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Most of the genotype–phenotype analyses to date have largely centred
attention on single nucleotide polymorphisms. However, transposable
element (TE) insertions have arisen as a plausible addition to the study of
the genotypic–phenotypic link because of to their role in genome function
and evolution. In this work, we investigate the contribution of TE insertions
to the regulation of gene expression in response to insecticides. We exposed
four Drosophila melanogaster strains to malathion, a commonly used organo-
phosphate insecticide. By combining information from different approaches,
including RNA-seq and ATAC-seq, we found that TEs can contribute to
the regulation of gene expression under insecticide exposure by rewiring
cis-regulatory networks.

This article is part of a discussion meeting issue ‘Crossroads between
transposons and gene regulation’.
1. Background
Understanding the link between genotype and phenotype is one of the
major goals in evolutionary biology [1,2]. Even though substitutions of single
nucleotide polymorphisms (SNPs) in the coding and regulatory regions of
the genome can cause major changes on phenotypes [3,4], SNPs alone can
only explain a fraction of the existing phenotypic variation [5–7]. Other types
of mutations such as inversions, segmental duplications, transposable elements
(TEs) and other structural variants, are also important sources of phenotypic
variation [8–11]. Among these structural variants, TE insertions are likely to
play a major role owing to their abundance and activity. TEs make up a sizeable
proportion of virtually all genomes analysed to date [12–15]. Moreover, they
have the ability to move around the genome generating a wide range of
mutations during the process; from gene disruptions to variations in gene
regulation [12,16]. Although most TE insertions are expected to be either
deleterious or neutral, TEs have also been associated with fast and beneficial
changes in phenotypes, fostering rapid adaptation [9,17,18].

There is increasing evidence on the functional role of some TE insertions
[16,19–23]. One iconic example is the industrial melanism in the peppered
moth. The dark form of the peppered moth, which rapidly increased in
frequency in response to coal-polluted environments, is owing to a TE insertion
in the first intron of the gene cortex [24]. However, we are still far from
fully understanding the role TEs play in genotype–environment interactions.
Drosophila melanogaster represents an excellent model for addressing this
question. First, it has a small and well-annotated genome, which allows the puta-
tive genomic regions involved in the phenotypic changes to be more easily
characterized [25]. Second,D. melanogaster has colonized many different environ-
ments in recent evolutionary time [26–28], demonstrating its ability to adapt very
quickly, which has led to extensive phenotypic variation within and between
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populations [29]. Finally, D. melanogaster contains a wide
repertoire of TE families, many of which contain polymorphic
copies, suggesting that they are highly active [30–34]. Indeed,
for some families, there is experimental evidence showing that
they are active [35,36]. Moreover, several of these polymorphic
TEs have been involved in phenotypic changes, probably
linked to adaptive processes [37–44].

Besides works linking individual copies to phenotypic
changes, an increasing number of investigations suggest that
TEs have contributed to the rewiring of cis-regulatory net-
works during evolution, including pathways underlying
processes such as pregnancy, brain development, innate
immunity and stress response [17,45–49]. Owing to their
repetitive and dynamic nature, TEs can distribute regulatory
sequences such as promoters, transcription factor-binding
sites and insulators across the genome altering gene expression
[50,51]. In this context, it is reasonable to think that TEs can act
as powerful agents to modify biological processes by creating
cis-regulatory networks and rewiring already existing ones.

Pesticide resistance is an example of a rapidadaptive process
that has resulted from a novel selective pressure [52]. In Droso-
phila, there is evidence to suggest that insecticides have played
a large role in recent selection [53–58]. There are several
examples of insecticide resistance in this species which has
resulted from a TE affecting the expression of a relevant gene
[38,40,43,44,59]. However, to date, to our knowledge, no
genome-wide analysis of the potential role of TEs on the
transcriptional response to insecticides has been performed.

In this work, we analysed gene expression profiles
(RNA-seq), chromatin accessible regions (ATAC-seq), binding
site predictions for the major transcriptional regulator of xeno-
biotic detoxification, cap-n-collar (cnc), [49,60] and signatures
of selection in regions flanking TE insertions [33,49], in order to
investigate the contribution of TEs to the regulation of gene
expression in response to insecticide exposure. For this pur-
pose, we exposed four D. melanogaster strains to malathion, a
commonly used organophosphate insecticide (http://www.
epa.gov). Our results suggest that TEs can contribute to the
regulation of gene expression under insecticide exposure by
rewiring cis-regulatory networks.
2. Methods
(a) Fly stocks
FourD.melanogaster strainswereused:SE_Sto_11_22 (SE-Sto), an iso-
female strain collected in Stockholm, Sweden, in 2011 [61]; RAL-375
and RAL-177, two strains from the Drosophila Genetic Reference
Panel (DGRP) collected in Raleigh, North Carolina, USA [62], and
the reference sequenced strain iso-1 [63]. Flies were reared on fly
food medium in a 12 : 12 h light/dark cycle at 25°C.

(b) Xenobiotic exposure
To induce xenobiotic response, we used malathion, an
organophosphate insecticide commonly used to control a variety
of insects that attack fruits (http://www.epa.gov). Malathion
was dissolved in 2-propanol and added to agar–sucrose
medium to a final concentration of 20 µM. We used a unique
dose for all strains as this is more similar to what flies experience
in nature. For non-stress conditions, we used agar–sucrose food.
We transferred the flies to new tubes with or without malathion
and kept them for 9 h at 25 °C before gut dissection. Three
biological replicates of 30 females each were performed for
each condition and strain. No mortality was observed in any of
the control replicates. After 9 h of malathion exposure, no mor-
tality was observed in SE-Sto and RAL-375, while 15% and
25% mortality was observed in RAL-177 and iso-1, respectively.

(c) RNA isolation, library preparation and sequencing
Guts from 4- to 6-day-old females were dissected in 1× phosphate
buffered saline (PBS) either under non-stress conditions or after
xenobiotic exposure (stress). Total RNA was isolated using Gen-
Elute Mammalian genomic total RNA miniprep kit from SIGMA
following the manufacturer’s instructions. A 1.5 µg of total RNA
from each sample was used for subsequent library preparation
and sequencing. Briefly, library preparation was performed
using the Truseq Stranded mRNA Sample Prep kit from Illumina
following the manufacturer’s instructions. Libraries were
sequenced using Illumina 125 bp paired-end reads (25.4–57.8
million per sample, electronic supplementarymaterial, table S1A).

(d) Analysis of RNA-seq data
Quality of the fastq sequencing files was assessed using
FASTQC v. 0.11.8 (www.bioinformatics.babraham.ac.uk/pro-
jects/fastqc). TRIMGALORE v. 0.5.0 (www.bioinformatics.
babraham.ac.uk/projects/ trim_galore) was used for adapter
contamination removal and CUTADAPT v. 1.18 (default par-
ameters) was used for low-quality trimming [64]. Trimmed
reads were mapped to the D. melanogaster genome r6.15 using
HISAT2 v. 2.1.0 [65]. On average, 93.3% of the reads were
uniquely mapped to the genome. We explored technical dupli-
cations in our samples using DUPRADAR [66]. Overall, we found
no bias towards high number of duplicates at low read counts,
so we did not remove duplicates from the alignments. We used
FEATURECOUNTS v. 1.6.2 [67] for counting the number of reads
mapping to genes for each sample (reverse-stranded parameter).
The matrix of counting data was then imported into DESeq2 [68],
an R bioconductor package, using the DESeqDataSetFromMatrix
function. The DESeq main function, with default parameters,
was used to obtain the library size-normalized read counts,
which is used to identify differentially expressed genes (DEGs)
and to generate the heat map and the principal component
plots. DEGs were identified in pairwise comparisons modell-
ing the samples as:∼strain + treatment + strain:treatment and
adjusted using the Benjamini–Hochberg method to control for
false discovery. The significant DEGs were identified after
applying significance cut-offs (adjusted p-value≤ 0.05 and
fold-change ≥ 1.5). Note that DESeq2 normalization makes
the expression of all genes comparable between samples,
independently of sequencing depth and RNA composition [68].

(e) Gene ontology analysis
Gene ontology (GO) enrichment analysis for biological process of
the DEGs was performed using the functional analysis and clus-
tering tool DAVID v. 6.8 (https://david.ncifcrf.gov) with default
options [69,70]. All biological clusters above a score of 1.3 were
considered as significantly enriched (electronic supplementary
material, table S2) [70].

( f ) Generation of protein–protein interaction networks
and identification of hub genes

Protein–protein interaction (PPI) networks were constructed with
the DEGs of each strain using STRING v. 11.0 [71] taking into
account experimental data, databases and gene co-expression
data. The minimum required interaction score cut-off was set
at 0.5. The PPI database generated by STRING was used in
CYTOSCAPE to rank nodes in the network by their network fea-
tures. Hub genes (genes with a high number of edges) were
also explored using the CytoHubba plugin r1.6 (http://hub.iis.
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sinica.edu.tw/cytoHubba/index.html) in CYTOSCAPE. In this
work, we first compared Degree (the most typically used meth-
odology for PPI analysis) and Maximal Centrality Clique (MCC)
algorithms to look for significant hub genes. According to the Cyto-
Hubba developer site (http://hub.iis.sinica.edu.tw/cytoHubba/
supplementary/index.htm), Degree rank genes based on its
number of interactions, while MCC captures proteins that are
tightly connected to others and it is able to discover new feature
nodes. The overlap between Degree and MCC methodologies in
our work was between 78.4% and 100% when analysing the top
15% hub genes from each methodology. Thus, we used the MCC
score to rank the top 15% hub genes from the four predicted PPI
networks (electronic supplementary material, table S3A–D).

(g) Transposable element dataset
The release 6 of the reference genome (iso-1 strain) contains
5416 TE insertions [25]. We used T-lex3 [72] to genotype these
insertions in SE-Sto, RAL-375 and RAL-177 using whole-
genome sequencing data [61,62]. Note that T-lex3 cannot
accurately estimate frequencies for TEs that are nested or
part of segmental duplications (1552 TEs [33]) and failed to
genotype another 65 insertions. Thus, we were able to genotype
3784 in at least one of the three strains (electronic supplementary
material, table S4A). Most of these insertions, 78.6% (2975 out of
3784) were present in the four strains analysed, 11.9% (449 out of
3784) were only present in the reference genome (iso-1) and 9.5%
(360 out of 3784) were polymorphic in the four strains (electronic
supplementary material, table S4A).

(h) DNA isolation for ATAC-seq
The protocol used for ATAC-seq was adapted from Buenrostro
et al. [73] to be used for D. melanogaster tissue. Thirty guts from
Drosophila females between 4 and 6 days old were isolated and
immediately placed in 200 µl ice-cold PBS. Guts were lysed
and homogenized to isolate between 50 000 and 100 000 cells
using a Neubauer camera. The cells were washed and lysed to
obtain a pellet with crude nuclei. The nuclei were resuspended
in 47.5 µl of tagmentation buffer and incubated for 30 min at
37°C with 2.5 µl of Nextera Tn5 Transposase. DNA was purified
using a Qiagen MinElute PCR Purification Kit. Finally, a library
was generated using the Nextera kit and amplified by polymerase
chain reaction. All libraries were sequenced using Illumina 50 bp
paired-end reads (25 to 51.9 million per sample, electronic
supplementary material, table S5A).

(i) Analysis of ATAC-seq data
The general quality of the raw reads was evaluated using FASTQC
v. 0.11.8 (www.bioinformatics.babraham.ac.uk/projects/fastqc).
The adapters were identified and removed from the reads using
bbduk from the BBTOOLS suite v. 38.00 (https://sourceforge.net/
projects/bbmap/). Next, the reads were trimmed using
TRIMMOMATIC [74] with the following parameters: LEADING:3
TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36. The filtered
reads were mapped against the D. melanogaster genome r6.15
using BOWTIE v. 1.2.2 [75] with the following parameters: -S -v 3
-a -m 100 –best –strata -X 2000 -p 10 –interleaved. The output files
were processed with CSEM v. 2.4 [76] and filtered using piPipes_
bam_ZW_filter from PIPIPES [77]. Finally, only pairs of reads with an
insert size smaller or equal to 100 bp were conserved.

The peaks were predicted following the strategy described
in the ENCODE ATAC-seq pipeline (https://github.com/
ENCODE-DCC/atac-seq-pipeline). The bam files were first
deduplicated. Next, they were converted into tagAlign (bed)
format. The tagAlign files for the three replicates for each strain
under the same conditions were merged and then split into
two sets randomly. Peaks were predicted in each of the two
sets using MACS2 v. 2.1.2 [78] with the following parameters:
-p .01 –shift 75 –extsize 150 –nomodel -B –SPMR –keep-dup all
–call-summits. Only peaks with an overlap greater than 50%
between both sets of predicted peaks were conserved. For
this set of peaks, the irreproducible discovery rate (IDR) was
calculated and only peaks with an IDR less than 0.05 were con-
served. The peaks were rescaled around the predicted summits
by extending 100 bp to both sides of the summit. Finally, the pre-
dictions for all strains in both conditions were merged into a
single-bed file comprising the universal set of peaks. To define
whether a peak was open or not, the background noise was
calculated generating windows spread randomly throughout
the genome and calculating the median of the coverage in
each window. If the median coverage in a peak was above the
background noise, it was considered to be open.

( j) Expression analysis of transposable element families
For both mapping and analysing the expression of TEs, we used
the TETOOLS pipeline [79]. Briefly, data were trimmed using URQT

[80] in order to remove low-quality nucleotides. The resulting
trimmed reads were aligned to a TE library using BOWTIE2
v. 2.3.4.1 [81]. The TE library was created from the TE family
information obtained from Repbase. The read count step was
computed per TE family, adding all reads mapped on copies of
the same family. Finally, we performed the differential
expression analysis between TE families using the R Bioconduc-
tor package DESeq2 [68] on the raw read counts retaining the TE
families with a p-value≤ 0.05 and fold-change ≥ 3.
3. Results
(a) Strains tolerant to malathion showed a lower

number of differentially expressed genes compared
with sensitive strains

To investigate the effect that malathion has on gene expression
and the potential role of TEs in these changes, we performed
RNA-seq analysis on four D. melanogaster strains that differed
in their tolerance to malathion. After 9 h of malathion exposure,
no mortality was observed in SE-Sto and RAL-375, while 15%
and 25% mortality was observed in RAL-177 and iso-1,
respectively. Overall, the number of DEGs ranged from
153 to 2778, similar to other transcriptomic studies per-
formed with xenobiotics (figure 1 and table 1; electronic
supplementary material, table S1B–E) [58,82]. Among
these DEGs, we found several xenobiotic-related genes
including Cyp12d1-d, Cyp6g1, Jheh1 and Jheh2, that have
previously been identified as major malathion resistance
loci (electronic supplementary material, table S1F) [83].

The number of DEGswas lower in themore tolerant strains
compared with the more sensitive ones (figure 1 and table 1).
Fifty-one per cent of the DEGs in the SE-Sto tolerant strain
were also found to be differentially expressed in the iso-1 sensi-
tive strain (table 1). However, the majority of these genes (75 of
78) showed opposite expression patterns, consistent with the
different phenotyping profiles of these strains (electronic sup-
plementary material, figure S1). These 75 genes were
enriched for ‘cell cycle’ biological processes (electronic sup-
plementary material, table S2A). Moreover, the most sensitive
strains (RAL-177 and iso-1) shared 41.2% of the DEGs and
most of them (1054 of 1096) showed the same pattern of
expression, which probably reflects that both strains are
highlystressedand struggling to survive (table 1; electronic sup-
plementarymaterial, figure S1). Indeed, the shared upregulated
DEGs are mainly related with ‘cellular response to stimulus’,
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Figure 1. Number of DEGs in response to malathion. DEGs in the SE-Sto strain collected in Stockholm (Sweden), two North American strains from the DGRP panel,
RAL-375 and RAL-177, and the sequenced strain iso-1. The percentage of DEGs with TEs nearby per strain is also shown. Note that while no mortality after 9 h of
malathion exposure was found for SE-Sto and RAL-375, 15% and 25% mortality was found for RAL-177 and iso-1, respectively.

Table 1. Number of DEGs in response to malathion exposure per strain,
and number of DEGs shared among strains. (Percentages in parentheses
correspond to the strain in the column.)

no. DEGs SE-Sto RAL-375 RAL-177 iso-1

SE-Sto 153

RAL-375 17 (11.1%) 694

RAL-177 40 (26.1%) 311 (44.8%) 2659

iso-1 78 (51%) 304 (43.8%) 1096 (41.2%) 2778
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‘cellular transport’ and several ‘metabolic processes’, while the
shared downregulated DEGs have mostly functions related
with ‘circadian rhythm’, ‘ageing’ or ‘molting’ (electronic sup-
plementary material, table S2B).
(b) Only metabolic and stress response genes are
upregulated after malathion exposure in the most
tolerant strains

Besides analysing the GO enrichment of DEGs shared
between strains, we also analysed each strain individually.
In the SE-Sto, only ‘metabolic processes’ were upregulated,
while in the RAL-375, ‘response to insecticide’ was also
upregulated, suggesting that this strain was more affected
by stress (figure 2; electronic supplementary material, table
S2C,D). In both cases, the upregulation of metabolic-related
genes suggests the potential detoxification ability via meta-
bolic processes of these strains [58]. In RAL-177, besides
‘response to stress’ and ‘metabolism’, ‘cell cycle’, ‘chromatin
organization’ and ‘nuclear division’ were also upregulated
(figure 2; electronic supplementary material, table S2E). In
addition to these, ‘negative regulation of transcription’ and
‘negative ribosome biogenesis’ are upregulated in the iso-1
strain, suggesting that this strain is entering apoptosis
(electronic supplementary material, table S2F). Finally, the
number of downregulated genes involved in ‘lipid and
carbohydrate metabolism’ was higher in sensitive strains as
previously reported by Riahi et al. [58] (figure 2; electronic
supplementary material, table S2E,F). Overall, the patterns
of GO enrichment were in agreement with the differences
in malathion tolerance observed across strains.
(c) Up to 14.4% of differentially expressed genes are
located nearby transposable elements

To identify the role that TEs could have in response to
malathion, we analysed the proportion of DEGs that were
located nearby annotated TEs (less than 1 kb or inside the
gene). For the iso-1 strain, we analysed all the annotated
TEs (5416 TEs [25]) and for the other three strains, we
analysed the TEs that could be genotyped using T-lex3 [72]
(3741 in SE-Sto, 3637 in RAL-375 and 3651 in RAL-177,
electronic supplementary material, table S4A, see Material
and methods). We found that up to 14.4% of DEGs are
located nearby annotated TEs (figure 1; electronic sup-
plementary material, table S4B). DEGs were enriched
nearby TE insertions compared with the overall distribution
of genes nearby TEs in the genome for the four strains
tested, although this enrichment was only significant in
RAL-177 and iso-1 (χ2 test, p-value = 0.00019 and 0.005294,
respectively; electronic supplementary material, table S4B).
Among those TEs found in proximity to DEGs, we found
FBti0019430, FBti0018880 and FBti0019627, which have been
shown to play a role in insecticide resistance [38,40,43,84].

To identify those TEs that are likely to have a greater effect
in the response to malathion exposure, we used DEGs to con-
struct PPI networks. We focused on the top 15% of genes
according to the MCC score, which captures proteins that
are tightly connected to other proteins. Only 76 of the 307
unique hub genes (approx. 25%) have previously been ident-
ified as xenobiotic stress response candidates (electronic
supplementary material, table S3E). We found that 38 of the
hub genes have TEs nearby (electronic supplementary
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material, table S3E). In most cases, these genes are within the
ones with the highest MCC values (figure 3). Moreover, some
of the hub genes that connect subnetworks are located nearby
TEs, such as LysS, arp2 andMmp2 in RAL-177 (figure 3). Thirty
of these hub genes have a single TE nearby, which could be
considered the most likely candidate to affect their expression
(electronic supplementary material, table S3F). Indeed, seven
of these 30 TEs have previously been identified as showing
signatures of selection, and most of them have been related
to stress response (table 2; electronic supplementary material,
table S3F) [33,49]. We checked whether any of the 17 TEs
located nearby upregulated hub genes contained binding
sites for cnc, the major transcription factor in xenobiotic and
oxidative stress response [60]. We found that five TEs con-
tained cnc-binding sites, including three TEs with evidence
of selection (table 2; electronic supplementary material, table
S3F) [33,49]. Overall, we identified 30 TEs located nearby
hub DEGs and thus, likely to have a bigger effect in malathion
response. Nine of these TEs have evidence of selection and/or
cnc-binding sites (table 2).
(d) Most of the differentially expressed genes have
ATAC-seq peaks

We analysed the chromatin accessibility genome-wide in non-
stress and stress conditions. The total number of ATAC-seq
peaks identified was similar among strains, 23 562 on average,
and comparable with the previous studies (electronic sup-
plementary material, table S5B) [90–92]. As expected, most of
the peaks were located in gene bodies or promoter regions
(approx. 92.2%) (electronic supplementary material, table S5B)
[90]. If we focus on DEGs, approximately 83.6% of them had
peaks assigned to their gene bodies or promoter regions.
Although someupregulated genes showed increased accessibil-
ity in stress compared with non-stress conditions, most of the
genes did not, as has been previously reported (figure 4; elec-
tronic supplementary material, table S5C) [93]. Similarly, most
downregulated genes did not show decreased accessibility in
stress versus non-stress conditions (electronic supplementary
material, table S5C). Finally, we also tested whether peaks
located nearby upregulated genes had cnc motifs. We found
that, on average, approximately 15% of the peaks contained
cnc motifs except in SE-Sto, where this percentage was 6.5%.
This lower percentage in the SE-Sto strain is consistent with
the lower number of DEGs and the lack ofmortality, suggesting
that this strain is experiencing lower levels of stress.
(e) Half of the transposable elements located in open
chromatin regions are distal to genes

We identified 199 TEs across strains that overlap with ATAC-
seq peaks (electronic supplementary material, table S5D).
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Table 2. Description of the TE insertions located nearby differentially expressed hub genes and having either evidence of selection, cnc-binding sites (BS), or
ATAC-seq peaks.

candidate

TEs TE family

nearby

gene TE location gene product/stress related

evidence of

selection [33,49]

cnc

BS

ATAC-seq

peaks

FBti0019170 F-element kuz inside gene metalloendopeptidase/zinc tolerance

related [85]

fTE 0 —

FBti0019372 S-element rdx inside gene ubiquitin ligase binding protein/- H12 1 —

FBti0019082 Rt1b CR6900 50 of gene pseudogene /- TajimaD 3 yes

FBti0020393 1360 cindr Inside gene adaptor protein/- TajimaD 0 —

FBti0020329 G5 Mrp4 50 of gene ABC transporter/response to oxidative

stress [86]

TajimaD 0 —

FBti0062283 ninja-Dsim-like Arpc3B 50 of gene actin-related protein 2/3 complex/cold

tolerance and bacterial infection

TajimaD 0 —

FBti0020015 412 LysS 50 of gene lysozyme/immune response [87,88] young and long 3 —

FBti0015567 Tirant Fs(2)Ket inside gene nuclear protein import/- — 1 —

FBti0020137 S-element CG5589 30 of gene adenosintriphosphate/- — 1 —

FBti0062779 1360 La 50 of gene la autoantigen-like/- — 0 yes

FBti0061088 INE-1 Ag5r2 50 of gene antigen 5-related 2/- — 0 yes

FBti0064264 INE-1 Holn1 30 of gene U5 small nuclear ribonucleoprotein

particle/wound response [89]

— 0 yes
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Most of these TEs showed peaks in both non-stress and stress
conditions (74%). Still, on average, approximately 19.1% were
only present in non-stress conditions and approximately
22.6% were only present in stress conditions. Ninety-five of
these TEs were located inside genes or in promoter regions,
and 30 of them were located inside DEGs or in their promoter
regions (electronic supplementary material, table S5E).
These 30 TEs are enriched for 1360 family (electronic
supplementary material, table S5E). Three of these 30 TEs
have evidence of selection (FBti0019430, FBti0060443 and
FBti0019082), two contain cnc-binding sites (FBti0061018
and FBti0062187) and three are located in the promoter or
inside hub genes (the aforementioned FBti0019082 and
FBti0061088, and FBti0062779) (table 2).

However, the other 104 TEs with peaks are distal to genes.
These TEs are enriched for several families including Rt1b and
gypsy8 (electronic supplementary material, table S5D). Two of
the 104 TEs have evidence of selection (FBti0019419 and
FBti0019355) and nine contained a cnc motif (electronic sup-
plementary material, table S5F). Thus, our results suggest that
half of the TEs located in open chromatin are distal to genes.
( f ) Fifty transposable element families showed
differences in expression after malathion exposure

Finally, we also checked whether the expression of TE
families was affected by the malathion treatment. While no
differentially expressed TE families were detected in SE-Sto,
50 families were differentially expressed between non-stress
and stress conditions in at least one of the other three strains
(figure 5; electronic supplementary material, table S6A). The
pattern of expression was family dependent as has been pre-
viously suggested (figure 5) [94]. Similar to the differences in
the number of DEGs across strains, we observed that the most
tolerant strains have a lower number of differentially
expressed TE families compared with the most sensitive
strains (Pearson correlation r = 0.8).
Both upregulated and downregulated TE families were
enriched for long terminal repeat (LTR) elements when com-
pared with all the TEs annotated in the genome (χ2, p-
value = 1.78 × 10−30 and 8.26 × 10−25 for upregulated and
downregulated, respectively).

We checked whether copies from these differentially
expressed TE families were located nearby DEGs. We
found that diver2, Bari1 and accord copies were mostly located
nearby upregulated genes (electronic supplementary material,
table S6B). Thus, we cannot discard that the upregulation
observed for these three families was owing to the upregulation
of genes located nearby.

Finally, we also analysed an RNA-seq dataset obtained from
two D. melanogaster strains that differed in their dichlorodiphe-
nyltrichloroethane tolerance [54]. We identified 36 differentially
expressed TE families, 24 of them overlapped with our dataset
of differentiallyexpressed families (figure 5).However, this over-
lap is not statistically significant (χ2 test, p-value = 0.3314), and
most of the observed changes were in the opposite direction
(electronic supplementary material, table S6C).
4. Discussion
In this work, we analysed the gene expression profiles
(RNA-seq), the chromatin accessible regions (ATAC-seq),
cnc-binding site predictions [49,60] and signatures of
selection in regions flanking TE insertions [33,49], to identify
TE insertions likely to contribute to the genomic response
to malathion. Our analysis of four D. melanogaster strains
has shown that the number, the pattern of expression (up-
or downregulation) and the GO enrichment of DEGs in
response to malathion were consistent with the differences
among strains in their tolerance level to this insecticide
(figures 1 and 2; electronic supplementary material, figure S1).
Our results are consistent with a recent analysis of a mutant
D. melanogaster strain sensitive to xenobiotics in which the
number of DEGs was also higher than in the most tolerant
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control strain [58]. While similar results have been found in the
green peach aphid [95], more DEGs were found in the most
resistant strains of Aedes Aegypti mosquitoes [96].

Our results also suggest that the control of energy
consumption is relevant to stress response, as the number
of downregulated genes involved in lipid and carbohydrate
metabolism was higher in sensitive strains [58]. Finally,
while we found that several of the DEGs have been
previously identified as candidates for xenobiotic response,
including four of the five major genes, we failed to identify
others. However, it is known that the expression of stress
response genes is time dependent, with genes not actively
expressed along the entire stress period [83,97–99].

We identified 38 hub genes located nearby TE insertions.
However, only three of these TEs had an ATAC-seq peak and
were located in the promoter or inside the hub gene. One
possible explanation is that some TEs are bound by numerous
transcription factors and other co-activators that could
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prevent the Tn5 transposase from cutting in these regions
[100,101]. Indeed, for some stress genes, it has been shown
that RNA polymerase II is associated with their promoter
regions prior to the induction of the stress [102]. In addition,
the number of TEs with identifiable peaks might be underes-
timated. Given the repetitive nature of the TEs, there are
limitations when attempting to accurately map the reads to
their correct position. While using CSEM [76] increases the
number of uniquely mapping reads and thus reveals
additional peaks, the remaining discarded multi-mapping
reads might have arisen from TEs located in regions with
open chromatin. Combining ATAC-seq with histone mark
information could further inform on the potential role of
TEs as enhancers and promoters, although it has been
shown that this is not always the case [49,103].

If we consider those TEs that are located nearby differen-
tially expressed hub genes and have either ATAC-seq peaks,
evidence of selection and/or cnc-binding sites, we identified
a dataset of 12 insertions, seven of them located nearby
genes not previously related to stress response (table 2). How-
ever, rdx regulates the Hedgehog signalling pathway involved
in cell survival under stress conditions [104], and cindr is a
multi-adaptor protein that has been related to the activation
of the p38 pathway in response to oxidative stress [105,106].
Thus, our results suggest that TEs located nearby these
genes could play an important role in xenobiotic stress
response. Although there is not a clear association between
the presence/absence of these TE insertions and the
change in expression of their nearby genes (electronic sup-
plementary material, table S4C), this result is consistent with
previous analysis showing that the effect of TEs on the
expression of nearby genes is background dependent [39,94].
More genetic backgrounds should be analysed to elucidate
whether TEs have a specific effect restricted to particular
backgrounds or whether the effect of TEs is more general.
5. Conclusion
We found that TEs can contribute to the genome-wide
response to insecticide resistance as suggested by the
association of TEs with differentially expressed hub genes.
Other TEs identified in this work can also influence insecti-
cide response, as exemplified by FBti0019430, FBti0018880
and FBti0019627 that have been previously reported to be
involved in insecticide response [38,40,43,84]. Our results
also suggest that the effect of TEs on gene expression in
response to insecticides is background dependent.
Functional validation of the candidate TEs in several back-
grounds would help determine whether the effect of TEs
in response to insecticide is global or restricted to particular
backgrounds.
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