large-scale, unbiased

proteomic analyses of human AD and control frontal cor-
tex tissues to determine disease-associated brain proteome
changes by using a liquid chromatography-tandem mass
spectrometry (LC-MS/MS)-based, label-free quantitative
proteomic approach. In addition to differential expression
analysis to identify brain proteins with significantly altered
abundance in AD, we performed WGCNA-based
systems-level analysis of our entire proteomic data set and
identified a network of disease-associated protein modules
and intra-modular hub proteins in AD brain. Our study
reveals dysregulation of multiple pathways and processes
in AD brain and provides novel insights into the patho-
genic mechanisms of sporadic AD.

Materials and methods
Human brain tissues
Postmortem frontal cortex tissues from neuropathologi-
cally confirmed AD cases and age-matched control sub-
jects were obtained from Emory Center for
Neurodegenerative Disease Brain Bank. Amyloid plaque
pathology was assessed using the Consortium to Estab-
lish a Registry for Alzheimer’s Disease (CERAD) proto-
col for neuritic plaque scoring [57], and neurofibrillary
tangle pathology was assessed using the Braak staging
system [11]. All AD cases meet the criteria of high level
of AD neuropathological change based on the ABC
scores according to the National Institute on Aging-
Alzheimer’s Association guidelines for the neuropatho-
logical assessment of Alzheimer’s disease [58]. ApoE ge-
notypes were determined as previously described [29].
Control subjects had no known history of neurological
disease and showed no significant neurodegenerative

changes at autopsy. Clinical and neuropathological data
of all cases, including age, gender, disease status, age at
onset, amyloid plaque pathology, neurofibrillary tangle
pathology, ApoE genotype, and postmortem interval, are
provided in Additional file 1: Table S1. Power analysis
showed that the sample size used in this study (the total
number of subjects = 16; n = 8 in each AD or control
group) has > 80% power at a two-sided Type I error rate
of 5% to detect effect size of > 1.6.

Brain tissue homogenization and protein extraction
Approximately 25 mg of human frontal cortex tissue
from each AD or control case was homogenized as de-
scribed [87] in 150 μl of lysis buffer containing 4% SDS,
100 mM DTT, and 100 mM Tris–HCl, pH 7.6, followed
by incubation at 95 °C for 5 min. After cooling to room
temperature, the homogenate was centrifuged at 16,000
x g for 5 min to obtain supernatant containing extracted
proteins. Because the presence of SDS efficiently inacti-
vates protease activity [87], no protease inhibitors were
included during the brain tissue homogenization and
protein extraction process. Protein concentrations of
brain protein extracts were measured by UV spectrom-
etry at 280 nm with NanoDrop spectrophotometer
(ThermoFisher) using an extinction coefficient of 1.1 for
0.1% (g/L) solution [87].

Filter-aided sample preparation (FASP)
Human brain protein extracts were processed by using
the FASP protocol as described [87]. Briefly, 30 μl of
each protein extract was mixed with 200 μl of 8 M urea
in 100 mM Tris-HCl, pH 8.5 (UA solution), and the
mixture was transferred into a Microcon 30-kDa centri-
fugal filter unit (MRCF0R030, Merck) and centrifuged at
14,000 x g for 15 min. Cysteine residues were alkylated
by adding 100 μl of UA solution containing 50 mM
iodoacetamide to the filter unit and incubation in dark-
ness for 30 min at room temperature. After centrifuga-
tion at 14,000 x g for 10 min, 100 μl of UA solution was
added to the filter unit and centrifuged again. This UA
washing step was repeated twice, and the filter unit was
then washed with 100 μl of 50 mM NH4HCO3 two
times. Next, protein digestion was carried out by adding
40 μl of 50 mM NH4HCO3 solution containing
sequencing-grade trypsin (enzyme to protein ratio 1:100)
in the filter unit and incubation at 37 °C for 12 h.
Digested peptides were eluted by adding 100 μl of
50 mM NH4HCO3 and collected by centrifugation at
14,000 x g for 10 min as a filtrate, and this step was re-
peated five times. The collected peptides were further
purified by using a self-packed C18 ZipTip micro-
column. The final concentration of peptides was deter-
mined by UV-spectrometry using an extinction
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coefficient of 1.1 for 0.1% (g/L) solution at 280 nm [87].
All peptides were dried under vacuum at room
temperature.

Liquid chromatography-tandem mass spectrometry
LC-MS/MS proteomic analyses were performed using
the LTQ-Orbitrap Elite mass spectrometer (Thermo-
Fisher) equipped with an EASY-Spray source and a
nano-LC UltiMate 3000 high-performance liquid chro-
matography system (ThermoFisher). Human brain-
derived peptides (2 μg) from each sample were separated
by online reversed phase (RP)-HPLC fractionation on an
EASY-Spray PepMap C18 column (length, 50 cm; par-
ticle size, 2 μm; pore size, 100 Å; ThermoFisher), using a
240-min gradient from 2% to 50% solvent B at a flow
rate of 300 nL/min (mobile phase A, 1.95% acetonitrile,
97.95% H2O, 0.1% formic acid; mobile phase B, 79.95%
acetonitrile, 19.95% H2O, 0.1% formic acid). A full-scan
survey MS experiment (m/z range from 375 to 1600;
automatic gain control target, 1,000,000 ions; resolution
at 400 m/z, 60,000; maximum ion accumulation time,
50 ms) was performed using the Orbitrap mass analyzer.
The ten most intense ions were selected and fragmented
in the LTQ mass spectrometer (automatic gain control
target value, 10,000) via collision-induced dissociation
(CID) with maximum ion accumulation time of 100 ms.
Raw data were analyzed by using Proteome Discoverer
1.4 (ThermoFisher) to search against the human Uniprot
TrEMBL database (2016_02 Release, 20,198 reviewed
entries). The modifications were set as follows: static
modification of carbamidomethyl (Cys, + 57.0214 Da);
dynamic modification of deamination (Asn, +
0.9840 Da), oxidation (Met, + 15.9949 Da), and acetyl-
ation (Lys, + 42.0106 Da). Trypsin was selected as the
proteolytic enzyme, and up to two missed cleavages were
allowed. The mass tolerance was set to 20 ppm for the
precursor ions and 0.5 Da for the fragment ions. The
false discovery rate (FDR) for peptide and protein identi-
fication was set to 1%.

Label-free protein quantification
Label-free protein quantitative analysis was performed
by using Proteome Discoverer 1.4 to quantify precursor
ion peak area (i.e., area under the curve), which is
linearly proportional to protein abundance [21]. A limi-
tation of “shotgun” label-free quantitative proteomics is
that protein identification or abundance data can be
missing in some samples [35]. Therefore, we restricted
quantitative analysis to the proteins with complete data
in all 16 brain samples, excluding proteins with missing
data in any sample. In each sample, relative protein
abundance for each protein was determined by normal-
izing the peak area of the protein to the total peak area
of all proteins in the sample as described [86]. To

account for technical variability present in filter-aided
sample preparation and LC-MS/MS analyses, each pro-
tein extract was spiked with bovine alpha-2-HS-glyco-
protein (fetuin) at 0.1% (μg/μg total protein) as an
internal control. The relative protein abundances deter-
mined by normalizing each protein peak area to that of
the spike-in fetuin protein were similar to the abun-
dances determined by normalizing to the total protein
peak area, confirming the validity of the ‘Total Protein
Approach’-based protein quantification analysis [86].
The technical variation of the FASP sample processing
and LC-MS/MS quantification system, estimated from
the relative abundances of the spike-in fetuin protein
after normalization of its peak area to the total protein
peak area in eight control brain samples, had a coeffi-
cient of variation (CV) of 6%.

Differential expression analysis
Differentially expressed proteins in AD versus control
were identified by using unpaired two-tailed Student’s t
test with the thresholds of ±1.3-fold change over the con-
trol (i.e., AD/control ratio > 1.3 or < 0.77) and a P value <
0.05. The q values were calculated by using the q value R
package [76] to correct for multiple comparisons and esti-
mate the false discovery rates [77]. Significantly altered
proteins in AD with corresponding P values and q values
are provided in Additional file 2: Table S2.

Hierarchical clustering analysis
Unsupervised hierarchical clustering of individual clin-
ical cases and the identified differentially expressed pro-
teins was performed based on their relative protein
abundances in each samples by using Heatmapper on-
line tool with an average linkage clustering and Kendall’s
tau distance measurement method [4]. Protein expres-
sion heat map with dendrograms showing clustering re-
sults were generated and visualized by the Heatmapper.

Protein co-expression network analysis
Protein co-expression network analysis was performed
with the R package WGCNA as described [45] using the
entire proteomic data set of all identified proteins with
no missing values. Briefly, a correlation matrix for all
pair-wise correlations of proteins across all samples was
generated and then transformed into a matrix of con-
nection strengths, i.e., a weighted adjacency matrix, as
described [45, 92] with a soft threshold power β = 16.
The connection strengths were then used to calculate
topological overlap (TO), a robust, pairwise measure
which indicates two proteins’ similarity based on their
co-expression relationships with all other proteins in the
network [90]. Proteins were hierarchically clustered
using 1 −TO as the distance measure to generate a clus-
ter dendrogram, and modules of proteins with similar
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co-expression relationships were identified by using a
dynamic tree-cutting algorithm [47] with the following
parameters: minimal module size = 23, deepSplit = 4, and
merge cut height = 0.07. For each module, a module
eigenprotein was defined as the first principal compo-
nent of the module which is a weighted summary of pro-
tein expression in the module and explains the maximal
possible variability for all proteins within the module
[32]. Module membership (kME) was determined by cal-
culating Pearson correlation between each protein and
each module eigenprotein and the corresponding P-
values [32]. Proteins were (re)assigned to the module for
which they had the highest module membership with a
reassignment threshold of P < 0.05. Module-trait rela-
tionships were determined by using the WGCNA
package [45] to calculate the biweight midcorrelations
between each module eigenprotein and a clinical or
neuropathological trait and the corresponding P-
values. Module networks were graphically depicted by
using the igraph package in R [61].

Gene ontology enrichment analysis and functional
annotation of modules and proteins
Gene ontology (GO) enrichment analysis of the gen-
erated datasets of differentially expressed proteins
and WGCNA module proteins was performed using
MetaCore bioinformatics software (Version 6.29,
build 68,613; https://portal.genego.com/). The total
list of all proteins identified in human frontal cortex
samples was used as the background. The hypergeo-
metric test after the Benjamini-Hochberg false dis-
covery rate (FDR) correction was used to assess
statistical significance. Enriched GO terms with FDR-
corrected P < 0.05 were considered statistically signifi-
cant. In addition to the use of functional annotation tools,
we also searched PubMed manually to gain insights into
the functions of the identified differentially expressed pro-
teins and WGCNA module proteins.

Western blot analysis
Human frontal cortex tissues from individual AD or
control cases were homogenized in SDS lysis buffer, and
protein extracts were subjected to SDS-PAGE. The pro-
teins were then transferred onto PVDF membranes
(EMD Millipore) and probed with anti-Smac antibody
(1:1000 dilution; Cell Signaling Technology), anti-STK39
antibody (1:1000 dilution; Cell Signaling Technology), or
anti-β-actin antibody (1:5000 dilution; EMD Millipore)
followed by horseradish-peroxidase-conjugated second-
ary antibodies (Jackson ImmunoResearch Laboratories)
and visualization using enhanced chemiluminescence as
described previously [48]. The expression levels of each
protein were quantified by measuring protein intensities
on immunoblot images using the Image J software

(National Institutes of Health) and normalized to the
corresponding level of β-actin in each sample. The nor-
malized protein abundances across AD and control cases
were compared by using unpaired two-tailed Student’s t
test, and P < 0.05 was considered statistically significant.

Results
Analysis of AD-associated proteome changes by quantitative
proteomics
To investigate brain proteome alterations associated
with sporadic AD, we analyzed brain samples from eight
clinically and neuropathologically characterized AD pa-
tients and eight age-matched control subjects
(Additional file 1: Table S1). Proteins were extracted
from the dorsolateral prefrontal cortex tissues of these
individuals by using the detergent sodium dodecyl sul-
fate (SDS) because it is the most effective reagent for
solubilizing tissues and cells to achieve complete extrac-
tion of proteins [87]. We used a recently developed,
filter-aided sample preparation (FASP) method [85, 87]
for detergent removal and protein digestion to obtain
high-purity peptides from the brain samples. Subsequent
LC-MS/MS proteomic analysis using the high-resolution
high-mass-accuracy LTQ-Orbitrap Elite mass spectrom-
eter identified a total of 39,819 distinct peptides, corre-
sponding to 6679 unique proteins. Due to stochastic
nature of “shotgun” label-free quantitative proteomics,
protein identification or abundance data are sometimes
missing in certain samples [35]. The proteins with miss-
ing data in any sample were excluded in our analysis,
resulting in the final quantification of 1968 proteins with
complete data across all 16 brain samples from AD and
control cases (Additional file 2: Table S2).

Differential expression analysis identifies proteins with
altered abundance in AD
We performed differential expression analysis of quanti-
tative proteomics data using the thresholds of ±1.3-fold
change in AD over the control (P < 0.05) and identified
487 differentially expressed proteins (262 up-regulated
proteins and 225 down-regulated proteins) in AD at
FDR < 0.11 (Fig. 1a and Additional file 2: Table S2). Un-
supervised hierarchical clustering analysis based on the
protein abundances in the 16 individual brain samples
showed that the identified differentially expressed pro-
teins can serve as a proteomic signature for distinguish-
ing AD versus control cases (Fig. 1b). The heat map
illustrated an overall reproducibility as well as individual
heterogeneity of protein expression profiles among dif-
ferent subjects within the AD or control group (Fig. 1b).
The list of the identified dysregulated proteins in AD

(Additional file 2: Table S2) includes a number of pro-
teins that have been previously shown by our group and
others to be differentially expressed in AD brain, such as
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Fig. 1 AD-associated brain proteome changes revealed by label-free quantitative proteomics. a Volcano plot displaying the distribution of all proteins
(n = 1968) with relative protein abundance (log2 AD/control ratio) plotted against its significance level (negative log10 P-value), showing significantly (P
< 0.05) increased (AD/control ratio > 1.3; Green) and decreased (AD/control ratio < 0.77; Red) proteins in AD. b Heat map representation of 16 individual
sample abundances for 487 significantly altered proteins after unsupervised hierarchical clustering, segregating samples into AD (left) and controls (CT;
right) and proteins into up-regulated (top) and down-regulated (bottom) proteins in AD. c-g Western blot analysis (c, e) and quantification (d, f, g) con-
firm the decreased expression of STK39 (c, d) and increased expression of Smac proteins (e-f) in AD versus control. Data represent mean ± SEM (error
bars; n = 8 biological repeats for AD or control group). *, P < 0.05; **, P < 0.01, unpaired two-tailed Student’s t test. Each experiment was re-
peated three times with similar results
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DJ-1, APOE, clusterin (CLU), and UCH-L1 [1, 17, 19, 55].
In addition, our proteomic analysis also identified 322
novel proteins that have not been previously reported as
differentially expressed in AD, such as serine/threonine
protein kinase 39 (STK39) and DIABLO/Smac
(Additional file 3: Table S3). To validate our proteomic re-
sults, we performed Western blot analysis of STK39 and
Smac expression in AD and control brains (Fig. 1c-g). We
found that, in accordance with the proteomic data (Add-
itional file 2: Table S2), STK39 protein level was signifi-
cantly decreased in AD versus control (Fig. 1c, d). STK39
is an important kinase that has been associated with
hypertension, Parkinson’s disease, and autism [50, 67, 84].
Our results indicate, for the first time, a link between
STK39 and AD. In addition, our Western blot analysis
also validated Smac, a key regulator of apoptosis [40], as
an up-regulated protein in AD brain (Fig. 1e-f). Together,
these results provide support for the robustness of our
label-free quantitative proteomic analysis.
Next, we performed gene ontology (GO) enrichment

analysis of the identified differentially expressed proteins
to gain insights into the cellular functions and biological

processes that are affected in AD brain (Fig. 2;
Additional file 4: Table S4). We found that down-
regulated proteins in AD were significantly enriched
with GO categories linking to ion transport, mitochon-
drial function, synaptic transmission, myelin sheath, cell-
cell adhesion, cytoskeleton organization, and endocyto-
sis, whereas up-regulated proteins in AD were overrep-
resented with GO terms associated with metabolic
process, immune response, cell-cell adhesion, exocytosis,
vesicle-mediated transport, response to oxidative stress,
translation, and regulation of apoptotic signaling (Fig. 2;
Additional file 4: Table S4).

Co-expression network analysis uncovers AD-associated
protein network alterations
To gain systems-level insights into the brain proteome
changes in AD, we performed protein co-expression net-
work analysis by using WGCNA, a data-driven network
approach which uses pairwise correlation relationships
of proteins and their topological overlap to organize the
proteome into a network of biologically meaningful
modules of co-expressed proteins [45, 90, 92]. We

Fig. 2 Gene ontology enrichment analysis of differentially expressed proteins in AD brain. GO biological process, cellular component, and molecular
function enrichment analyses of up-regulated (a-c) and down-regulated (d-f) proteins in AD were performed using MetaCore bioinformatics software.
Significantly enriched GO terms are shown with Benjamini-Hochberg FDR-corrected P-values

Zhang et al. Acta Neuropathologica Communications  (2018) 6:19 Page 6 of 19



applied WGCNA to our entire proteomic data set of all
proteins with no missing values (n = 1968 proteins) and
constructed a protein co-expression network from pro-
tein expression profiles across all AD and control sam-
ples. Our WGCNA analysis identified 24 network
modules of strongly co-expressed proteins (Fig. 3a;
Additional file 5: Table S5). These modules, color coded
according to the convention of WGCNA [45, 92], were
labeled M1 to M24 based on the module size, ranging
from the largest (M1: 223 proteins) to the smallest
(M24: 30 proteins) (Fig. 3b). We found that several mod-
ules were significantly enriched for brain-specific GO

categories, including mitochondria and synaptic trans-
mission (M4), neuron part (M6), nervous system devel-
opment (M7), myelin sheath and axonal organization
(M12), and action potential (M24), whereas other mod-
ules were associated with GO categories linked to
discrete cellular structures and functions, such as pro-
teostasis and RNA homeostasis (M1), metabolism and
lipid homeostasis (M2), cell morphogenesis (M3), mito-
chondria and cell adhesion (M5), hormone activity (M8),
membrane assembly (M9), ion and protein transport
(M10), signaling and cytoskeleton regulation (M11),
hydrolase activity (M13), ribosome (M14), immune

Fig. 3 Protein co-expression network analysis organizes the brain proteome into biologically meaningful modules. a WGCNA cluster dendrogram
generated by unsupervised hierarchical clustering of all proteins in the entire proteomic data set on the basis of topological overlap followed by
branch cutting reveals 24 network modules coded by different colors. b Protein co-expression modules were assigned M1 to M24 based on their
module size. Representative functional categories enriched in these modules are indicated below the graph
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response (M15), inflammatory response (M16), and
extracellular region (M17) (Fig. 3b; Additional file 6:
Table S6).
To identify disease-relevant modules associated with

AD phenotypic traits, we assessed the module-trait rela-
tionships by determining the biweight midcorrelations
between each module eigenprotein (the module repre-
sentative which summarizes protein expression profiles
in the module [32]) and various disease-related traits or
sample variables (Fig. 4). We identified 11 modules that
were significantly correlated with AD status, amyloid
plaque pathology (frontal cortex neuritic plaque

frequency), and/or neurofibrillary tangle pathology
(Braak stage), including 5 positive correlated modules
(M1, M2, M15, M16, and M19) and 6 negatively corre-
lated modules (M4, M5, M10, M11, M12, and M13).
None of the modules showed significant correlation with
age, gender, ApoE genotype, or postmortem interval
(Fig. 4), confirming that the identified AD-correlated
modules are not due to any of the potential confounding
factors. Our analysis showed that most of the positively
correlated modules (M1, M2, M15, and M16) had sig-
nificantly increased module expression levels in AD
(Fig. 5b), whereas most of the negatively correlated

Fig. 4 Identification of disease-relevant protein modules associated with AD phenotypic traits. Module-trait relationships were determined by
biweight midcorrelation between module eigenprotein expression and the indicated clinical or neuropathological feature. Correlation coefficients
are indicated on the top with corresponding P-values in brackets below. Significant positive correlations (cor > 0.50, P < 0.05) are highlighted in
Green, and significant negative correlations (cor < − 0.50, P < 0.05) are in Red. PMI, postmortem interval
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modules (M4, M5, M10, M11, and M13) had signifi-
cantly decreased module expression levels in AD
(Fig. 5c).
We then assessed the inter-modular relationships by

performing eigenprotein network analysis as described
[32, 44] to construct a higher-order meta-network based
on pairwise correlation relationships of module eigen-
proteins. The module eigenprotein meta-network
revealed the inter-modular connectivity of 24 co-
expression modules in brain proteome, showing a hier-
archical organization of highly interconnected modules
into meta-modules, i.e., groups of highly correlated
module eigenproteins (Fig. 5a). Interestingly, the eigen-
proteins of all modules positively correlated with AD
phenotypes (M1, M2, M15, M16, and M19) were clus-
tered in a single meta-module (Fig. 4 and Fig. 5a), sug-
gesting close relationships among the pathways and

processes associated with these positively correlated
modules. In addition, we identified a meta-module con-
taining eigenproteins from 5 out of the 6 modules nega-
tively correlated with AD phenotypes (M4, M5, M10,
M11, and M13), indicating that the corresponding path-
ways and processes for these negatively correlated mod-
ules may also be related.

AD-associated network modules and hub proteins reveal
multiple dysregulated pathways in AD brain
Highly connected hub nodes are central to a network’s
architecture and function [2, 7], and intramodular hub
proteins in disease-related WGCNA modules have
emerged as key targets for biomarker and therapeutic de-
velopment [12, 27, 33, 46, 54, 82, 88]. Intramodular hub
proteins can be identified by using module membership
(kME), a measure of intramodular connectivity [32, 46].

Fig. 5 Inter-modular relationships and module expression profiles of AD-related modules. a Module eigenprotein meta-network showing the
inter-modular relationships of the identified 24 protein co-expression modules. b Box plots showing module eigenprotein (ME) values in AD and
control (CT) cases for modules that are positively correlated with AD phenotypes. c Box plots showing ME values in AD and CT cases for modules
that are negatively correlated with AD phenotypes. Box plots depict the mean (horizontal bars) and variance (25th to 75th percentiles), and significance
(P-value) of differential ME expression in AD versus control was determined using unpaired two-tailed Student’s t test

Zhang et al. Acta Neuropathologica Communications  (2018) 6:19 Page 9 of 19



The top 10 highly connected hub proteins for each of the
identified AD-related modules are shown in the center of
network plots (Figs. 6 and 7). Unsupervised hierarchical
clustering analysis based on the hub protein expression
profiles showed that the identified top hub proteins serve
as a molecular signature to differentiate AD and control
cases (Fig. 8c). We found that the top hub proteins of the
modules with positive correlation to AD phenotypes were
often up-regulated in AD (Fig. 8a,c), whereas the top hub
proteins of the negative correlated modules were often
down-regulated in AD (Fig. 8b,c), consistent with the pro-
posed role of hub proteins as key drivers of protein co-

expression modules [32, 33]. We assessed the molecular
and functional characteristics of each AD-associated mod-
ule based on its top hub proteins and gene ontology en-
richment analysis of module proteins to gain insights into
the biological roles of AD-related modules (Additional
file 6: Table S6).
Our analyses revealed that M1, the largest module

positively correlated with AD phenotypes (Fig. 4), was
significantly enriched with GO categories and hub pro-
teins linked to pathways that control protein homeosta-
sis, or “proteostasis” (Fig. 6 and Additional file 6: Table
S6), including 11 protein translation machinery

Fig. 6 Network depiction of protein co-expression modules that are positively correlated with AD pathology. Nodes represent proteins and edges
(lines) indicate connections between the nodes, with a maximum of top 100 proteins and top 700 connections shown for each module. The size
of the nodes corresponds to the intramodular connectivity as measured by kME. The top 10 highly connected hub proteins are shown in the
center of each network plot. Proteins that are mentioned in the Results section are indicated. The complete list of proteins in each module and their
kME values are provided in Additional file 5: Table S5
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components (EIF2S2, EIF3A, EIF4A2, EIF4B, RPLP1,
RPL3, RPL10, RPS6, RPS7, RPS14, and RPS17) with 40S
ribosome subunit RPS7 as a top hub protein; 19 molecu-
lar chaperones and cochaperones (AHSA1, CDC37,
BAG5, CANX, DNAJA2, DNAJA3, DNAJC13, FKBP4,
ERO1A, GNB4, GANAB, PDIA3, PFDN5, PFDN6,
TBCD, CCT4/TCP1-delta, CCT5/TCP1-epsilon,
CCT6A/TCP1-zeta-1, and CLU) with Hsp70 cochaper-
one DNAJA2 as a top hub protein; and 11 proteasome
complex components (PSMA2, PSMC1, PSMC2,
PSMC4, PSMC6, PSMD1, PSMD12, PSMD13, PSMD14,
RAD23A, and RAD23B) with 26S proteasome regulatory
subunit PSMD1 as a top hub protein (Fig. 6 and

Additional file 5: Table S5). The overrepresentation of
the proteostasis machinery components in this AD-
related module supports the involvement of dysregulated
proteostasis in AD pathophysiology [43, 78, 89].
In addition to proteostasis, RNA homeostasis-related

proteins and pathways were also enriched in the M1
module, as demonstrated by the presence of 12 ribonu-
cleoproteins involved in RNA processing (HNRNPC,
HNRNPK, HNRNPL, ALYREF, GCN1L1, SSB, NPM1,
LUC7L3, TROVE2, EFTUD2, RUVBL1, and SNRPE)
with heterogeneous nuclear ribonucleoprotein K
(HNRNPK) as a top hub protein (Fig. 6 and Additional
file 5: Table S5). Our finding of HNRNPK, a major

Fig. 7 Network depiction of protein co-expression modules that are negatively correlated with AD pathology. Nodes represent proteins and edges
represent connections, with a maximum of top 100 proteins and top 700 connections shown for each module. The size of the nodes corresponds to
the intramodular connectivity as measured by kME. The top 10 highly connected hub proteins are shown in the middle of each network plot. Proteins
that are mentioned in the Results section are indicated. The complete list of proteins in each module and their kME values are provided in Additional
file 5: Table S5
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Fig. 8 Hub proteins of AD-related modules provide a molecular signature for differentiating AD and control cases. a Venn diagram showing the
overlap between the identified up-regulated proteins in AD and top intramodular hub proteins of co-expression modules with positive correlation
to AD phenotypes. b Venn diagram showing the overlap between the identified down-regulated proteins in AD and top intramodular hub proteins of
co-expression modules with negative correlation to AD phenotypes. c Heat map representing the expression profiles of 110 highly connected
intramodular hub proteins after unsupervised hierarchical clustering, showing clear separation of AD from control (CT) cases and positively correlated
module hub proteins from negatively correlated module hub proteins

Zhang et al. Acta Neuropathologica Communications  (2018) 6:19 Page 12 of 19



RNA-binding protein which functions in regulation of
transcription, RNA splicing, mRNA stability, and trans-
lation [9], as an up-regulated M1 hub protein in AD
(Fig. 8) reveals a previously unrecognized role of
HNRNPK in AD pathophysiology. Corroborating with
our results, another related M1 module member,
HNRNPC, has been reported to be increased in AD and
promote APP translation [10, 66]. Additionally, we iden-
tified pro-apoptotic factors HTRA2 and AIFM1 as top
hub proteins up-regulated in AD (Fig. 6, Additional
file 2: Table S2, and Additional file 5: Table S5), indi-
cating enhanced apoptotic signaling is another key
feature of this module.
The relevance of the M1 module to AD is further

strengthened by its association with APOE and CLU
(Fig. 6), two well-established, genetic risk factors for
sporadic AD [22]. Our analyses showed that both APOE
and CLU proteins were up-regulated in AD (Additional
file 2: Table S2) and had high intramodular connectivity
values (Additional file 5: Table S5), supporting their role
as important determinants of M1 module functions. In
addition, we found the fat mass and obesity-associated
protein FTO, an AD risk factor which genetically interacts
with APOE [38, 68], was the most highly connected hub
protein of the M1 module (Fig. 6 and Additional file 5:
Table S5). FTO, a demethylase which regulates 6-
methyladenosine modifications of mRNAs, has also been
linked to increased risk for obesity and type 2 diabetes
[52]. Another M1 hub protein, SORBS1 (Fig. 6), which
functions in insulin signaling, has also been associated
with obesity and type 2 diabetes [51]. The finding of obes-
ity and diabetes-associated FTO and SORBS1 as top hub
proteins in AD-related M1 module is consistent with in-
creasing evidence indicating the presence of shared path-
ways in the pathogenesis of AD, obesity, and diabetes [65].
M2, a 152-member module with positive correlation

to AD phenotypes (Fig. 4), was highly enriched with GO
categories, enzymes, and hub proteins linked to meta-
bolic processes and pathways (Fig. 6 and Additional
file 6: Table S6). The most prominent feature of this
module is the presence of over 40 proteins that func-
tion in the carboxylic acid metabolism with serine
racemase (SRR) and enolase 1 (ENO1) as top hub
proteins (Fig. 6 and Additional file 5: Table S5). SRR,
an enzyme for catalyzing the conversion of L-serine
to D-serine (an essential co-agonist of the NMDA re-
ceptor) [15], was up-regulated by more than two folds
in AD (Additional file 2: Table S2), which may lead
to over-activated NMDA receptors, thereby contribut-
ing to AD pathophysiology. The M2 module was also
highly enriched with proteins involved in the unsatur-
ated fatty acid metabolic process (ACAA1, ACOX1,
EPHX2, HSD17B4, LTA4H, PTGDS, PTGR1, PTGR2,
GSTM2, GSTM3, GSTP1, and MIF), highlighting a

link between dysregulated unsaturated fatty acid me-
tabolism and AD pathophysiology. Furthermore, the
M2 module was also significantly enriched with regu-
lators of lipid metabolism (AGK, ACAA2, ALDH3A2,
ANXA1, ANXA2, ANXA4, ANXA5, ASAH1, APPL2,
DBI, ESYT1, GM2A, HADHA, INPP1, PAFAH1B3,
ERLIN2, SLC44A2, PCYT2, PLCD3, and PRDX6) with
annexin A5 (ANXA5) as a top hub protein (Fig. 6
and Additional file 5: Table S5). These findings pro-
vide new insights into the molecular basis of dysregu-
lated lipid homeostasis in AD brain [26, 60].
The identified top M2 hub proteins also include all

three members of the ezrin-radixin-moesin (ERM) fam-
ily, ezrin (EZR), radixin (RDX), and moesin (MSN),
which were up-regulated in AD (Fig. 6 and Additional
file 2: Table S2), suggesting a role of ERM proteins in
AD. The ERM proteins are FERM (4.1 protein, ezrin,
radixin, moesin) domain-containing proteins that func-
tion as plasma membrane–cytoskeleton linkers to regu-
late membrane dynamics, cell adhesion, migration,
signal transduction, and immune response [64]. Interest-
ingly, another FERM domain-containing protein,
FERMT2, was also identified as an up-regulated M2 hub
protein with high intramodular connectivity (Fig. 6,
Additional file 2: Table S2, and Additional file 5: Table S5).
Our finding, together with the reports of FERMT2 as a
genetic risk factor for AD [22] and a modulator of APP
metabolism and tau neurotoxicity [16, 72], supports the
involvement of FERMT2 in AD pathogenesis.
M15, a 57-member module positively correlated with

AD phenotypes (Fig. 4), was significantly enriched with
GO terms and proteins linked to immune response
(ALCAM, ALAD, GAPDH, CYB5R3, DDX3X, CAPN1,
PPIA, PYGB, EIF2AK2, CAB39, TTR, PDAP1,
HIST1H2BK, QARS, VAPA, and PNP) with GAPDH,
PPIA, CYB5R3, and PYGB as top hub proteins (Fig. 6
and Additional file 6: Table S6). Our finding of PPIA,
CYB5R3, and PYGB, which are associated with neutro-
phil activation in immune response [31], as up-regulated
M15 hub proteins (Fig. 6 and Additional file 2: Table S2)
supports a role of neutrophil-dependent immune re-
sponse in AD pathophysiology [91]. The enrichment of
several aminoacyl-tRNA synthetases for protein transla-
tion (SARS, QARS, and NARS) in this module (Fig. 6) is
in agreement with AD-associated, protein translation al-
teration identified in the M1 module.
M16, a 55-member, AD-positively correlated module

(Fig. 4), was significantly enriched with GO categories
and proteins linked to inflammatory response (C3,
FHL1, A2M, CD44, FN1, HP, SERPINA1, and SER-
PINA3) with complement C3 and alpha-2-
macroglobulin (A2M) as top hub proteins (Fig. 6 and
Additional file 6: Table S6). Our finding of C3 and A2M,
two key components of inflammatory response [42, 63],
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as up-regulated hub proteins in AD brain (Fig. 6 and
Additional file 2: Table S2) supports their potential as
candidate AD biomarkers [39] and the link between neu-
roinflammation and AD pathogenesis [14]. Another key
molecular feature of M16 module is significant overrep-
resentation of extracellular matrix proteins (COL6A1,
COL6A2, COL6A3, COL18A1, LAMA5, FLNA, and
FLNB) as hub proteins (Fig. 6), providing evidence for
the involvement of extracellular matrix dysfunction in
AD [49].
M19, a 48-member module with positive correlation

to AD phenotypes (Fig. 4), was highly enriched with GO
terms and proteins linked to small GTPase-mediated
trafficking and signaling (RAB1A, RAB1B, RAB3C,
RAB4A, RAB4B, RAB6B, RAB8B, RAB10, RAB12,
RAB14, RAB23, RAB35, ARF4, and ARF5) with Rab
GTPases RAB1A, RAB1B, RAB4A, and RAB4B as top
hub proteins (Fig. 6 and Additional file 6: Table S6). The
enriched Rab and ARF GTPases function as key regula-
tors of the following trafficking pathways: ER-to-Golgi
transport (RAB1A and RAB1B), synaptic vesicle exocyt-
osis and neurotransmitter release (RAB3C), endosome-
to-plasma membrane recycling (RAB4A, RAB4B,
RAB23, and RAB35), intra-Golgi traffic and endosome-
to-Golgi transport (RAB6B), trans-Golgi network
(TGN)-to-plasma membrane transport (RAB8B, RAB10,
RAB12, RAB14, ARF4, and ARF5), Golgi-to-ER retro-
grade transport (ARF4 and ARF5), and autophago-
some formation (RAB1A, RAB1B, RAB12, and
RAB23) [24, 34, 75]. In addition, this module also
contained endocytic trafficking regulators, NECAP1
and SORT1 (Fig. 6). The enrichment of the vesicular
trafficking machinery components in the AD-
correlated M19 module highlights the dysregulation
of multiple trafficking pathways in AD brain.
M4, a 119-member module with negative correlation

to AD phenotypes (Fig. 4), was highly enriched with GO
categories and proteins linked to mitochondrial pro-
cesses (Fig. 7, Additional file 5: Table S5, and Additional
file 6: Table S6), including the mitochondrial contact site
and cristae organizing system (MICOS) components
(IMMT/MIC60 and CHCHD3/MIC19), mitochondrial
import machinery components (TOMM70 and
TIMM9), mitochondrial carrier system components
(SLC25A3 and SLC25A12), mitochondrial inner mem-
brane fusion GTPase OPA1, electron transport chain
subunits (MT-ND5, NDUFA12, NDUFS5, NDUFS7,
SDHA, COX4I1, COX5B, COX6C), and mitochondrial
ATP synthase subunits (ATP5A1, ATP5B, and ATP5J).
The identification of IMMT and SLC25A3 as down-
regulated hub proteins in AD brain (Fig. 7 and
Additional file 2: Table S2) reveals a previously
unrecognized role of the MICOS system and mitochon-
drial carrier system in AD pathophysiology. The M4

module was also enriched with GO categories and pro-
teins associated with synaptic structure and function
(Fig. 7, Additional file 5: Table S5, and Additional file 6:
Table S6), including key presynaptic proteins involved in
synaptic vesicle trafficking and neurotransmitter release
(SNAP25, STX1B, SYP, SV2B, VAMP1, RPH3A, and
RAB3GAP2), glutamate receptor subunits (GRIA2/
GluR2 and GRIA4/GluR4), GABAA receptor β1 subunit
(GABRB1), and postsynaptic density proteins (SYN-
GAP1, DLG1/SAP97, DLG3/SAP102, and SRGAP3).
The finding of these synaptic proteins in the AD-down-
regulated M4 module is consistent with a loss of synap-
tic function in AD [28].
M5, a 106-member module negatively correlated with

AD phenotypes (Fig. 4), was highly enriched with GO
terms and proteins linked to oxidative phosphorylation
(MT-ND3, NDUFA2, NDUFA7, NDUFAB1, NDUFB11,
NDUFS1, NDUFS8, CYC1, UQCRC1, COX5A,
COX6B1, and ATP5D) with MT-ND3 and UQCRC1 as
top hub proteins, synaptic cell adhesion (CADM2/Syn-
CAM2, CADM3/SynCAM3, NCAM1, LSAMP, NTM,
OPCML) with CADM2/SynCAM2 and LSAMP as top
hub proteins, synaptic vesicle exocytosis (STX1A,
CPLX2, and SYT12), and signal transduction (PPP1CB,
MARK2, PAK1, PRKCE, PRKCG, SLK, STK39, RHOA,
RHOB, RHOC, RHOG, and CDC42) with PPP1CB,
RHOA, and STK39 as top hub proteins (Fig. 7, Additional
file 5: Table S5, and Additional file 6: Table S6). These
findings further support the involvement of impaired
mitochondrial and synaptic functions and dysregulated
signaling in AD pathophysiology.
M10, a 62-member module with the most significant

negative correlation to AD phenotypes (Fig. 4), was
highly enriched with ion-transporting ATPases, such as
Na+/K+ ATPase subunits (ATP1A2, ATP1B1, and
ATP1B2) for establishing the electrochemical gradients
of Na and K ions across the plasma membrane and the
H+-transporting, vacuolar ATPase subunit ATP6V1G2
for lysosomal acidification (Fig. 7 and Additional file 6:
Table S6), supporting a loss of brain cell ion homeostasis
in AD pathogenesis [20, 81]. The M10 module was also
significantly enriched with GO terms and proteins linked
to transmembrane transport and vesicle-mediated trans-
port (Fig. 7 and Additional file 6: Table S6), including
mitochondrial protein import (MTX2), endocytosis
(DNM2, DNM3), endosome-to-lysosome trafficking and
synaptic vesicle biogenesis (AP3D1), ER-to-Golgi trans-
port (BCAP31), intra-Golgi trafficking (USO1, NAPA,
NAPG), TGN-to-plasma membrane transport (AP1M1),
endosome-to-plasma membrane recycling (SNX27), and
autophagy (GABARAPL2, RTN3, and UBQLN1). The
enrichment of these transport machinery components in
the AD-down-regulated M10 module indicates impair-
ment of multiple transport pathways in AD brain.
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M11, a 62-member module negatively correlated with
AD phenotypes (Fig. 4), has heterotrimeric G-protein
subunits (GNAI1, GNAI2, GNAI3, and GNAO1) and
Src family of tyrosine kinases (FYN and YES1) as top
hub proteins (Fig. 7), highlighting the involvement of al-
tered intracellular signaling in AD pathophysiology. In
addition, the M11 module was significantly enriched
with GO terms and proteins linked to regulation of actin
cytoskeleton (CRMP1, CRMP4/DPYSL3, ABI1, FSCN1,
and WASF1) and microtubule cytoskeleton (TUBAL3,
TBCB, NDRG1, NDRG2, SHTN1, and SNCG) (Fig. 7
and Additional file 6: Table S6), consistent with impaired
actin and microtubule dynamics in AD brain [5, 25].
The association of the retromer complex components
(SNX1 and SNX2) with the M11 module supports a link
between retromer dysfunction and AD pathogenesis [73].
M12, a 61-member module with negative correlation

to neurofibrillary tangle pathology but not amyloid
plaque pathology (Fig. 4), is characterized by highly sig-
nificant enrichment of GO terms and proteins linked to
myelin sheath (CNP, MAG, MBP, OMG, PLP1, MOG,
PMP2, CLDN11, and ERMN) and the organization of
paranodal and juxtaparanodal regions of axon at the
node of Ranvier (MAG, ERMN, CNTNAP1, CNTN2,
and KCNA2) with CNP, MAG, OMG, and PLP1 as top
hub proteins (Fig. 7 and Additional file 6: Table S6).
These results, together with our finding of OMG and
PLP1 as down-regulated hub proteins in AD (Fig. 7 and
Additional file 2: Table S2), support the involvement of
myelin degeneration, impaired myelin-axon interactions,
and node of Ranvier dysfunction in AD pathogenesis [8].
The M12 module was also significantly enriched with
neurofilament proteins (NEFL, NEFM, and INA) and
microtubule-binding proteins involved in the control of
microtubule polymerization or stabilization (CRYAB,
MAPRE1, DST, CRMP2/DPYSL2, CLASP2, and
MAP1B) and axonal transport (DCTN1 and DCTN4),
indicating an association of impaired neurofilament and
microtubule functions with Tau aggregation in AD. Our
finding of BIN1, the second most prevalent genetic risk
factor for sporadic AD [22], as a member of the M12
module with negative correlation to neurofibrillary tan-
gle pathology (Fig. 7) is consistent with recent evidence
indicating that BIN1 negatively regulates the propagation
of Tau pathology [13].
M13 is a 61-member module down-regulated in AD

(Fig. 5) with negative correlation to AD phenotypes (Fig. 4).
More than one-third of proteins in this module are associ-
ated with hydrolase activity, represented by top hub proteins
such as deubiquitinating enzyme OTUB1, small GTPase
RAC1, adenosylhomocysteinase-like proteins AHCYL1 and
AHCYL2, protein tyrosine phosphatase PTPRZ1, and
platelet-activating factor acetylhydrolase subunit
PAFAH1B1 (Fig. 7 and Additional file 5: Table S5). In

addition, the M13 module was also significantly enriched
with GO terms and proteins linked to organization of the
actin cytoskeleton (ARPC1A, CFL1, CFL2, CTTN, RAC1,
PAFAH1B1, NF1, SPTAN1, and SPTBN2) and micro-
tubule cytoskeleton (MAPRE3, KLC2, NIT2, TBCA,
TUBA8, MAP7D1) (Fig. 7 and Additional file 6: Table S6),
supporting the involvement of impaired actin and micro-
tubule dynamics in AD pathophysiology [5, 25].

Discussion
This study shows that integration of quantitative proteo-
mics, differential expression analysis, and co-expression
network analysis provides a useful approach for gaining
systems-level insights into AD pathogenesis. A critical
step in quantitative proteomic analysis is sample prepar-
ation, which is a key determinant of the quality of gener-
ated proteomic data set. Previous proteomic studies of
AD brains used detergent-free, protein extraction with a
chaotropic reagent such as urea, which is unable to
completely solubilize brain tissue and extract all proteins
[3, 56, 83, 87]. To overcome this limitation, we used the
strong detergent SDS for complete solubilization and ex-
traction of proteins followed by the filter-aided sample
preparation procedure [85, 87] to obtain high-purity
peptides for LC-MS/MS-based quantitative proteomic
analysis. Our proteomic results support that the SDS-
based, filter-aided sample preparation method is highly
effective for achieving high proteome coverage and reli-
able measures of protein expression levels in human AD
and control brain tissues.
Differential expression analysis, which compares ex-

pression levels for individual proteins between AD and
control groups, is a commonly used method in prote-
omic studies to identify AD-associated protein changes
[3, 56, 59]. Using this method, we have identified 487
differentially expressed proteins with significantly altered
protein levels (> 1.3-fold change; P < 0.05) in AD versus
control, including 262 up-regulated proteins and 225
down-regulated proteins involved in multiple biological
processes. The identification of a wide spectrum of pro-
tein alterations is consistent with the multifactorial and
complex etiology of AD. Our identified differentially
expressed proteins include 322 novel proteins that are
not previously known to be altered in AD (Additional
file 3: Table S3), providing new insights into protein
changes in AD brain. Due to the small sample size, this
study is expected to have false positives as well as
well as false negatives. The identified differentially
expressed proteins in AD have a false discovery rate
of < 11% based on the estimation by q values
(Additional file 2: Table S2). Therefore, our findings
will need to be confirmed in larger samples. The in-
dependent validation of altered expression in AD of
two identified novel proteins, STK39 and DIABLO/
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Smac, by Western blot analysis highlights the robust-
ness of our label-free quantitative proteomic analysis.
In contrast to differential expression analysis which deter-

mines expression changes of single proteins independently,
co-expression network analysis relates proteins to each
other using pairwise correlation relationships between pro-
tein expression profiles to illuminate higher-order molecu-
lar organization and define modules of co-expressed
proteins that are functionally related and/or coordinately
regulated [45, 90, 92]. Using this network analysis, we have
identified 11 disease-associated, protein co-expression
modules that are significantly correlated with AD pheno-
types, including 5 positively correlated modules (M1, M2,
M15, M16, and M19) and 6 negatively correlated modules
(M4, M5, M10, M11, M12, and M13). The identified, AD-
associated modules reveal a number of previously
unrecognized co-expression relationships among proteins
involved in distinct biological processes and provide a novel
view of cellular mechanisms. For example, the M1 module
shows that proteins controlling various processes of pro-
teostasis (e.g., protein translation, protein folding, and
proteasome-mediated degradation) and RNA homeostasis
(e.g., RNA processing, transcription initiation, mRNA
modification and stability) are highly connected at a co-
expression level (Fig. 6, Additional file 5: Table S5, and
Additional file 6: Table S6), indicating coordinate control or
interactions among these different processes. The M12
module reveals a strong co-expression relationship linking
myelin proteins, neurofilament proteins, and axonal pro-
teins involved in microtubule-based transport (Fig. 7 and
Additional file 6: Table S6), highlighting the glia-neuron in-
teractions and coupling between myelin and axonal pro-
cesses. The M19 module uncovers a previously unknown
co-expression relationship connecting Rab GTPases, ARF
proteins, and other key regulators of various intracellular
membrane trafficking processes (Fig. 6 and Additional file
6: Table S6), suggesting co-regulation of multiple trafficking
processes and their involvement in AD pathophysiology.
Further studies of the identified protein co-expression rela-
tionships and their regulation will advance our knowledge
of the cellular mechanisms governing coordinate control
and concerted actions of various biological processes in
health and Alzheimer’s disease.
Our proteomics-driven network analysis has gener-

ated a molecular blueprint of dysregulated protein
networks in AD brain and has uncovered many new
proteins and pathways in processes implicated in AD,
including altered proteostasis, RNA homeostasis, im-
mune response, neuroinflammation, synaptic transmis-
sion, vesicular transport, cell signaling, cellular
metabolism, lipid homeostasis, mitochondrial dynam-
ics and function, cytoskeleton organization, and
myelin-axon interactions. The identified hub proteins
of AD-associated protein network modules are

particularly useful for biomarker and therapeutic de-
velopment, as hub proteins are often key drivers of
disease-related co-expression modules or key determi-
nants of module function [12, 27, 33, 46, 54, 82, 88].
Our finding that the identified top hub proteins can
serve as a molecular signature for differentiating AD
and control cases (Fig. 8c) supports their potential as
novel AD biomarkers. Furthermore, the hub proteins
of AD-related modules uncovered in this study pro-
vide attractive drug targets for developing novel ther-
apeutics to shift disease-specific changes of protein
networks and cellular functions back to their normal
range.

Conclusions
In summary, our integrated proteomics and network
analysis provides a systems-level view of proteome
changes in AD brain and uncovers disease-associated
protein network alterations in AD. The identified AD-
related network modules and their hub proteins generate
new insights into the pathogenesis of sporadic AD. Our
findings suggest new targets and biomarker candidates
for AD diagnostic development and therapeutic
intervention.
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Additional file 1: Table S1. Demographic and neuropathological data
of human AD patient and control cases. For each case, the age, gender,
disease status, age at onset, disease duration, Braak stage, CERAD neuritic
plaque score, frontal cortex neuritic plaque frequency, ApoE genotype,
and postmortem interval (PMI) are provided. (XLSX 10 kb)

Additional file 2: Table S2. Differential expression analysis of protein
abundances in AD and control brains. List of all proteins with complete
abundance data in AD and control brains is provided with their fold
changes, P values, and q values. Differentially expressed proteins with
significantly altered protein abundances (> 1.3-fold change; P < 0.05) in
AD versus control are indicated in bold and also provided in separate
tabs. (XLSX 660 kb)

Additional file 3: Table S3. List of novel proteins with altered
abundances in AD identified in the present study. The fold changes of
protein abundances in AD versus control are provided with
corresponding P values and q values. (XLSX 51 kb)

Additional file 4: Table S4. Gene ontology (GO) term enrichment for
differentially expressed proteins in AD. The enriched GO terms with
associated P values (Benjamini-Hochberg FDR corrected) for biological
processes, cellular compartments, and molecular functions are provided
in separate tabs. (XLSX 35 kb)

Additional file 5: Table S5. Protein co-expression network analysis by
WGCNA. Network analysis of the entire proteomic data set from all AD
and control cases identified 24 network modules, M1 to M24, coded by
different colors according to the convention of WGCNA. Proteins that
were not assigned to any module were coded by the color grey in M0.
The complete list of proteins in each module and their module member-
ship values (kME) are provided. (XLSX 724 kb)

Additional file 6: Table S6. Gene ontology (GO) term enrichment for
proteins in WGCNA modules. The enriched GO terms with associated P
values (Benjamini-Hochberg FDR corrected) for biological processes,
cellular components, and molecular functions are provided in separate
tabs. (XLSX 147 kb)
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