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Abstract 

Background:  Osteoarthritis (OA), which is due to the progressive loss and degeneration of articular cartilage, is the 
leading cause of disability worldwide. Therefore, it is of great significance to explore OA biomarkers for the prevention, 
diagnosis, and treatment of OA.

Methods and materials:  The GSE129147, GSE57218, GSE51588, GSE117999, and GSE98918 datasets with nor-
mal and OA samples were downloaded from the Gene Expression Omnibus (GEO) database. The GSE117999 and 
GSE98918 datasets were integrated, and immune infiltration was evaluated. The differentially expressed genes (DEGs) 
were analyzed using the limma package in R, and weighted gene co-expression network analysis (WGCNA) was used 
to explore the co-expression genes and co-expression modules. The co-expression module genes were analyzed by 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. A protein–protein interaction 
(PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, 
and hub genes were identified by the degree, MNC, closeness, and MCC algorithms. The hub genes were used to 
construct a diagnostic model based on support vector machines.

Results:  The Immune Score in the OA samples was significantly higher than in the normal samples, and a total of 
2313 DEGs were identified. Through WGCNA, we found that the yellow module was significantly positively correlated 
with the OA samples and Immune Score and negatively correlated with the normal samples. The 142 DEGs of the 
yellow module were related to biological processes such as regulation of inflammatory response, positive regulation 
of inflammatory response, blood vessel morphogenesis, endothelial cell migration, and humoral immune response. 
The intersections of the genes obtained by the 4 algorithms resulted in 5 final hub genes, and the diagnostic model 
constructed with these 5 genes showed good performance in the training and validation cohorts.

Conclusions:  The 5-gene diagnostic model can be used to diagnose OA and guide clinical decision-making.
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Introduction
Osteoarthritis (OA) is the most common chronic bone 
and joint disease in modern society, and it is a serious 
threat to human health and quality of life. Accord-
ing to the statistics of the World Health Organization 
(WHO), about 9.6% of men and 18% of women over 
60  years of age worldwide have OA. In developed 
countries, 25% of patients with OA have disabili-
ties. The chronic pain and dysfunction experienced 
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by patients with OA and the heavy economic burden 
caused by OA are important health problems faced by 
today’s aging society [1]. The main features of OA are 
(1) progressive degeneration of articular cartilage, (2) 
the appearance and formation of osteophytes, (3) the 
appearance of synovial inflammation, (4) thickening of 
subchondral bone, and (5) narrowing of the knee joint 
space [2]. A variety of factors, such as age, sex, obesity, 
stress injury, trauma, and congenital joint abnormali-
ties, can cause OA [3].

At present, the main OA treatments are non-steroi-
dal anti-inflammatory drugs and joint replacement 
[4]. In recent years, the incidence of OA has shown a 
younger trend. At present, the pathogenesis of OA is 
not completely clear. Therefore, early detection, early 
diagnosis, and early treatment are key to improve OA 
prognosis.

In recent years, many researchers have devoted 
themselves to exploring biomarkers for OA preven-
tion, diagnosis, and monitoring of disease progres-
sion. Some studies have shown that the combined 
detection of serum chondroitin sulfate 846 epitope 
(CS846) and cartilage oligomeric matrix protein 
(COMP) can be used to diagnose and monitor the 
progression of OA [5]. Compared with healthy peo-
ple, the concentration of type II collagen C-terminal 
peptide (CTX-II) in the synovial fluid of patients 
with early OA is higher [6]. The level of COMP can 
be used as a marker of the occurrence rather than 
the progression of hip and knee OA [7]. C-reactive 
protein (CRP) is related to the occurrence and pro-
gression of knee OA [7, 8]. The analysis of urine 
samples from patients with knee OA has shown that 
metabolite levels may be helpful to predict the pro-
gression of OA. Glycolic acid, hippuric acid, and 
fenugreek are of great significance for distinguishing 
patients who are prone to OA progression. However, 
due to the small sample size of the above research, 
the results have some limitations [9]. At present, the 
biomarkers that can be used in clinical applications 
are still very limited.

In this study, we comprehensively analyzed sev-
eral public microarray datasets to evaluate the 
Immune Scores of OA and normal samples, and we 
identified genes related to OA immune infiltration 
using weighted gene co-expression network analysis 
(WGCNA). The potential transcriptome biomark-
ers of OA were identified, and a protein–protein 
interaction (PPI) network involved in these immune 
infiltration-related genes was constructed to iden-
tify OA diagnostic biomarkers. A diagnostic model 

for predicting and preventing OA was constructed 
based on the pattern recognition of support vector 
machines (SVMs).

Methods and materials
Data sources and data download
Normal and OA samples were selected from the Gene 
Expression Omnibus (GEO) database. The expres-
sion datasets of OA (GSE129147 [10], GSE57218 [11], 
GSE51588 [12], GSE117999, GSE98918 [13]) and a 
methylation dataset (GSE73626 [14]) were downloaded.

Data preprocessing
The GEO datasets were processed by keeping the nor-
mal and OA samples, converting the probes to Gene 
Symbol, removing the probes corresponding to mul-
tiple genes, and taking the medians of multiple Gene 
Symbols. The GSE117999 and GSE98918 datasets are 
from the same platform (GPL20844), and the batch 
effect was eliminated through the removeBatchEffect 
function of the limma package in R [15].

Immune infiltration analysis
For the gene set enrichment (GSE) integrated dataset, 
ESTIMATE software was used to evaluate 3 scores: 
Stromal Score, Immune Score, and ESTIMATE Score. 
MCPcounter was used to evaluate the scores of 10 
immune cells. Single-sample gene set enrichment anal-
ysis (ssGSEA) was used to evaluate the scores of 28 
immune cells. The Spearman correlation coefficients of 
these Immune Scores were calculated.

DEG identification and WGCNA
The limma package in R was used to identify the dif-
ferentially expressed genes (DEGs) between the nor-
mal and OA samples of the GSE integrated dataset, 
and they were filtered according to the threshold false 
discovery rate (FDR) < 0.05 and |Fold Change|> 1.2. 
The final DEGs were obtained. According to these 
DEGs’ expression profiles, we use the WGCNA algo-
rithm to identify co-expression genes and co-expres-
sion modules. First, the expression profiles of the 
DEGs in the GSE integrated dataset were extracted. 
The Pearson correlation coefficient was used to calcu-
late the distance between each gene, and a weighted 
gene co-expression network was constructed by the 
WGCNA package in R. The soft threshold was 12, and 
the co-expression module was identified. The next 
step was to transform the expression matrix into an 
adjacency matrix and then transform the adjacency 
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matrix into a topological matrix. Based on the topo-
logical overlap measure (TOM), genes were clustered 
by the average-linkage hierarchical clustering method. 
According to the standard of the hybrid dynamic 
shearing tree method, the minimum number of genes 
for each gene network module was set to 50. We then 
calculated the eigengenes of each module in turn, then 
cluster analysis was performed on the modules. Mod-
ules that were close to each other were merged into 
a new module, and the settings of set height = 0.25, 
deepSplit = 2, and minModuleSize = 50 were used to 
obtain the final modules.

KEGG and GO analyses and PPI network construction
The WebGestaltR (v0.4.2) package in R was used to 
perform Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis and Gene Ontology (GO) 
functional enrichment analysis on the modular genes 
most significantly positively correlated with Immune 
Score. The Search Tool for the Retrieval of Interact-
ing Genes/Proteins (STRING) database was used 
to analyze the PPI network of the above genes, and 
Cytoscape (v3.7.2) was used to identify the network 
modules in the resulting file.

Hub gene identification
For the PPI network of the DEGs, we use the degree, 
MNC, closeness, and MCC algorithms of the cytoHubba 
plug-in of Cytoscape (v3.7.2) to calculate XX. The first 
10 genes were selected as the key genes. The key genes 
obtained by these algorithms were intersected to identify 
the final hub genes.

Diagnostic model construction and validation
The GSE integrated dataset was used as the training data-
set, and the GSE57218, GSE129147, and GSE51588 data-
sets were used as the validation datasets. The hub genes 
were used as the features in the training dataset, and the 
corresponding expression profiles were obtained. An 
SVM classification model was constructed, and the sen-
sitivity, specificity, and area under the receiver operat-
ing characteristic (ROC) curve (AUC) of the model were 
analyzed.

Results
Flow chart
A flow chart of the immune infiltration analysis and diag-
nostic model construction and validation is shown in 
Fig. 1.

Data preprocessing
The GSE117999 and GSE98918 datasets are from 
the GPL20844 platform. Principle component analy-
sis (PCA) diagrams before and after batch effect 
elimination are shown in Fig.  2. The GSE117999 and 
GSE98918 datasets were integrated and named the 
GSE integrated dataset, which contained 22 normal 
samples and 22 OA samples.

The preprocessed GSE129147 dataset had 9 normal 
samples and 10 OA samples; the GSE57218 dataset had 
7 normal samples and 33 OA samples; the GSE51588 
dataset had 10 normal samples and 10 OA samples; the 
GSE117999 dataset had 10 normal samples and 10 OA 
samples; the GSE98918 dataset had 12 normal samples 
and 12 OA samples; and the GSE73626 dataset had 7 
normal samples and 11 OA samples. The clinical statis-
tics of the samples can be found in Table 1.

Immune infiltration analysis of the integrated dataset
The integrated dataset of GSE117999 and GSE98918 
was analyzed for immune infiltration. The scores of 
the 28 immune cells evaluated using ssGSEA showed 
that activated B cells, immature B cells, and myeloid-
derived suppressor cells (MDSCs) were significantly 
higher in the OA samples than in the normal samples 
(Fig.  3A). The Stromal Scores, Immune Scores, and 
ESTIMATE Scores evaluated by the ESTIMATE soft-
ware showed that the Immune Score was significantly 
higher in the OA samples than in the normal samples 
(Fig.  3B); the scores of the 10 immune cells evalu-
ated by MCPcounter showed that T cells, cytotoxic 
lymphocytes, and endothelial cells were significantly 
higher in the OA samples than in the normal samples 
(Fig. 3C).

Identification of DEGs in the integrated dataset
The limma package in R was used to analyze the DEGs 
between the normal and OA samples. After filtering the 
data, 2313 DEGs were identified, of which 1000 genes 
were upregulated and 1313 genes were downregulated 
(Additional file 1: Table S1). A volcano map of the upreg-
ulated and downregulated DEGs is shown in Fig. 4A, and 
a heat map of the first 50 upregulated and downregulated 
genes is shown in Fig. 4B.

WGCNA and KEGG pathway analysis and GO functional 
enrichment analysis
According to the expression profiles of the DEGs, the 
WGCNA algorithm was used to identify the co-expressed 
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genes and modules. To ensure that the network was 
scale-free, β = 12 was chosen (Fig. 5A). The gene expres-
sion matrix was transformed into an adjacency matrix, 
then the adjacency matrix was transformed into a topo-
logical matrix. Finally, 5 modules (Fig. 5B) were obtained. 
The correlation between each module and sample type 
(OA or normal) and Immune Score was further analyzed 
(Fig. 5C). The module with the most significant positive 

correlation with Immune Score was the yellow module, 
which also had a significant positive correlation with the 
OA samples and a significant negative correlation with 
the normal samples. The yellow module contained 142 
genes, of which 136 were upregulated and 6 were down-
regulated. The genes contained in the module are shown 
in Additional file 2: Table S2.

Immune Infiltration Score

PPI analysis(STRING)

GO and KEGG

GSE117999
GSE98918

limma analysis(OA vs Normal)
(1000 UP, 1313 DOWN)

Comparison of immune 
scores

Correlation of immune 
score

Cytoscape MCODE

cytoHubba
(Degree: MCC,MNC,Closeness)

5 hub genes
Diagnostic model

GSE Integration

GSE57218
GSE51588Methy data(GSE73626)

WGCNA

Immune model(yellow)

Fig. 1  Flow chart of OA immune infiltration analysis and diagnostic model construction and validation
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KEGG pathway analysis and GO functional enrichment 
analysis were performed on the co-expressed genes of the 
yellow module. A total of 661 biological processes (BPs), 
48 molecular functions (MFs), 27 cellular components 
(CCs), and 4 pathways were enriched among the DEGs 
(P < 0.05). For BPs, the top 10 enriched items mainly par-
ticipated in regulation of inflammatory response, posi-
tive regulation of inflammatory response, blood vessel 
morphogenesis, endothelial cell migration, humoral 
immune response, and other biological processes 
(Fig.  6A). For CCs and MFs, the top 10 enriched items 
are shown in Fig. 6B and C, respectively. The KEGG path-
way enrichment analysis results suggested that the DEGs 
predominantly participated in the complement and coag-
ulation cascades and osteoclast differentiation pathways 
(Fig. 6D).

Identification of hub genes
For the 142 genes in the yellow module, the STRING 
database was used to construct a PPI network. The 
degree, MNC, closeness, and MCC algorithms of the 
cytoHubba plug-in of Cytoscape (v3.7.2) were used to 
calculate the PPI network of the 142 DEGs, and the top 
10 genes were selected as the key genes. The PPI network 
diagram of the genes identified by these 4 algorithms 
is shown in Fig.  7. Taking the intersections of the hub 
genes obtained by these algorithms, a Venn diagram was 
constructed (Fig.  8A). Finally, 5 genes, including TLR7, 
CSF1R, APOE, C1QA, and CCL5, were obtained. In addi-
tion, we compared the expression of the 5 hub genes 
in the OA and normal samples in the different datasets 
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(Fig. 8B–E). The gene expression in the OA samples was 
significantly higher than in the normal samples.

Construction and validation of the diagnostic model
We used the GSE integrated dataset as the training 
cohort and the GSE57218, GSE129147, and GSE51588 
datasets as the validation cohorts.

The 5 hub genes were used as features in the train-
ing cohort, and an SVM classification model was con-
structed. The classification accuracy rate was 88.6%. 
Of the 44 samples, 39 were correctly classified. The 
sensitivity of the model was 91%, the specificity was 
86.4%, and the AUC was 0.886 (Additional file  3: Fig. 
S1A, Fig.  9A). The GSE57218 dataset was used for 
verification, and the results showed that 40 of the 40 
samples were correctly classified; the classification 
accuracy rate was 100%, the sensitivity was 100%, the 
specificity was 100%, and the AUC was 1 (Additional 
file  3: Fig. S1B, Fig.  9B). The GSE129147 dataset was 
also used for verification, and the results showed that 
19 of the 19 samples were correctly classified; the clas-
sification accuracy rate was 100%, the sensitivity was 

100%, the specificity was 100%, and the AUC was 
1 (Additional file  3: Fig. S1C, Fig.  9C). Finally, the 
GSE51588 dataset was used for verification, and the 
results showed that 49 of the 50 samples were correctly 
classified; the classification accuracy rate was 98%, the 
sensitivity was 100%, the specificity was 90%, and the 
AUC was 0.95 (Additional file  3: Fig. S1D, Fig.  9D). 
These results indicated that the diagnostic prediction 
model constructed in this study could effectively dis-
tinguish OA samples from normal samples, and the 
5 genes could be used as reliable biomarkers for OA 
diagnosis.

Methylation of the hub genes
The methylation of the 5 hub genes in the normal and 
OA samples was analyzed using the GSE73626 dataset. 
The methylation at the methylation sites of the CSF1R, 
APOE, C1QA, and CCL5 genes in the normal samples 
was greater than in the OA samples (this information for 
the TLR7 gene in the GSE73626 dataset was not avail-
able), which was consistent with the fact that the expres-
sion of these 4 genes in the normal samples was lower 
than in the OA samples. There was a negative correlation 
between the degree of methylation and gene expression 
(Fig. 10).

Discussion
OA is a chronic degenerative joint disease that is part of 
the aging process. In addition to synovitis, it is charac-
terized by the loss and degeneration of articular carti-
lage, resulting in joint stiffness, swelling, pain, and loss 
of mobility [16, 17]. OA is a major public health problem 
[18]. It has been listed as the fastest growing major health 
condition by the WHO and the second leading cause of 
disability [19].

In this study, an immune infiltration analysis was 
performed on an integrated dataset (GSE117999 and 
GSE98918). The results showed that the Immune 
Score in the OA samples was significantly higher than 
in the normal samples. Through DEG analysis of the 
OA and normal samples, a total of 2313 differential 
genes were identified. Through WGCNA, we found 
that the yellow module was significantly positively 
correlated with the OA samples and negatively corre-
lated with the normal samples, and it was significantly 
positively correlated with Immune Score. Therefore, 
the 142 genes of the yellow module were selected 
for further study. The GO functional enrichment 

Table 1  Clinical information of the samples

Data set Expression Platforms

GSE129147

 Normal 9 GPL15207

 OA 10

GSE57218

 Normal 7 GPL6947

 OA 33

GSE51588

 Normal 10 GPL13497

 OA 40

GSE117999

 Normal 10 GPL20844

 OA 10

GSE98918

 Normal 12 GPL20844

 OA 12

GSE Integration

 Normal 22 GPL20844

 OA 22

GSE73626

 Normal 7 GPL13534

 OA 11
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analysis results showed that the yellow module genes 
were related to BPs such as regulation of inflamma-
tory response, positive regulation of inflammatory 
response, blood vessel morphogenesis, endothelial cell 
migration, humoral immune response, and so on. The 
upregulation of different cytokines related to inflam-
mation, such as matrix metalloproteinase-3 (MMP-3) 
and interleukin (IL)-1β, has confirmed that inflam-
mation is a preliminary response in patients with OA 
[20]. Studies have shown that miR-940 regulates the 
inflammatory response of chondrocytes by targeting 
myeloid differentiation primary response 88 (MYD88) 
in OA [21]. MiR-149 inhibits the inflammatory 
response of OA chondrocytes by downregulating the 

activation of TAK1/NF-κB [22]. Artesunate attenuates 
IL-1κ-induced inflammation and apoptosis by inhibit-
ing the NF-κB signaling pathway in chondrocyte-like 
ATDC5 cells, thus delaying the progression of OA in 
mice [23]. Some researchers believe that the growth 
of blood vessels (angiogenesis) and nerves (neurogen-
esis) from subchondral bone to articular cartilage may 
mediate the relationship between joint pathology and 
pain symptoms in OA [24]. In OA, angiogenesis of the 
synovium, osteophytes, and meniscus increases and 
may lead to the ossification of osteophytes and deep 
articular cartilage [25, 26]. Studies on angiogenesis in 
OA rodent models have shown that vascularization 
changes occur in the early stages of OA development 
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[27]. Although both angiogenic and anti-angiogenic 
factors are upregulated in OA joints, angiogenesis 
seems to dominate, and articular cartilage loses its 
resistance to vascularization [28]. Nerve growth fac-
tor (NGF) increases FGF2 expression in human chon-
drocytes through the PI3K/AKT and ERK/MAPK 
pathways, and it promotes endothelial cell migra-
tion and tubular formation. NGF may be related to 
the angiogenesis of OA subchondral bone [29]. The 
KEGG pathway enrichment analysis results showed 
that the yellow module genes were closely related to 
the complement and coagulation cascades, osteo-
clast differentiation, and other pathways. The com-
plement and coagulation cascades pathway has been 
confirmed in previous studies [30–32]. In OA, NF-κB 
promotes osteoclast differentiation by downregulat-
ing miR-1276 and upregulating MITF [33]. The abil-
ity of monocytes from patients with OA to produce 
osteoclasts is stronger than that of monocytes from 
control patients. With increased osteoclast forma-
tion, absorptive activity is enhanced, osteoclast apop-
tosis decreases, and IL-1 receptor type I expression 

decreases. This may suggest that systemic bone meta-
bolic changes affecting osteoclasts are involved in the 
pathophysiological mechanism of OA [34].

The degree, MNC, closeness, and MCC algorithms of 
the cytoHubba plug-in of Cytoscape were used to calcu-
late the PPI network of the 142 DEGs.

The intersections of the 4 algorithms resulted in 5 
hub genes, including TLR7, CSF1R, APOE, C1QA, 
and CCL5. These 5 hub genes are widely involved in 
immune response, fat metabolism, inflammation, 
bone development, and so on. Toll-like receptor 7 
(TLR7) is a member of the toll-like receptor (TLR) 
family, which plays a basic role in pathogen recogni-
tion and innate immune activation. It recognizes the 
pathogen-associated molecular patterns (PAMPs) that 
are expressed on infectious agents. It also mediates 
the production of cytokines necessary for the devel-
opment of effective immunity. The related pathways 
include NF-KB family pathways and diseases related 
to the TLR signaling cascade, which induce pro-
inflammatory cytokines and interferons, respectively 
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[35–37]. Targeting extracellular miR-21-TLR7 sign-
aling provides lasting analgesic effects for OA [38]. 
Colony stimulating factor 1 receptor (CSF1R), which 
is a receptor for a cytokine that controls the produc-
tion, differentiation, and function of macrophages, 
plays an important role in regulating the survival, 
proliferation, and differentiation of hematopoietic 

progenitors (especially mononuclear phagocytes, 
such as macrophages and monocytes). It promotes 
the release of proinflammatory chemokines to IL-34 
and colony stimulating factor 1 (CSF1) and thus plays 
an important role in innate immunity and inflamma-
tion. CSF1 plays an important role in the regulation of 
osteoclast proliferation and differentiation and bone 
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resorption, and it is necessary for normal bone and 
tooth development [39–41]. Studies have shown that 
CSF1R is a DEG between those with a torn meniscus 
in the knee joint and those with end-stage knee OA 
[42]. Hypercholesterolemia is a risk factor for ather-
osclerosis, which is closely related to the occurrence 
of OA. Apolipoprotein E (APOE) has been studied 
to explore the effects of hypercholesterolemia on the 
progression of OA by constructing ApoE-deficient 
mice and dietary hypercholesterolemia rats [43]. 

Chondroitin sulfate, as a common drug for the treat-
ment of OA, can reduce atherosclerosis in ApoE 
knockout mice [44]. APOE is also involved in innate 
and adaptive immune responses, such as control-
ling the survival of suppressor cells of myeloid origin 
[45–47]. The complement component 1q (C1q) pro-
tein can be expressed and secreted by human articu-
lar chondrocytes, bind to chondrocytes, and affect the 
relative expression of collagen. Primary human artic-
ular chondrocytes express genes encoding C1q and 
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complement C1q subcomponent subunits A, B, and 
C (C1QA, C1QB, and C1QC, respectively), and they 
secrete C1q to the extracellular medium [48]. Diseases 
related to C1qA include immune deficiency caused by 

C1q deficiency and complement deficiency in classi-
cal component pathways. Related pathways include 
the TLR signal transduction pathway and the pro-
duction of C4 and C2 activators [49, 50]. C–C motif 
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chemokine ligand 5 (CCL5) belongs to the C–C motif 
chemokine family [51, 52], and its expression level is 
a potential predictor of OA [53, 54]. In the future, we 
can conduct early diagnosis of osteoarthritis based on 
the expression of the above five genes by sequencing 
the patient’s genome and intervene in the early stage 
to improve the prognosis of OA patients. However, 
due to the high price of genome sequencing, which 
increases the medical burden of patients, there are 
still certain barriers in clinical application.

However, our diagnostic model still has certain limi-
tations. First of all, our study is retrospective. It is still 
necessary to design a multicenter and prospective study 
with a large sample size to validate the model. Secondly, 
the samples are mainly from Americans and need to be 
promoted among populations in other regions. Finally, 
other regression modeling methods will be used to deter-
mine whether the prediction accuracy can be further 
improved.

Before realizing clinical translation, we need to carry 
out corresponding in  vivo and in  vitro experiments. In 
future studies, targeted studies on these 5 genes include 
the use of enzyme-linked immunosorbent assay (ELISA) 
and immunohistochemistry to detect the expression 
of 5 genes in the serum, synovial fluid and synovium of 
patients with OA and non-OA. And the relation between 
the gene expression and the severity of articular cartilage 
damage and synovitis need to be explored. Cell biology 
and molecular biology methods (such as MTT, West-
ern blot and TUNEL) need to be performed to study 
the effects of these five genes on chondrocyte prolifera-
tion, apoptosis and the expression of various inflamma-
tory indicators. Knockout mice, gene overexpression or 
silencing lentivirus and gene-specific antagonistic pep-
tides were used to study the effect of blocking the above 
five genes on OA.
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We used these 5 genes to construct a diagnostic model, 
and the diagnostic model performed well in training 
cohort and validation cohorts. In addition, we verified the 

methylation expression of some hub genes. The 5-gene 
signature can thus play an important role in the preven-
tion and diagnosis of OA.
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